Morphologische Strukturanalyse des Codex Dresden

- Analytische und synthetische Methoden für ein erweitertes Verständnis einer Handschrift der Maya aus der Zeit vor ihrem Kontakt mit den Europäern -

Inaugural-Dissertation

zur Erlangung der Doktorwürde

der

Philosophischen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität

vorgelegt von

zu Bonn

Axel Neurohr

aus

Duisburg

Gedruckt mit der Genehmigung der Philosophischen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Vorsitzende: Frau apl. Professorin Dr. Maria Susana Cipolletti

Betreuer und Gutachter: Professor Dr. Berthold Riese

Gutachter: Professor Dr. Wolfhard Schlosser

weiteres prüfungsberechtigtes Mitglied: Professor Dr. Gordon Whittaker

Tag der mündlichen Prüfung: 8. Juli 2010

Morphologische Strukturanalyse des Codex Dresden

Analytische und synthetische Methoden für ein erweitertes Verständnis einer Handschrift der Maya aus der Zeit vor ihrem Kontakt mit den Europäern

INHALTSVERZEICHNIS

	Verz	zeichnis	der Abbildungen im Text	viii
	Verz	zeichnis	der Tabellen im Text	ix
	Verz	zeichnis	der Abkürzungen	X
	Dan	ksagung		1
1		leitung		3
	1.1	Motive		3
	1.2	Ziele		5
	1.3		nensmodell: Struktur der Arbeit	6
	1.4	Voraus	ssetzungen	9
2	Der		Dresden	11
	2.1		ungsgeschichte und Publikationen	11
	2.2		lturelle Kontext	14
	2.3		le Beschreibung	20
	2.4	Inhaltli	iche Beschreibung	21
3	Met		e Grundlagen	27
	3.1		nschaftstheoretische Ansätze	27
	3.2		he und dynamische Gliederung	34
	3.3	_	verk zur Notation	37
	3.4		nung in die Forschungsgeschichte	39
	3.5	Ergebn	sisse und Schlussfolgerungen	41
4	Stat		Analysen ausgewählter Teile des numerischen Korpus	43
	4.1		ntersuchungsgegenstand	43
			ntersuchungsmethode	46
	4.3		ationsverarbeitung	50
		4.3.1	\mathcal{C}	50
			Das Datenmaterial	50
		4.3.3	Das Ergebnis der Informationsverarbeitung	51
5	Erg		der statistischen Analysen	53
	5.1	_	neines zur Ergebnis-Präsentation	53
	5.2		ikation von Perioden der eigenen Lesung	54
		5.2.1	Die Seiten p. 24, 46-50	54
		5.2.2	Die Seiten p. 51-58	56
		5.2.3	Die Seiten p. 58-59	59
		5.2.4	Die Seiten p. 43-44	62
		5.2.5	Die Seiten p. 69-73 (9 Ix)	63
		5.2.6	Die Seiten p. 69-73 (4 Eb)	66
		5.2.7	Die Seiten p. 31-32	67
		5.2.8	Die Seiten p. 62-64	68
		5.2.9	Ergänzende Evaluation	68
		5.2.10	Zusammenfassung	70
	5.3	-	etation der Ergebnisse der eigenen Lesung	72
		5.3.1	Die Signaturen des Sonnenjahres	72

Lite	eratu	rverzeich	nnis	141
	8.3	Desidera	ata	139
	8.2		men der Maya	136
	8.1		nenfassung der Ergebnisse	133
8			assung und Ausblick	133
O		_		
	7.6	Maya Ergebnis	S	128 130
	7.5	_	ensrichtungen der Figuren im piktoralen Korpus der Codices der	100
		7.4.3	Die kunstgeschichtliche Hypothese	127
		7.4.2	Die astronomische Hypothese	126
		7.4.1	Die soziopolitische Hypothese	126
	7.4		tation der Richtungsinformation der Figuren des piktoralen Korpus	125
	7.3		gsindikatoren im piktoralen Korpus	119
	7.2		htungsinformationen im hieroglyphischen und numerischen Korpus	117
	7.1	_	enstellung	117
7		•	Richtungsinformationen	117
7	A	lvee der l	Dichtungginformationen	117
	6.5	Das Son	nenjahr (das tropische Jahr)	112
	6.4		auigkeit der Astronomie der Maya	110
	6.3	_	esimalsystem	108
		6.2.4	Ergebnis	107
		6.2.3	Die Teiler des Tzolkin	104
		6.2.2	Die Strukturen des Tzolkin und des Haab	100
		6.2.1	Die Deutungen des Tzolkin	98
	6.2	Der Tzo		98
			Mondes	92
		6.1.2	Die Interpretation des Venus-Zyklus unter Berücksichtigung des	
		6.1.1	Der Status der Interpretation des Venus-Zyklus	91
	6.1		atung des Venus-Zyklus der Seiten C.D. p.24, 46-50	91
6			sche Analysen im numerischen Korpus	91
_	_	a a .=		~ .
			Lesungen	87
		5.4.10	Schlussfolgerungen aus der synoptischen Betrachtung der drei	
		5.4.9	Die Seiten p. 62-64	87
		5.4.8	Die Seiten p. 31-32	86
		5.4.7	Die Seiten p. 69-73 (4 Eb)	86
		5.4.6	Die Seiten p. 69-73 (9 Ix)	86
		5.4.5	Die Seiten p. 43-44	85
		5.4.4	Die Seiten p. 58-59	85
		5.4.3	Die Seiten p. 51-58	84
		5.4.2	Die Seiten p. 24, 46-50	81
		5.4.1	Allgemeines	81
		durch Fö	örstemann (1901) und Thompson (1972)	81
	5.4	Vergleic	chende Interpretation der Ergebnisse mit den alternativen Lesungen	
		5.3.7	Weitere Ergebnisse	76
		5.3.6	Die Signaturen des Tzolkin	75
		5.3.5	Die Signaturen der Periode 390 (Saturn und Jupiter ?)	74
		5.3.4	Die Signaturen des Mars	73
		5.3.3	Die Signaturen der Venus	73
		5.3.2	Die Signaturen des Merkur	72

ANHANG	171
Anhang 1: Paginierung des Codex Dresden	173
Anhang 2: Darstellung ausgewählter Abschnitte des Codex Dresden Anhang 2.1: Seiten p. 24, 46-50 Anhang 2.2: Seiten p. 51-58 Anhang 2.3: Seite p. 59 Anhang 2.4: Seiten p. 43-44 Anhang 2.5: Seiten p. 69-73 Anhang 2.6: Seiten p. 31-32 Anhang 2.7: Seiten p. 62-64	175 177 203 237 243 253 279 289
Anhang 3: Modifikationen von Daten in den acht ausgewählten Abschnitten Anhang 3.1: Modifikationen in E.W. Förstemann (1901) Anhang 3.2: Modifikationen in J.E.S. Thompson (1972)	301 302 303
Anhang 4: Datenbestand: eigene Lesung, Förstemann (1901), Thompson (1972) Anhang 4.1: Datenbestand der Seiten p. 24, 46-50 Anhang 4.2: Datenbestand der Seiten p. 51-58 Anhang 4.3: Datenbestand der Seiten p. 58-59 Anhang 4.4: Datenbestand der Seiten p. 43-44 Anhang 4.5: Datenbestand der Seiten p. 69-73 (9 Ix) Anhang 4.6: Datenbestand der Seiten p. 69-73 (4 Eb) Anhang 4.7: Datenbestand der Seiten p. 31-32 Anhang 4.8: Datenbestand der Seiten p. 62-64	305 306 307 309 310 311 312 313
Anhang 5: Informationsverarbeitung Anhang 5.1: Software-Programm (Quellcode) Anhang 5.2: Daten der eigenen Lesung in der Software Anhang 5.3: Daten der Lesung Förstemann (1901) in der Software Anhang 5.4: Daten der Lesung Thompson (1972) in der Software	315 316 318 323 327
Anhang 6: Ergebnisse der statistischen Analyse von acht Abschnitten des	
numerischen Korpus Anhang 6.1: Ergebnisse gemäß eigener Lesung Anhang 6.2: Ergebnisse gemäß der Lesung Förstemann (1901) Anhang 6.3: Ergebnisse gemäß der Lesung Thompson (1972)	331 331 342 355
Anhang 7: Ermittelte Perioden in den Originaldaten Anhang 7.1: Perioden der Seiten p. 24, 46-50 Anhang 7.2: Perioden der Seiten p. 51-58 Anhang 7.3: Perioden der Seiten p. 58-59 Anhang 7.4: Perioden der Seiten p. 43-44 Anhang 7.5: Perioden der Seiten p. 69-73 (9 Ix) Anhang 7.6: Perioden der Seiten p. 69-73 (4 Eb) Anhang 7.7: Perioden der Seiten p. 31-32 Anhang 7.8: Perioden der Seiten p. 62-64	369 370 371 373 374 375 376 377
Anhang 8: Darstellung des Codex Dresden p.8(8)-9(9)	379
Anhang 9: Agensrichtung anthropomorpher und zoomorpher Figuren in den Codices Madrid, Paris und Grolier Anhang 9.1: Agensrichtung der Figuren im Codex Madrid Anhang 9.2: Agensrichtung der Figuren im Codex Paris Anhang 9.3: Agensrichtung der Figuren im Codex Grolier	387 388 391 392

Verzeichnis der Abbildungen im Text

Abbildung 1	Diego de Landa: Relación de las cosas de Yucatán (Auszug aus dem Manuskript der Biblioteca Real Academia de História, Madrid)	2
Abbildung 2	Vorgehensmodell: Struktur der Arbeit	7
Abbildung 3	Karte des Lebensraums der Maya (Coe und Kerr 1997:28, Abbildung 4)	15
Abbildung 4	Chronologie des Maya	16
Abbildung 5	Der abstrakte Untersuchungsraum: Information und ihre Darstellungsformen im Codex Dresden	30
Abbildung 6	Notationssystem (Riese 1995:70, Abbildung 6)	34
Abbildung 7	Gesamtstruktur eines allgemeinen Modells der Bearbeitung jeder Seite des Codex Dresden: Notation (statische Dimensionen) und Methode (dynamische Dimension)	36
Abbildung 8	Die statistisch signifikanten Teiler des Abschnitts p.24,46-50	56
Abbildung 9	Die statistisch signifikanten Teiler des Abschnitts p.51-58	58
Abbildung 10	Die statistisch signifikanten Teiler des Abschnitts p.58-59	61
Abbildung 11	Die statistisch signifikanten Teiler des Abschnitts p.43-44	62
Abbildung 12	Die statistisch signifikanten Teiler des Abschnitts p.69-73 (9 Ix)	64
Abbildung 13	Die statistisch signifikanten Teiler des Abschnitts p.69-73 (4 Eb)	67
Abbildung 14	Konjunktion Venus-Mond (Entwurf: Prof. Schlosser)	93
Abbildung 15	Konjunktionen Venus-Sonne und Venus-Mond (Entwurf: Prof. Schlosser)	95
Abbildung 16	Haab als cartesische Tabelle	101
Abbildung 17	Tzolkin als cartesische Tabelle	102
Abbildung 18	Häufige Darstellungsformen des Tzolkin a) Bowditch (1910:24); b) Kettunen und Helmke (2008:40)	103
Abbildung 19	Summanden, Mittelwerte und deren Streuung (± 1 σ) für die Zahlen (z) 1 bis 200	106
Abbildung 20	Summanden, Mittelwerte und deren Streuung (\pm 1 σ) für die Zahlen (z) 301 bis 600	106

Verzeichnis der Tabellen im Text

Tabelle 1	Die Struktur der Präsentation der Ergebnisse der statistischen Analyse	53
Tabelle 2	Ergebnisse der statistischen Analyse der Daten des numerischen Korpus der Abschnitte gemäß eigener Lesung	71
Tabelle 3	Identifizierte Perioden in acht Abschnitten des Codex Dresden	77
Tabelle 4	Differenzen zwischen den Ausgangspunkten derjenigen Abschnitte mit genau einem Ausgangspunkt	78
Tabelle 5	Charakteristika der Ergebnisse der statistischen Analyse für die Daten der eigenen Lesung	79
Tabelle 6	Ergebnisse der statistischen Analyse des numerischen Korpus der Abschnitte gemäß der Lesung E.W. Förstemann (1901)	82
Tabelle 7	Ergebnisse der statistischen Analyse des numerischen Korpus der Abschnitte gemäß der Lesung J.E.S. Thompson (1972)	83
Tabelle 8	Charakteristika der Ergebnisse der statistischen Analyse für die Daten der Lesung E.W. Förstemann (1901)	88
Tabelle 9	Charakteristika der Ergebnisse der statistischen Analyse für die Daten der Lesung J.E.S. Thompson (1972)	89
Tabelle 10	Beispiel von Mond-Venus-Konjunktionen (Juni 2004 - Januar 2006)	94
Tabelle 11	Mond-Venus-Konjunktionen (MVK) in Abhängigkeit vom Startwinkel des Mondes (0° = Neumond) zum Zeitpunkt der Unteren Konjunktion der Venus mit der Sonne	96
Tabelle 12	Blickrichtung anthropomorpher und zoomorpher Figuren (C.D. recto)	121
Tabelle 13	Blickrichtung anthropomorpher und zoomorpher Figuren (C.D. verso)	122
Tabelle 14	Blickrichtung anthropomorpher und zoomorpher Figuren (C.D. gesamt)	123

Verzeichnis der Abkürzungen

a annum (physikalische Einheit: Jahr)

a_{trop} tropisches Jahr (Länge des ...)

 $(a \rightarrow) b$ Modifikation einer Vigesimalstelle vom Wert a in den Wert b

Bez. Bezeichnung

bzw. beziehungsweise

ca. circa, ungefähr
C.D. Codex Dresden

d dies (physikalische Einheit: Tag)

d.h. das heißt

etc. et cetera (lat.): und andere

GMT-Korrelation Goodman-Martínez-Thompson-Korrelation

Kandidat für eine signifikante oder hochsignifikante Periode

Kz. Kennziffer zur informationstechnischen Unterscheidung der Abschnitte des

Codex Dresden

L links

mod N modulo N: ganzzahliger Rest nach Division durch N

MVK Mond-Venus-Konjunktion

n. Chr. nach Christus

 $N(T_i)$ Anzahl der Vorkommnis des Teilers T_i in einem Datenbestand

o.a. oben angeführt

p. pagina (Seite des Codex Dresden)

R rechts

s.u. siehe unten

T_i der i-te Teiler in einer Folge von Teilern

 U_{hyp} hypothetische Umlaufperiode U_{syn} synodische Umlaufperiode

v. Chr. vor Christus
z.B. zum Beispiel
zzgl. zuzüglich

? unbekannte Bedeutung einer Hieroglyphe oder eines ihrer Bestandteile

inicht lesbare Hieroglyphe oder nicht lesbarer Bestandteil

≥ Vergleichsoperator: größer als oder gleich

< Vergleichsoperator: kleiner als

 \sum Summe siehe

für

Claudia und Bertrand

Danksagung

Professor Dr. Berthold Riese hat mein Studium der Altamerikanistik und Ethnologie sowie meine besonderen Interessen, die sich in meiner Magisterarbeit und der vorliegenden Arbeit ausdrücken, unterstützt. Dabei hat er mir die Freiheit gewährt, die Grundlage jeder wissenschaftlichen Arbeit sein sollte.

Professor Dr. Wolfhard Schlosser hat viele wertvolle Hinweise gegeben und mit Hilfestellungen in Fragen der Astronomie und der Statistik meine schrittweise Annäherung an Kerngedanken der Arbeit begleitet. In ausführlichen Gesprächen mit ihm habe ich mich am Ort meines ersten Studiums wieder heimisch gefühlt.

Professor Dr. Nikolai Grube hat meine Kenntnisse der Kultur der Maya um die wichtige Facette der modernen yukatekischen Mayasprache erweitert.

Anlässlich langer Spaziergänge habe ich in Gyde Maria Heck, Jürgen Heck, Charlotte Hülskämper, Bruno Jordans, Rudolf Leutz, Klaus Menzel, Albert Meyers, Harald Morgenstern, Hermann Schneider, Peter Siegle, Maria Uleer und Hermut Warnatz geduldige Gesprächspartner gefunden. Sie alle haben nicht nur durch ihr Interesse, sondern auch durch wichtige Anregungen und Ermutigungen einen großen Anteil an meiner Arbeit genommen.

Ihnen allen gilt mein besonderer Dank.

Vsaman tambien esta gente de ciertos carateres o letras un las quales escrinian en sus libros sus cosas antiguas, yo sus sciencies, y con ellas, y figuras, y algumas senalce, un las figuras entendian sus cosas, y les damana entendee y ensenavam. Hallamos les grande numero de libros destas sus letras, y porque tenian cosa, en que no omiesse super sicion y anguno falsedades del demonio se los queme mos todos, lo qual a maranilla sentian, y les dana para

Abbildung 1: Diego de Landa (o.D.): Relación de las cosas de Yucatán (Auszug aus dem Manuskript der Biblioteca Real Academia de História, Madrid)

1. Einleitung

1.1 Motive

Der Codex Dresden ist eines von vier in lesbarem Zustand erhalten gebliebenen Büchern der schriftlichen Hinterlassenschaft der Kultur der Maya aus der Zeit vor ihrem Kontakt mit den Europäern. Die Codices der Maya dürfen als Bücher bezeichnet werden, nicht nur weil sie dem europäischen Verständnis von einem Buch in Form und Größe, Handhabung und Portabilität sowie der Zweckbestimmung der Informationsvermittlung sehr nahe stehen, sondern auch weil der Gegenstand durch keinen anderen Begriff angemessener beschrieben ist – die Typisierung als Codex stellt nur eine Spezifizierung innerhalb der Gattung Buch dar.

Ein Buch mag das Ergebnis eines individuellen Produktionsprozesses sein. Es ist jedoch immer auch nicht nur Zeugnis sondern Produkt einer Kultur und somit eine materielle Hinterlassenschaft einer Gemeinschaft. Es kann verstanden werden als ein Ausschnitt des kollektiven Wissens einer Gesellschaft und zwar nicht nur zum Zeitpunkt seiner Niederschrift, sondern als Akkumulation der Kenntnisse und der Glaubensvorstellungen aller seiner Entstehung vorausgehenden Generationen.

Der Vergänglichkeit des Materials ihrer Bücher begegneten die Maya sowohl mit der Erstellung von Abschriften als auch mit einer Wertschätzung. Denn trotz einer vorangegangenen Epoche kultureller Regression im Lebensraum der Maya, die im wesentlichen durch einen erheblichen Rückgang der Errichtung großer Architektur, den Verlust eines wichtigen Bestandteils ihres Kalendersystems, nämlich der Langen Zählung, sowie deutlichen Migrationsbewegungen im Siedlungsgebiet gekennzeichnet ist, fanden die Europäer nach ihrem Eintritt in dieses eine Vielzahl ähnlicher Bücher vor.

Ein Interesse insbesondere an der Bewahrung dieser Kulturgüter scheint bei den Neuankömmlingen gering gewesen zu sein. Es erreichte einen traurigen Tiefpunkt in einer Reihe von Bücherverbrennungen, von denen wiederum die durch Diego de Landa, Bischof von Yucatán, initiierte vom 12. Juli 1562 in Maní die bekannteste ist.

"Diese Leute gebrauchten auch bestimmte Schriftzeichen oder Buchstaben, mit denen sie in ihren Büchern ihre alten Geschichten und ihre Wissenschaften aufschrieben, und durch sie, die Bilder und einige Zeichen an den Bildern verstanden sie ihre Angelegenheiten, machten sie

anderen begreiflich und lehrten sie. Wir fanden bei ihnen eine große Zahl von Büchern mit diesen Buchstaben, und weil sie nichts enthielten, was von Aberglauben und den Täuschungen des Teufels frei wäre, verbrannten wir sie alle, was die Indios zutiefst bedauerten und beklagten." (Landa 1990:135) (Abbildung 1).

Der Mensch als Individuum steht im Mittelpunkt der Analyse "Die Eroberung Amerikas" von Tzvetan Todorov (1985), die den Untertitel trägt: Das Problem des Anderen. Todorov beschreibt dessen Handlungen und Unterlassungen, sein Verstehen und sein Unverständnis.

Im Mittelpunkt meiner Arbeit steht also ein Buch - ein materielles Gut und nicht ein einzelner Mensch. Dieses Buch ist möglicherweise von einem Individuum geschaffen worden, jedoch spiegelt es einen Ausschnitt der Entwicklung des Geisteslebens aller Maya – es ist ein kulturelles Gut der Anderen.

"Unbeeinflusst vom Menschen ziehen die Gestirne seit Jahrtausenden ihre Bahnen. Der gestirnte Himmel bildete deshalb seit jeher ein Symbol für das "Andere" – die Natur, die Gottheit – den Gegenpol des "Ich" mit seiner Welt des inneren Erlebens, Wünschens und Schaffens." (Unsöld und Baschek 1999:6)

Die Befassung mit den Anderen, die Informationen über das Andere in Form des Buches Codex Dresden bewahren und übermitteln wollten, soll im Bewusstsein geschehen,

- 1. selbst nicht Teil dieser Kultur zu sein und es daher immer nur "von außen" studieren zu können,
- 2. mit einem Verständnis, das nicht nur deshalb nie vollständig sein kann, und dennoch auf das Bemühen um Vollständigkeit ausgerichtet ist,
- 3. das nicht nur auf das Verstehen des statischen Inhalts des Buches zielt, sondern ebenso auf den dynamischen Aspekt seiner kumulativen Entstehung als Ergebnis einer Entwicklung des Geisteslebens der Maya und deren prozeduralem Umgang mit ihm.

Durch diese Motive werden drei Dimensionen aufgespannt: zunächst das Interaktionsfeld Individuum und Gesellschaft, die zu differenzieren sind in die eigene und die andere(n) Kultur(en), sowie in die Kategorie der Denkformen. Letztere verbinden alle Individuen der

Gattung Homo sapiens und differenzieren sie dennoch in verschiedene Individuen, Gesellschaften und Kulturen.

Das verbindende Konzept aller Denkformen und der genannten Dimensionen ist die Abstraktion.

Tzvetan Todorovs Suche nach dem Anderen im Individuum mündet im Postulat (1985:291): "Denn der andere muß entdeckt werden." Die folgende Untersuchung stehe unter dem Motiv: Denn das Andere – in diesem Buch – muss entdeckt werden.

1.2 Ziele

Eine Grundlage für die Definition der Ziele der vorliegenden Arbeit bildet die Mathematik. Sie ist nicht nur Bestandteil des Kulturschaffens der Maya sondern auch ein wesentlicher Inhalt des Codex Dresden (im Folgenden auch abgekürzt C.D.). Die moderne Mathematik versteht sich vornehmlich als "Strukturwissenschaft". Die Anwendung ihrer Theorien, Verfahren und Modelle in Einzelwissenschaften wird "Mathematisierung" genannt. Sie ist nicht auf naturwissenschaftliche Disziplinen beschränkt, sondern kann auch zur Beantwortung einer Vielzahl kulturwissenschaftlicher Fragestellungen sinnvoll angewendet werden.

Ziel 1:

Zusammen mit zwei weiteren wissenschaftstheoretischen Ansätzen wird das Paradigma der *Morphologischen Strukturanalyse* formuliert. Es bildet die Grundlage der nachfolgenden Untersuchungen. Es soll ermöglichen, den Codex Dresden in seiner Gesamtheit ebenso transparent zu machen wie die Schritte seiner Bearbeitung.

Ziel 2:

Dazu ist eine "Formalisierung" sowohl des Untersuchungsgegenstandes als auch der anzuwendenden analytischen und synthetischen Methoden erforderlich. Dies geschieht durch die Definition eines formalen Systems, das sämtliche Elemente des Codex Dresden identifiziert und ihre Bearbeitung durch Informationstechnik ermöglicht. Das Ergebnis wird an den Teilen des C.D. präsentiert, die zur Bearbeitung der nachfolgend beschriebenen Themen erforderlich sind.

Ziel 3:

Die *Morphologische Strukturanalyse* bildet die Grundlage für die Bestimmung der in jedem von acht ausgewählten Abschnitten des Codex Dresden enthaltenen Zahlenwerte und ihrer Bedeutung. Diese erfolgt mittels einer Technik, die auf die Vollständigkeit ihrer Ergebnisse abzielt und sie statistisch quantifiziert.

Ziel 4:

Verschiedene deterministische Analysen zur Astronomie und den Zeitzählungssystemen der Maya, die im Zusammenhang mit den Ergebnissen des Ziels 3 relevant sind, bilden das zweite inhaltliche Ziel.

Ziel 5:

Eine weitere Fragestellung untersucht die Gesamtheit aller Richtungsinformationen des C.D.. Dazu werden die Agensrichtungen aller im piktoralen Korpus enthaltenen anthropomorphen und zoomorphen Figuren mit den Richtungsinformationen des hieroglyphischen und des numerischen Korpus verglichen. Der Informationsgehalt der Agensrichtungen wird innerhalb des C.D. gedeutet und mit den entsprechenden Richtungsinformationen der anderen lesbar erhalten gebliebenen Codices der Maya verglichen.

Allen diesen Zielen ist gemeinsam, das in der Handschrift niedergeschriebene Wissen der Maya besser verstehen zu wollen. Nebenziel ist es, an den inhaltlichen Fragestellungen (*Ziele 3, 4, 5*) die Leistungsfähigkeit der *Morphologischen Strukturanalyse* zu demonstrieren. Dabei wird deutlich, dass eine vollständige Untersuchung des Codex Dresden mit dieser Analysemethode aus quantitativen Gründen innerhalb der vorliegenden Arbeit nicht möglich ist.

1.3 Vorgehensmodell: Struktur der Arbeit

Eine schematische Übersicht des Aufbaus der Arbeit zeigt Abbildung 2. Der Untersuchungsgegenstand Codex Dresden wird in Kapitel 2 präsentiert. Die Beschreibung seiner Forschungs- und Publikationsgeschichte (\rightarrow 2.1) mündet in der Darstellung seines kulturellen Kontextes (\rightarrow 2.2). Daneben wird sein physischer und formaler Aufbau vorgestellt (\rightarrow 2.3). Eine Übersicht über den zu Beginn des 21. Jahrhunderts bestehenden Stand der Kenntnisse seines Inhalts (\rightarrow 2.4) bildet die Grundlage für die nachfolgenden Untersuchungen.

S						
C	Zusammenfassung		Denkformen			Desiderata
Н	der		der			
L	Ergebnisse		Ma	aya		
U						
В	Kapitel 8.1 Kapit		rel 8.2		Kapitel 8.3	
Α						•
U	NU	JMERIS	SCHES KORP	US		RICHTUNGS-
S		wählte Abschnitte))		INFORMATION	
F						
Ü						im
Н		Analysei	n und Synthesei	n		hieroglyphischen,
R	1	•	mittels			numerischen
U	probabilistisc		l deterministisc	her Methoden		und piktoralen
N	produditistisc	пст ина	acterministise	ner memoden		Korpus
G		1				Погриз
\downarrow	Kapitel 4	I.	Kapitel 5	Kapitel	6	Kapitel 7
M	Kapitei 4	Г	supiter 3	Kapiter	0	Kapitei /
E	Statische und	Regely	werk zur	Einordnung		Ergebnisse
T	dynamische	Notati		in die		und
H	Gliederung:	und	OII	Forschungs-		Schlussfolgerungen
0	_		llungs	_		Schlussfolgerungen
	Notationssystem und Standard der		llungs-	geschichte		
D		konventionen				
E	Epigraphik	***	1.100	77 1 10		77 1 10 7
\rightarrow	Kapitel 3.2	K	apitel 3.3	Kapitel 3	.4	Kapitel 3.5
P						
A	IV.	IORPH	OLOGISCHE !	SIRUKIURA	NALYS	DE .
R	W/: 1 Ct - 41: -	_	V14 - D	1	37-11-4	9 41 . 1 14.
A	Wissenschaftstheorie	:	Konkrete Darlegung Vollsti der Methode: bezogen		ändigkeit:	
D	G. 1. 1'				Dezogei	и аиј
I			C I4			1
			erfordert			Ausgangsmaterial
G	- Mathematik		erfordert Formalisierun	$g (\to 3.2, 3.3)$		Ausgangsmaterial Lösungsalternativen
G M			•		- die L	ösungsalternativen
G M A	- Mathematik		Formalisierun	ermöglichen Fal	- die L	ösungsalternativen
G M A →	- Mathematik		•	ermöglichen Fal	- die L	ösungsalternativen
G M A →	- Mathematik		Formalisierun Kapit	ermöglichen Fal zel 3.1	- die L	ösungsalternativen
G M A → O B	- Mathematik - Kreativitätstechnik		Formalisierun	ermöglichen Fal	- die L	ösungsalternativen
G M A → O B J	- Mathematik - Kreativitätstechnik Forschungs- und		Formalisierun Kapit CODEX	ermöglichen Fal tel 3.1 DRESDEN	- die I	ösungsalternativen barkeit
G M A → O B J E	- Mathematik - Kreativitätstechnik Forschungs- und Publikations-		Formalisierun Kapit CODEX ultureller	ermöglichen Fal zel 3.1 DRESDEN Formale	sifizier	ösungsalternativen barkeit Inhaltliche
G M A → O B J E K	- Mathematik - Kreativitätstechnik Forschungs- und		Formalisierun Kapit CODEX	ermöglichen Fal tel 3.1 DRESDEN	sifizier	ösungsalternativen barkeit
G M A → O B J E K T	- Mathematik - Kreativitätstechnik Forschungs- und Publikations- geschichte]	Formalisierun Kapit CODEX ultureller Kontext	ermöglichen Fal tel 3.1 DRESDEN Formale Beschreibt	- die I sifizier	barkeit Inhaltliche Beschreibung
G M A → O B J E K T →	- Mathematik - Kreativitätstechnik Forschungs- und Publikations-]	Formalisierun Kapit CODEX ultureller	ermöglichen Fal zel 3.1 DRESDEN Formale	- die I sifizier	ösungsalternativen barkeit Inhaltliche
G M A → O B J E K T →	- Mathematik - Kreativitätstechnik Forschungs- und Publikations- geschichte Kapitel 2.1]	Kapit CODEX ultureller Kontext apitel 2.2	ermöglichen Fallel 3.1 DRESDEN Formale Beschreibt Kapitel 2	- die I	iosungsalternativen barkeit Inhaltliche Beschreibung Kapitel 2.4
G M A → O B J E K T → B A	- Mathematik - Kreativitätstechnik Forschungs- und Publikations- geschichte]	Formalisierun Kapit CODEX ultureller Kontext	ermöglichen Falcel 3.1 DRESDEN Formale Beschreibt Kapitel 2	- die I	barkeit Inhaltliche Beschreibung
G M A → O B J E K T → B A S	- Mathematik - Kreativitätstechnik Forschungs- und Publikations- geschichte Kapitel 2.1]	Kapit CODEX ultureller Kontext apitel 2.2	ermöglichen Fallel 3.1 DRESDEN Formale Beschreibt Kapitel 2	- die I	iosungsalternativen barkeit Inhaltliche Beschreibung Kapitel 2.4
G M A → O B J E K T → B A S I	- Mathematik - Kreativitätstechnik Forschungs- und Publikations- geschichte Kapitel 2.1]	Kapit CODEX ultureller Kontext apitel 2.2	ermöglichen Falcel 3.1 DRESDEN Formale Beschreibt Kapitel 2	- die I	iosungsalternativen barkeit Inhaltliche Beschreibung Kapitel 2.4
G M A → O B J E K T → B A S	- Mathematik - Kreativitätstechnik Forschungs- und Publikations- geschichte Kapitel 2.1	K	Kapit CODEX ultureller Kontext apitel 2.2	ermöglichen Falcel 3.1 DRESDEN Formale Beschreibt Kapitel 2	- die I sifizier	iosungsalternativen barkeit Inhaltliche Beschreibung Kapitel 2.4

Abbildung 2: Vorgehensmodell: Struktur der Arbeit

Das Kapitel 3 ist der Bearbeitung der Aufgabenstellung im Sinne der Definition der beiden ersten Ziele gewidmet. Das Paradigma Morphologische Strukturanalyse (Ziel 1) wird in seinen Bestandteilen definiert (\rightarrow 3.1). Es gründet vornehmlich auf dem Konzept einer ganzheitlichen Betrachtung mit dem Ziel, auf alle Teile des C.D. anwendbar zu sein. Die Formalisierung des Untersuchungsgegenstandes (Ziel 2) bildet die adäquate Methodik seiner Bearbeitung und Analyse (\rightarrow 3.2). Die praktische Anwendung des Prinzips der Formalisierung erfordert ein Regelwerk (\rightarrow 3.3). Der insoweit präsentierte Untersuchungsansatz wird forschungsgeschichtlich eingeordnet und dadurch ergänzend begründet (\rightarrow 3.4).

Sowohl der Umfang und die thematische Vielgestaltigkeit des Codex Dresden als Ganzes als auch seiner drei formalen Bestandteile – das sind der Hieroglyphentext, das numerische Material und das Bildprogramm – erfordern eine Auswahl bestimmter Kontexte, auf die das Paradigma und die Methodik im Rahmen dieser Arbeit angewendet werden sollen. Diese Auswahl besteht in den Seiten des C.D., die für die Bearbeitung der Aufgabenstellung im Sinne der inhaltlichen Ziele erforderlich sind. Das erste konkrete Ergebnis dieses Forschungsansatzes bilden die Darstellung dieser Seiten (\rightarrow Anhang 2, Anhang 8). Weitere Ergebnisse und Schlussfolgerungen werden in (\rightarrow) 3.5 zusammengefasst.

Auf dieser Grundlage werden sämtliche weiteren Ergebnisse (Kapitel 5, 6 und 7) erzeugt. Kapitel 4 bereitet die Durchführung einer statistischen Untersuchung von acht ausgewählten Teilen des C.D. mittels probabilistischer Methoden (\rightarrow 4.2) vor, die auf Grund ihrer Allgemeingültigkeit in verschiedenen naturwissenschaftlichen Disziplinen Anwendungsgebieten etabliert und für den Nachweis von Perioden in numerischem Material geeignet sind $(\rightarrow 4.1)$. Die dabei angewendeten Hilfsmittel der Informationsverarbeitung werden beschrieben (\rightarrow 4.3). Das numerische Material von acht ausgewählten Abschnitten wird anhand der Ergebnisse des Kapitels 3 (→ Anhang 2, Anhang 8) gemäß einer eigenen Lesung in acht separaten Datensätzen zusammengestellt. Ernst Wilhelm Förstemann (1901) und John Eric Sidney Thompson (1972) haben das entsprechende Datenmaterial in ihren Untersuchungen im Sinne ihrer Interpretation modifiziert. Dieses Datenmaterial wird aufbereitet (→ Anhang 3) und mit dem der eigenen Lesung parallelisiert (→ Anhang 4), um die Sinnhaftigkeit dieser Modifikationen zu evaluieren. Separate statistische Analysen werden für jede dieser drei Lesungen vorgenommen. Ihre Ergebnisse werden miteinander verglichen und bewertet (→ Kapitel 5). Die Einzelheiten der informationstechnischen Durchführung sind in Anhang 5 zusammengestellt und deren Ergebnisse in Anhang 6 im Detail in tabellarischer Form dokumentiert. Diese Ergebnisse werden in Anhang 7 in Form von Vielfachen ermittelter

Perioden dargestellt, die wiederum in die Interpretation des numerischen Materials des Codex Dresden in Form des Anhangs 2 einfließen.

Wichtige Elemente der Geisteswelt der Maya, wie ihr astronomisches Wissen (\rightarrow 6.1, 6.4, 6.5) und ihre Zeitzählungssysteme (\rightarrow 6.2, 6.3) sowie die ihnen immanenten Kenntnisse der Mathematik werden im Licht der Ergebnisse der statistischen Analysen auf weitere deterministische Aspekte überprüft (\rightarrow Kapitel 6).

Die Aufgabenstellung der Analyse der Richtungsinformationen des C.D. wird formuliert (\rightarrow 7.1). Anschließend erfolgt eine Bestandsaufnahme der Richtungsinformationen des Hieroglyphentextes und der numerischen Teile (\rightarrow 7.2) sowie im Bildmaterial (\rightarrow 7.3). Diese Teilergebnisse werden mit den entsprechenden Bestandsaufnahmen der Richtungsinformationen in den anderen drei erhaltenen Codices der Maya verglichen (\rightarrow 7.4) und interpretiert (\rightarrow 7.5).

Die einzelnen Ergebnisse der Arbeit werden zusammengefasst (\rightarrow 8.1). Das in diesen Ergebnissen zum Ausdruck kommende Interesse der Maya an Themen der Mathematik und der Astronomie wird zu deuten versucht (\rightarrow 8.2). Fragestellungen, die Gegenstände weiterer Forschung sein können, werden aufgezeigt (\rightarrow 8.3).

1.4 Voraussetzungen

Die folgende Bearbeitung setzt in verschiedenen Disziplinen Kenntnisse voraus, die hier nicht im Einzelnen definiert oder erläutert werden. Stattdessen wird hierfür auf folgende Standardwerke und einführende Literatur verwiesen:

- für allgemeine Mathematik: Råde und Westergren (1997)
- für die Statistik: Kaiser und Gottschalk (1972), Schlosser und Cierny (1996), Kähler (2008)
- für die Mathematik, die Arithmetik und den Kalender der Maya: Bowditch (1910), Lounsbury (1978), Closs (1986a), Prem und Riese (1986), Riese (1990b), Schalley (2000), Sharer und Traxler (2006),
- für die Astronomie und insbesondere die Horizontastronomie: Mitton (1978), Lexikon der Astronomie (1995), Schlosser und Cierny (1996), Unsöld und Baschek (1999),
- für die Programmiersprache GWBASIC: www.antonis.de/qbebooks/gwbasman/index.html.

2. Der Codex Dresden

2.1 Forschungsgeschichte und Publikationen

Im Jahr 1739 erwarb Johann Christian Götze, Bibliothekar der Königlichen Öffentlichen Bibliothek zu Dresden, in Wien eine Handschrift, deren Herkunft zunächst unbekannt war. Im Bestand der Bibliothek, der heutigen Sächsischen Landes- und Universitätsbibliothek, wird sie seit 1740 geführt (Deckert in Codex Dresden 1975:13). Die Bibliothek bewahrt die Handschrift seit 1831 unter der Signatur Mscr. Dresd. E 451 und seit Anfang des 20. Jahrhunderts unter der Signatur Mscr. Dresd. E 310 auf (Deckert in Codex Dresden 1975:17). Das Manuskript wurde unter der Bezeichnung Codex Dresdensis bekannt und wird heute meist Maya-Handschrift Codex Dresden genannt.

Alexander von Humboldt bildet in *Vue des Cordillères, et monuments des peuples indigènes de l'Amérique* (1810) erstmals fünf Seiten des C.D. als Faksimile ab, Tafel XLV zeigt p. 47-48 und p.50-52. Humboldt vermutet die Herkunft des Manuskripts im Hochland Zentral-Mexikos, wie seinen Charakterisierungen als "... le Codex mexicanus de la bibliothèque royale de Dresde ..." und " ... ce manuscript aztèque ..." zu entnehmen ist (Lips in Codex Dresden 1962:5). Als Handschrift der Maya gilt sie seit Constantine Samuel Rafinesque-Schmaltz im Jahr 1832 stilistisch-ikonographische Ähnlichkeiten zwischen der in dieser Tafel abgebildeten Hieroglyphenschrift und den Inschriften der Monumente von Palenque erkennt (Coe 1997:123-24). Ebenfalls im Vergleich zu diesen Tafeln im Werk Humboldts (1810) weist John Lloyd Stephens 1841 auf deren Ähnlichkeit mit den Inschriften des Altars Q in Copán hin (Coe 1997:130). Ferner identifiziert "Charles Etienne Brasseur de Bourbourg ... 1853 ... den Pariser und den Dresdner Codex als Mayahandschriften" (Deckert in Codex Dresden 1975:26)

Die erste vollständige Abbildung des C.D. erschien 1831 in Lord Kingsboroughs *Antiquities of México* im Band 3, für den der italienische Künstler Agostino Aglio Nachzeichnungen fertigte und kolorierte. Ernst Wilhelm Förstemann verdankt die Wissenschaft nicht nur die erste Veröffentlichung (1880) auf der Grundlage der damals neuen Technik des Chromolichtdrucks (Deckert in Codex Dresden 1975:27), die 1892 in einer zweiten Auflage erschien, sondern auch viele frühe Erkenntnisse. "Er übernahm lediglich die als gesichert erkannten Deutungen der Hieroglyphen der 20 Monatstage und 18 Monate der Mayajahre, die von [León de] Rosny erkannten Zahlzeichen für 1 bis 19 sowie die vier Zeichen der Himmelsrichtungen. Er fand ... die Zahl 20 und den Ritualkalender von 260 Tagen, ... die arithmetischen Reihen und [die] richtige Leserichtung ... sowie [die] den Himmelsrichtungen zugeordneten Glyphen und Farben, vor allem aber die Zeichen für Null und für den Planeten Venus, womit es überhaupt

erst möglich wurde, die Rechenmethodik der Maya zu erkennen und die astronomischen Zusammenhänge im Dresdner Codex zu begreifen" (Deckert in Codex Dresden 1975:30). Verschiedene Ergebnisse seiner Forschungen veröffentlichte Förstemann zwischen 1891 und 1906 in zahlreichen Zeitschriftenbeiträgen, u.a.: "die Erklärung der großen Zahlen in den Schlangenbildern, … die "lange Rechnung" der Maya mit dem Ausgangsdatum 4 Ahau 8 Cumku, … und die Hieroglyphen der Zeiteinheiten Uinal (20 Tage), Tun (360 Tage) und Katun (7200 Tage)" (Deckert in Codex Dresden 1975:32).

Die erste Bearbeitung des C.D. mit dem Ziel, zu einem Verständnis seines gesamten Inhalts zu gelangen, unternahm Ernst Wilhelm Förstemann in seinem *Commentar zur Mayahandschrift der Königlichen öffentlichen Bibliothek zu Dresden* (1901), der 1906 in englischer Übersetzung erschien. Dieses Werk hat insbesondere in Bezug auf den Anspruch der Vollständigkeit der Bearbeitung und die erzielten Ergebnisse Maßstäbe gesetzt. Förstemann erkannte in vielfältiger Weise astronomische Inhalte, unter anderem den synodischen Venusumlauf in den Seiten p.24, 46-50 (Förstemann 1901:47-56, 106-18) und den synodischen Mondumlauf in den Seiten p.51-58 (Förstemann 1901:118-33).

Paul Schellhas erforschte "Die Göttergestalten der Mayahandschriften" (1892) und bezeichnete diese neutral durch Großbuchstaben. Diese Bezeichnungen werden in moderner Literatur noch häufig verwendet, obwohl einige Götternamen als entziffert gelten.

Die Gebrüder Juan Antonio Villacorta Calderón und Carlos A. Villacorta (1930) edierten den C.D. anhand der Neuauflage der Förstemann'schen Ausgabe von 1892 in Form unkolorierter Nachzeichnungen, die auch in der Edition Codex Dresden (1975) abgebildet sind.

William Edmond Gates publizierte 1932 erstmals eine Faksimile-Ausgabe in der dem Originalmanuskript entsprechenden Form des Leporellos, auf deren Wert, aber auch deren Mängel, Thompson (1972:17) hinweist.

Rolf Krusche (1956) zeigt in Reproduktionen "... den jetzigen Zustand ... [von 24] ... Tafeln, von denen etwa ein Drittel durch Kriegseinwirkung hervorgerufene Zerstörungen oder Verfärbungen aufweist" (Krusche 1966:46). "Der Besitzer des Codex, die Sächsische Landesbibliothek in Dresden" (Lips in Codex Dresden 1962:5) gibt den C.D. auf der Grundlage der Edition Förstemann (1892) heraus. Diese Edition (Codex Dresden 1962) enthält eine umfangreiche Bibliographie sowie Kommentare von Helmut Deckert und Eva Lips insbesondere zur Forschungs- und Publikationsgeschichte.

Der Codex Dresden ist ferner publiziert in Yuri Knorosovs *Pis'mennost' indejzew Maija* (1963) sowie in deren amerikanischer Ausgabe *Maya Hieroglyphic Codices* (1982) mit der Übersetzung in das Englische durch Sophie D. Coe. Auf Knorozovs Arbeiten (1955, 1963, 1975) gründet das moderne Verständnis des Charakters der Mayaschrift, deren Logogramme und Silbenzeichen phonetisch gelesen werden können (Kettunen und Helmke 2008:8).

Der bedeutende Maya-Forscher John Eric Sidney Thompson fasste das damalige Wissen in *A Commentary on the Dresden Codex* (Thompson 1972) (→ Riese 1974) in der nach Förstemann zweiten Gesamtdarstellung zusammen.

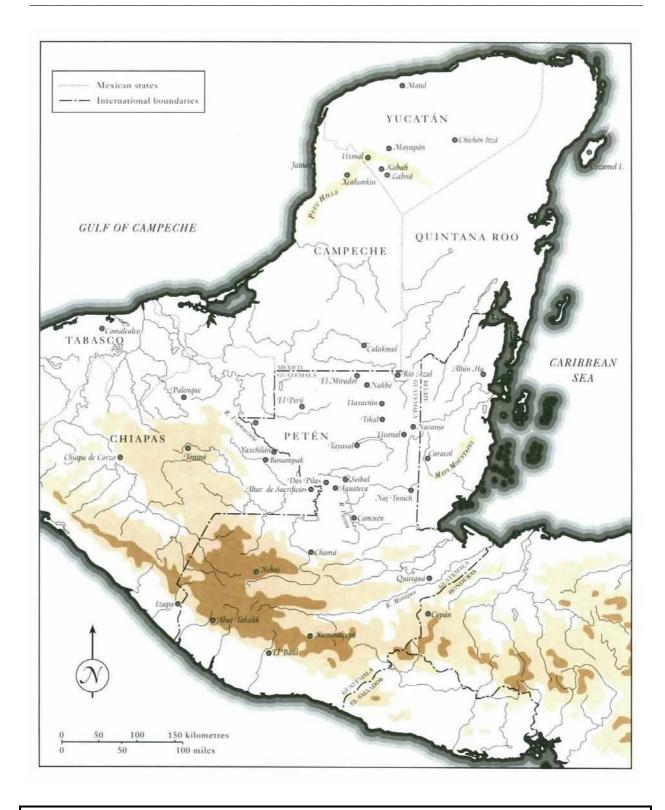
1975 erschien eine Reproduktion auf der Grundlage von Farbphotographien des beschädigten Erhaltungszustands unter Zuhilfenahme der Photographien Förstemanns mit Kommentaren von Helmut Deckert und Ferdinand Anders in Graz (Codex Dresden 1975), (→ Riese 1976a). Diese Ausgabe enthält auch die Umzeichnung der Ausgabe Villacorta und Villacorta (1930).

Der Codex Dresden ist Bestandteil in Los Códices Mayas von Thomas A. Lee (1985).

Die dritte Gesamt-Darstellung *Un nouveau Commentaire du Codex de Dresde* (Davoust 1997) hat ihren inhaltlichen Schwerpunkt in einer epigraphischen Transkription und Transliteration auf dem Stand zum Ende des 20. Jahrhunderts und liefert eine Übersetzung des Hieroglyphen-Textes in die französische Sprache. Sonstige Aspekte stellt Davoust unter Bezugnahme auf die Arbeiten Thompsons, Förstemanns und einiger anderer dar. Die Veröffentlichung des Maya Hieroglyphic Workshop (Schele und Grube 1997) mit einer Übersetzung in englischer Sprache leistet Ähnliches.

Im Jahr 1998 erschien in Guatemala eine weitere Edition des C.D.. Sie basiert auf "Los originales utalizados fueron facilitados por la Doctora Linda Schele († 1998), que corresponde a una edición facsimilar de 1887 al cuidado de Ernst Förstemann (Die Maya-Handschrift der Königlich-Sächsischen Bibliothek zu Dresden. Ascher, Dresden)." (zitiert nach der 2. Auflage dieser Edition, 2001).

Die vier lesbar erhalten gebliebenen Codices der Maya, neben dem C. D. sind dies der Codex Madrid (auch Codex Tro-Cortesianus genannt), der Codex Paris (auch Codex Peresianus genannt) und der Codex Grolier, stehen im WorldWideWeb in digitaler Form unter der Adresse http://www.famsi.org/mayawriting/codices/ zur Verfügung.


Neben den lesbaren Büchern der Maya sind sechs weitere Exemplare bekannt, die auf Grund ihres Erhaltungszustands zur Zeit nicht gelesen werden können. Sie datieren "... to the Early Classic (Uaxactún, Altun Ha), Late Classic (Nebaj, Copán), and Early Postclassic (San Agustín Acasaguastlán) periods ..." (Whiting 1999:208).

Weitere Details der Forschungsgeschichte und bibliographische Hinweise enthalten unter anderem die Editionen des Codex Dresden (1962, 1975) sowie Thompson (1972) und Coe (1997).

2.2 Der kulturelle Kontext

Die Identität der Maya ist geographisch bestimmbar durch einen Siedlungsraum, linguistisch durch die Zugehörigkeit zu einer Sprachfamilie und kulturell durch eine angemessen definierte Übereinstimmung materieller und geistiger Leistungen einer Gesellschaft mit gemeinsamer Geschichte. Ihr Ursprung reicht mindestens bis in eine Zeit zurück, in der "an den Küsten des Pazifik und der Karibik … zwischen 2500 und 2000 v.Chr. die ersten dörflichen Ansiedlungen im späteren Maya-Gebiet gegründet" (Riese 1990a:75) wurden (Abbildung 4).

Die geografische Verbreitung der Kultur der Maya ist – unter Einschluss möglicher Migrationen in verschiedenen Epochen – beschrieben durch die Halbinsel Yucatán und benachbarte Regionen (Abbildung 3). Im Norden bilden der Golf von México und im Süden der Pazifische Ozean natürliche Grenzen. Die Ausdehnung in Ost-West-Richtung liegt im Bereich zwischen 88° und 93° westlicher Länge, das entspricht der Region zwischen den Mündungsgebieten des Rio Motagua und des Rio Usumacinta und jeweils in südlicher Richtung verlaufender Grenzziehung. Innerhalb dieses Gebietes wird im Wesentlichen zwischen dem nördlichen und südlichen Tiefland sowie dem südlichen Hochland und der Küstenregion am Pazifik unterschieden. Das nördliche Tiefland ist gekennzeichnet durch eine Karstlandschaft mit nur wenigen Oberflächengewässern. Südlich von etwa 18,5° nördlicher Breite erstreckt sich das südliche Tiefland mit subtropischen Regenwald und dem Flusssystem des Río Usumacinta mit seinen Nebenflüssen. Das südliche Hochland ist Teil der den amerikanischen Kontinent durchziehenden Kordillere. Es umfasst sowohl Teile des heutigen mexikanischen Bundesstaates Chiapas als auch die Hochländer der heutigen Staaten Guatemala, El Salvador und Honduras.

Abbildung 3: Karte des Lebensraums der Maya (Coe und Kerr 1997:28, *Abbildung 4*)

In ihm liegen die Quellsysteme des Río Grijalva, des Río Chixoy und des Río Motagua und ihrer Nebenflüsse. Dieses Hochland und der Pazifik bilden die natürlichen Grenzen der südlichen Küstenebene, die etwa vom Osten des heutigen mexikanischen Bundesstaates Oaxaca bis an die Grenze zwischen El Salvador und Honduras verläuft.

	Kulturphasen				
Jahr	Maya-Gebiet	Nördliches Tiefland			
	(1)	(2)			
(n.Chr.) 1539	Eroberung	Kolonialzeit			
1500 —					
1400 —	Späte Postklassik (<i>Late Postclassic</i>)	Dekadenz (Decadent)			
1300 —	(Late 1 Osiciassic)	(Decadent)			
1200 —					
1100 —	Frühe Postklassik (Early Postclassic)	Späte Blütezeit (Modified Florescent)			
1000 —		Reine			
900 —	Endklassik (Terminal Classic)	Blütezeit (Pure			
800 —		Florescent)			
700	Spätklassik (Late Classic)	Frühe Periode II (Early Period II)			
600 —					
500 —	Frühklassik	Frühe Periode I			
400	(Early Classic)	(Early Period I)			
300 —					
200	Protoklassik (Protoclassic)				
100 —					
0 —	Späte Vorklassik (<i>Late Formative</i>)	Spätes Formativum			
- 100		(Late Formative)			
- 200					
- 300		Mittleres Formativum			
- 400	Mittlere Vorklassik	(Middle Formative)			
: <u> </u>	(Middle Formative)				
- 1000 —					
: =	Frühe Vorklassik (Early Formative)	Frühes Formativum (Early Formative)			
- 2500 —	(=====)	(=) 2 0			
	Archaikum				
(v.Chr.)	(Archaic)				
(v.Ciii.)		<u> </u>			

Abbildung 4: Chronologie des Maya (1) Sabloff (1991:33, 147), Webster (2001); (2) Andrews IV und Andrews V (1980:270-85); *nicht maβstäblich*

Die Anwesenheit von Sammlern und Jägern in diesem geographischen Raum gilt durch Funde von Pfeilspitzen, die auf etwa 9000 v. Chr. (Abbildung 4, Spalte (1)) datiert werden, als belegt (Webster 2001:426). Die Anfänge der Kultivierung von Mais, dem neben Bohnen, Kürbisgewächsen anderen wichtigen Grundnahrungsmittel späterer Zeiten, gelten nach heutigem Kenntnisstand etwa ab der Mitte des 4. Jahrtausends v. Chr. als nachgewiesen (Sabloff 1998:57). Anzeichen von Sesshaftigkeit der Bevölkerung finden sich ab 1800 v. Chr.. Frühe Keramik findet sich in den Phasen Barra (1800-1700 v. Chr.) und Locona (1700-1500 v. Chr.) an der Pazifikküste, in Chiapas und Teilen von (Fash 2001:183): Guatemala eine vergleichende Chronologie der Keramik-Phasen im Maya-Gebiet enthält Riese (1995:22).

Linguisten bezeichnen mit dem Begriff Proto-Maya die gemeinsame Sprachwurzel, aus der sich seit etwa 2000 v. Chr. die dreißig Sprachen herausbildeten, die zum Zeitpunkt des Kontakts mit den Europäern von den Maya gesprochen wurden (Fash 2001:182). Diese Sprachen werden in die Sprachen des Hochlands und des Tieflands gegliedert (Kettunen und Helmke 2008:10) sowie die Sprache der Huaxteken, die sich von den übrigen Maya " ... in die

Grenzzone der heutigen mexikanischen Bundesstaaten Tamaulipas und Veracruz ..." (Riese 1995:24) isoliert hatten.

"Nearly all of the Maya hieroglyphic texts were written in an Eastern Chol'an language, which has been labeled as "Classic Maya" or "Classic Cho'lti'an" ... by the linguists" (Kettunen und Helmke 2008:10). "On the other hand, the lowland subgroups, Ch'olan, Tzeltalan, and Yukatekan, are more intimately related to the ancient script" (Kettunen und Helmke 2008:10). Die Hieroglyphenschrift der Maya hat Vorgänger im Kernland der Olmeken sowie im heutigen Oaxaca und im Hochland der Alta Verapaz im Süden Guatemalas (Kettunen und Helmke 2008:9). Die Olmeken, ihre Epi-Olmeken genannten Nachfolger und die Zapoteken Oaxacas bildeten als Vorläufer- und Nachbarkulturen wichtige Partner des Handels von Gütern und des Austauschs von Ideen (Riese 1995:25-27, Sabloff 1998:60). Zu diesem Gedankengut gehörten wahrscheinlich auch die Elemente des Zeitzählungssystems. Sowohl die 260-tägige als auch die 365-tägige Periode gelten "... in uncontroversially dated records from about 300 BCE to 250 CE among Zapotecs, Mayas, and Epi-Olmecs" (Justeson und Kaufman 2001:121) als belegt. Ihre Ursprünge liegen aber wahrscheinlich früher (Justeson und Kaufman 2001:122). Die Existenz der Langen Zählung gilt ab dem 1. vorchristlichen Jahrhundert als gesichert (Justeson und Kaufman 2001:122).

In der Folgezeit wird Bevölkerungswachstum und Wandel sichtbar in der Architektur großer öffentlicher Gebäude sowohl in Orten des südlichen Tieflands (Nakbé, El Mirador, Tikal) als auch des südlichen Hochlands (Kaminaljuyú, El Portón) (Sabloff 1998:60). Diese erfordert eine Organisation der Arbeit und legt eine dem zugrundeliegende hierarchische Gesellschaftsform nahe.

"Die klassische Blüte de Maya-Kultur" (Riese 1995:37-101) ist etwa ab 250 v. Chr. durch Weiter- und Neuentwicklungen geprägt. Sie zeigen sich in der Architektur durch monumentale Tempel, Paläste, Ballspielplätze und andere Bauwerke. Polychrome Malerei schmückt Innenräumen und Fassaden von Gebäuden und dekoriert eine künstlerisch hochstehende Keramikkunst. Diese Entwicklungen vollziehen sich vornehmlich im südlichen Tiefland, sind aber nicht darauf beschränkt. Aus dieser Region stammen auch früheste Maya-Texte, beispielsweise Stele 29 aus Tikal (Riese 1995:33). Im Mittelklassikum sind starke Einflüsse aus dem mexikanischen Hochtal (Teotihuacan) im Mayagebiet nachgewiesen (Riese 1995:41-43). In ihm hatte sich eine Vielzahl von Kleinstaaten entwickelt, deren geschichtet organisierte Gesellschaften teils durch Allianzen verbunden waren, teils in Konflikten miteinander standen (Riese 1995:43-101).

"Das … Ende der klassischen Kultur im südlichen Maya-Tiefland [ist] gekennzeichnet durch den Niedergang der Städte, die Entvölkerung und damit zusammenhängend den scheinbaren Bruch aller Traditionen am Ende des 9. Jahrhunderts. … [Wie] Jeremy A. Sabloff, Dorothy

Hosler und Dale Runge ... zeigen konnten, ist ein komplexes Geflecht von Ursachen und Wirkungen ... [genannt sind:] Epidemien, Erdbeben, Verarmung der Böden, Eroberungen durch Fremdvölker, das Zusammenbrechen von Handelsnetzen oder religiös motivierte Auswanderungen ... mit sich verstärkenden Rückkoppelungseffekten am besten geeignet, das Problem des Untergangs der klassischen Maya zu erklären" (Riese in Sabloff 1991:11-12). Den in dieser Darstellung benannten Gründen der in moderner Literatur häufig Kollaps der Klassischen Kultur der Maya genannten historischen Abläufe ist durch moderne Forschungsergebnisse das Phänomen Klimawandel hinzuzufügen (Gill 2000). Sowohl die Untersuchungen der Sedimente von Seen im nordöstlichen Yucatán (Hodell, Curtis, Brenner 1995, Curtis, Hodell, Brenner 1996, Hodell, Brenner, Curtis, Guilderson 2001) als auch die von ozeanischen Böden vor der Küste Venezuelas (Haug, Hughen, Sigman, Peterson, Röhl 2001, Haug, Günther, Peterson, Sigman, Hughen, Aeschlimann 2003) erbrachten Hinweise auf Dürreperioden im Mayagebiet, die mit diesem Ereignis zeitlich in Zusammenhang gebracht werden können.

Etwa zu Beginn des 10. Jahrhunderts n. Chr. (Abbildung 4, Spalte (2)) entwickeln sich unter dem Einfluss eingewanderter Nachbarn und "... der Chontal-Maya [auch genannt] Putun-Maya-Mischgruppe ..." (Riese 1995:102) im Norden der Halbinsel Yucatán städtische Zentren, die in der Frühen Postklassik (~900 - ~1200 v. Chr.) unter einer Vorherrschaft Chichén Itzás und in der Späten Postklassik (~1200 - ~1500 v. Chr.) unter einer Dominanz Mayapáns stehen (Sharer und Traxler 2006:589-630), (Fash 2001:187).

Paul Schellhas (1926) versuchte, den C.D. zu datieren und seine Herkunft im Lebensraum der Maya zu präzisieren. Vornehmlich mittels komparatistischer Analysen zwischen den im C.D. abgebildeten Keramikgefäßen mit den zu seiner Zeit aus archäologischen Befunden publizierten kommt Schellhas zu dem Ergebnis: "Die Mayahandschriften ... stammen aus dem südlichen Mayagebiet, ... aus dem nördlichen Guatemala. Nicht aus Yukatan" (Schellhas 1926:16) und vermutet "... ihre Entstehung [im] 15. Jahrhundert unserer Zeitrechnung." (Schellhas (1926:2). Thompson plädiert mittels einer Indizienkette für eine Herkunft des C.D. aus dem nordyukatekischen Zentrum des Postklassikums Chichén Itzá oder seiner Umgebung, wo er zwischen 1200 und 1250 n. Chr. (Thompson 1972:15-16) entstanden sein könnte.

"Ein Inschriftenfund in Playa del Carmen, Mexiko" (Mayer 1978) zeigt Ähnlichkeiten mit Hieroglyphen des C.D. und lieferte einen Hinweis auf dessen mögliche Herkunft von der Ostküste der Halbinsel Yucatán (Riese 1978).

Im piktoralen Korpus der Handschrift konnten Göttergestalten der Azteken ebenso identifiziert werden wie im hieroglyphischen Korpus deren syllabisch zu lesende aus dem Nahuatl übertragene Namen (Riese 1982, Whittaker 1986, Taube und Bade 1991). Diese Indizien weisen auf einen Zeitpunkt der Erstellung der Handschrift relativ kurzfristig vor dem Kontakt mit den Europäern hin. Andererseits verweist die Existenz der Langen Zählung in ihr auf einen deutlich früheren Ursprung (Lounsbury 1978:810).

Paxton (1986) evaluiert die Aussagen Thompsons in einer detailreichen Studie. Ihre Untersuchung berücksichtigt sowohl die Relevanz astronomischer Inhalte des C.D. – Venus-Tafel, Finsternis-Tafel – zum möglichen Entstehungszeitpunkt als auch, den Ansatz von Schellhas aufgreifend, umfangreiche stilistische und ikonographische Vergleiche zwischen dem archäologischen Material – Keramik, Wandgemälde etc. – der Region des nördlichen Yucatán und den Darstellungen im C.D. (Paxton 1986, 1991). Ihre Ergebnisse zur geografischen Herkunft und Datierung fasst Paxton (1986) zusammen: "... the exact site [explizit nennt Paxton: Mayapán, Cobá, Tancah, Tulum, Santa Rita Corozal und Chichén Itzá] of the painting of the manuscript can not be identified with certainty. But it is more plausible to associate Codex Dresden with the Late Postclassic florescence (AD 1100/1200 to Spanish Contact) than the final years of the primary occupation of Chichén Itzá." (Paxton 1986:255-56) Die hier als ,Late Postclassic florescence' bezeichnete Phase entspricht der Periode ,Modified Florescence' (Andrews IV und Andrews V 1980) (→ Abbildung 4, Spalte (2)).

Kremer (o.D.:8-16) präsentiert eine ethnohistorische Indizienkette mit dem Ergebnis, die geografische Herkunft der Handschrift auf "... möglicherweise ... [die] Insel Cozumel" (Kremer o.D.:16) und die "Entstehungszeit ... mit an Sicherheit grenzender Wahrscheinlichkeit ... vermutlich im Jahre 1227 oder kurz danach als neue, nachgebesserte Kopie eines Originals aus dem Jahre 934 ..." (Kremer o.D.:16) einzugrenzen.

Alle Aspekte der Kultur der Maya können im Rahmen dieser Arbeit nicht erschöpfend behandelt werden. Weiterführende Informationen sind insbesondere Riese (1972, 1986, 1990a, 1990b, 1995), Wilhelmy (1981), Sabloff (1991, 1998), Grube (2000), Fash (2001:181-89), Webster (2001), Demarest (2004) sowie Demarest, P.M. Rice und D.S. Rice (2004) zu entnehmen.

2.3 Formale Beschreibung

Der Codex Dresden besteht aus 39 Blättern. Von diesen 78 Seiten sind 74 beschriebenen, die übrigen vier sind leer. Sie waren ursprünglich untereinander verbunden und als Leporello gefaltet. Der C.D. wird zur Zeit in zwei Teilen von 182,5 cm und 174,3 cm Länge aufbewahrt. Jede Seite besitzt das Format von ca. 20,5 cm Höhe und 9 cm Breite (www.slub-dresden.de). Das Material des Schriftträgers wurde von Rudolf Schwede (1912) als Rindenbast des Feigenbaums identifiziert, bei dem es sich wahrscheinlich um die im Zentralen Tiefland vorkommende Art *Ficus cotinifolia* handelt. Dieses Material wurde "... mit einer glattgestrichenen weißen Auflage aus kohlensaurem Kalk (Kalkkarbonat) versehen." (Deckert in Codex Dresden 1962:16). Feine Haarpinsel, Federkiele oder Schilfrohr können als Schreibgerät gedient haben, um Farben auf organischer oder mineralischer Basis (Hämatit) aufzutragen (Coe und Kerr 1997:146-48, 178).

Die Seiten bilden eine Einheit oder sind durch rote Linien in zwei, drei oder vier horizontale Abschnitte gegliedert. Diese Abschnitte werden auch *Register* genannt und mit Kleinbuchstaben a, b, c, d bezeichnet. Sie werden in den Darstellungen des Anhangs 2 mitgeführt. Einige Seiten sind ferner in verschiedener Weise vertikal strukturiert, ebenfalls durch rote Linien. Darüber hinaus ist eine explizite Gliederung des Inhalts (\rightarrow 2.4) durch die Maya nicht erkennbar, insbesondere existiert keine ursprüngliche Paginierung.

Diese Tatsache hat zusammen mit dem Umstand, dass der Codex in drei einzelnen Teilen vorlag, als er Gegenstand der Forschung wurde, zu verschiedenen Paginierungen geführt. So hatte Förstemann in der Edition von 1880 (→ 2.1) Recto und Verso der als ein Fragment vorliegenden beiden ersten Seiten vertauscht an ein zweites Fragment angefügt, diesen Fehler aber in der Edition von 1892 korrigiert. Ein drittes Fragment hat Förstemann zunächst als eigenständiges Dokument betrachtet. Seine Forschung ergab aber inhaltliche Zusammenhänge zwischen der Endseite des zweiten Fragments (p.24) und der Seite des dritten Fragments, die er ursprünglich als p.46 paginiert hatte. Seither gelten die Seiten p.24 und p.46 als originär zusammenhängend (Thompson 1972:17-18). Es existieren weitere Paginierungen, die darauf zurückzuführen sind, die vier leeren Seiten des C.D. zu paginieren oder dies zu unterlassen, wie dies Förstemann (1892) getan hat.

Diese Paginierung Förstemanns (1892) findet im Folgenden Anwendung, Beispiel: p.46. Die von der Wissenschaft als korrekt erachtete Paginierung unter Einschluß der Leerseiten wird in einigen Fällen zusätzlich in runden Klammern angeführt. Das Beispiel p.46(25) bedeutet also,

dass die 25. Seite der wissenschaftlich anerkannten Reihenfolge in der Edition Förstemann (1892) die Paginierung 46 trägt (→ Anhang 1).

Der Inhalt kann aber drei Darstellungsformen zugeordnet werden. Es sind dies die Zeichen der Hieroglyphenschrift und der Zahlendarstellung sowie bildliche Darstellungen. Auf sie wird im Folgenden auch unter den Termini "hieroglyphisches Korpus", "numerisches Korpus" und "piktorales Korpus" Bezug genommen.

Überschneidungen dieser Darstellungsformen bestehen in folgenden Bereichen:

Die Elemente der kalendarischen Strukturen Tzolkin und Haab sind Bezeichnungen von Tagen, die aus je einem numerischen Teil (auch Numeral genannt) und einem hieroglyphischen Teil (auch Nominal genannt) bestehen. Ferner enthält das piktorale Korpus neben den Darstellungen von Lebewesen und Objekten auch numerische und hieroglyphische Elemente sowie einige Zeichen, die in der Literatur häufig als Elemente einer als "Himmelsband" bezeichneten größeren Einheit angesprochen werden. Hier wird vorgeschlagen, sie dem hieroglyphischen Korpus zuzurechnen, weil es sich bei ihnen um einen standardisierten Zeichenvorrat handelt, der dem der Hieroglyphen nahe steht. Ferner erscheint eine Zuordnung zum numerischen oder piktoralen Korpus deutlich weniger geeignet. Die Bildung einer eigenen Klasse für diese Zeichen ist auf Grund ihrer geringen Anzahl ebenfalls wenig sinnvoll. Dieser Vorschlag erfolgt im Bewusstsein, dass die Elemente des "Himmelsbands" nicht Bestandteil der Katalogisierung der Maya-Hieroglyphen sind, die die Grundlage für deren Epigraphik bildet (Thompson 1962).

2.4 Inhaltliche Beschreibung

Die folgende Übersicht über den Inhalt des C.D. erfolgt auf der Grundlage des aktuellen Wissensstandes anhand von Förstemann (1901), Nowotny (1961, 1962/63), Deckert (Codex Dresden 1962:14-15), Thompson (1972:20), Schele und Grube (1997), Davoust (1997), Whiting (1998:209-10), Grube (in Codex Dresden 2001) und Grube (2001:337-39) und den Informationen der Sächsischen Landes- und Universitätsbibliothek (www.slub-dresden.de/.../maya-handschrift/) im Sinne ihrer größtmöglichen Übereinstimmungen. Daneben werden Arbeiten zu einzelnen Abschnitten zitiert.

Thompson (1972:2) definiert den Begriff *Almanac* als "Sacred period of 260 days and its multiples …" als seine Alternative zum Begriff *Tzolkin*. Thompson benutzt die Begriffe "*Almanac 1*" (Thompson 1972:32) bis "*Almanac 76*" (Thompson 1972:65) aber auch, um

Abschnitte des C.D. zu bezeichnen. Diese Abschnitte sprechen nicht sämtliche, sondern einzelne Tage des Tzolkin an, die iterativ durch arithmetische Operationen aus einem vorhergehenden Tag des Tzolkin ermittelt werden. Im Folgenden bezeichnet der Begriff *Tzolkin* – wie in moderner Literatur weit verbreitet – die Gesamtheit seiner 260 Tage. Der Begriff Almanach bleibt – in Analogie zu Thompson's *Almanac* – den Abschnitten des C.D. vorbehalten.

Übersicht über den Inhalt des Codex Dresden:

(1) p.1(1)-15(15): Rituale und Weissagungen zu verschiedenen Themen im Verlauf der 260tägigen Periode (im Folgenden auch Almanach genannt);

p.3(3) zeigt die bildliche Darstellung eines Menschenopfers;

p.4(4)a-10(10)a: Zimmermann (1933) beschreibt inhaltliche Beziehungen zum Mond;

(2) p.16(16)-23(23): Almanache der Mondgöttin, Prophezeiungen verschiedener Krankheiten sowie von Schwangerschaften, Omen für Neugeborene (Thompson 1958); Hofling und O'Neil (1992) stellen inhaltliche Verbindungen zur Finsternis-Tafel her.

(3) p.24(24): Einleitungstabelle mit als Startbedingungen und als Korrekturen interpretierten Zahlenwerten zur ...

p.46(25)-50(29): ... Darstellung des synodischen Umlaufs des inneren Planeten Venus über eine Dauer von 2920 Tagen, die als $5 \cdot 584$ und gleichzeitig $8 \cdot 365$ gute Näherungswerte sowohl der synodischen Umlaufzeit $U_{syn}(Venus) = 583,92d$ als auch des tropischen Jahres $a_{trop} = 365,24219d$ darstellen. Dazu sind Zahlenwerte notiert, die den Venusumlauf in die Phasen (Morgenstern, obere Konjunktion, Abendstern, untere Konjunktion) gliedern. Ferner werden je drei Datumsangaben in der 365-tägigen Periode (Haab) und je 13 in der 260-tägigen Periode gemacht, die eine wiederkehrende Verwendung des Tafelwerks ermöglichen (Lounsbury 1978:776-89).

(4) p.51(30)-58(37): Tafeln zur Bestimmung von Sonnen- oder Mondfinsternissen für eine Dauer von 11958, 11959 oder 11960 Tagen abhängig von verschiedenen Annahmen über in diesen Tafeln enthaltene Schreibfehler oder Korrekturmechanismen für die mehrfache Nutzung der Tabellen. Diese enthalten drei Tagesangaben des 260-tägigen Zyklus in einer Folge absoluter Zahlen, die durch iterative Akkumulation von Näherungswerten für 5 oder 6

Lunationen (148, 177, 178 Tage) entstehen (Lounsbury 1978:789-804), (H.M. Bricker und V.R. Bricker 1983).

- (5) p.58(37)-59(38): Tafel mit Vielfachen von 78 sowie einigen Abweichungen von dieser Regelmäßigkeit, die als mit dem Mars in Zusammenhang stehend gedeutet werden (V.R. Bricker und H.M. Bricker 1986a), (H.M. Bricker und V.R. Bricker 1997).
- (6) p.60(39): ist in verschiedener Weise interpretierbar, beispielsweise als "symbolische Darstellungen der Konjunktionen von Sonne, Mond und 5 Planeten in Kampfszenen." (Deckert in Codex Dresden 1962:15) in Anlehnung an Förstemann (1906a) oder durch "A prophecy for the *k'atun* period ending on the day 11 Ahaw" (Grube 2001:338).
- (7) p.61(41)-62(42): Vier Paare bestehend aus je einer schwarz und einer rot geschriebenen siebenstelligen Vigesimalzahl der Langen Zählung (Förstemann 1905b, Morley 1915 [→ Morley 1975:275], Beyer 1933b, 1943) umgeben vier aufgerichtete Schlangenkörper, über deren aufgerissenen Rachen anthropomorphe und zoomorphe Figuren sitzen; sie werden als mythische Daten gedeutet, die die benachbarten Tabellen von Vielfachen von 91 (p.63(43)-p.64(44)) mit historischen Daten verbinden (Grube 2001:338)
- (8) p.63(43)-69(49): Nach Barthel (1953) sind "... Unterteilungen ... [von] ... 91-Tage-Perioden (Jahresviertel) in 13 ungleiche Teile, die den 13 Himmelsschichten der Mayareligion entsprechen ..." (Deckert in Codex Dresden 1962:15), dargestellt; die Darstellungen des Regengottes Chac verweisen zudem auf Rituale, die im Zusammenhang mit dem Wetter stehen; p.61(41)-69(49): V.R. Bricker und H.M. Bricker (1989) beschreiben astronomische Inhalte;
- (9) p.71(51)c-72(52)c: "The sacred day 4 Eb and its bearing on the weather." (Grube 2001:338)
- (10) p.74(54): wird "meist als Untergang der Welt durch eine Überschwemmungskatastrophe gedeutet Die Wasserfluten ergießen sich aus dem Maul des Himmelsdrachens, des Gottes Itzamná, auf die Erde Dagegen deutet Thomas S. Barthel das Bild als Darstellung der Weltschöpfung ... [und] sich ablösenden Weltzeitaltern" (Deckert in Codex Dresden 1962:15); "A prognostication of the end of the universe by a grand deluge on a day 4 Eb." (Grube 2001:338) Das Numeral 4 ist nicht vorhanden, es kann z.B. durch die Hypothese eines

Zusammenhangs mit dem Nominal Eb der Seiten p.71 oder p.72 generiert werden (→ Anhang 2: 71F23, 72G19).

(11) p.25(55)-28(58): Rituale zum Jahreswechsel

(12) p.29(62)a-45(78)c: Almanache, die Szenen mit verschiedenen Verkörperungen des Regengottes Chac zeigen und die Opfer von Nahrungsmitteln anzudeuten scheinen;

p.29b-31b: Bricker (1991) analysiert den Hieroglyphentext als Beschreibung ritueller Tieropfer für die Richtungen Ost und West, Zenit und Nadir;

p.30c-33c: Bricker (1988) zeigt inhaltliche Verbindungen zu den Venus-Tafeln (p.24, 46-50) auf;

p.38b-41b: V.R. Bricker und H.M. Bricker (1986b) weisen auf inhaltliche Verbindungen zu den Finsternis-Tafeln (p.51-58) hin;

(13) p.42(75)c-45(78)c: der Regengott Chac im 260-tägigen Zyklus;

(14) p.43(76)b-45(78)b: der Planet Mars (Willson 1924:22-25), (Aveni 1980:195-99), (V.R. Bricker und H.M. Bricker 1986a), (H.M. Bricker und V.R. Bricker 1997)

(15) p.45(78)a: Darstellungen einer 364-tägigen Periode und ihrer Vielfachen.

Ein spezifisches Interesse der Forschung an der Vertiefung des Verständnisses des Inhalts der Dresdener Mayahandschrift bestand und besteht in seinem Potential zur genauen Bestimmung der Chronologie der Maya. Dazu wurden vorzugsweise das numerische Material der Seiten p.24, 46-50 (Venus-Tafeln) und der Seiten p.51-58 (Finsternis-Tafeln) herangezogen. In ihm sind Zahlen in verschiedenen Teilsystemen ihres Kalendersystems enthalten sowie astronomische Inhalte hinreichend erwiesen.

Eine Chronologie der Maya auf Grund ihres eigenen Kalendersystems ist für die Zeitspanne der Verwendung des ihm in der Klassischen Periode immanenten Teilsystems der Langen Zählung vorhanden, sie wird relative Chronologie genannt. Demgegenüber wird die Datierung im europäischen Kalendersystem, das heißt im Gregorianischen oder Julianischen Kalender, absolute Chronologie der Maya genannt. Die Verknüpfung beider Chronologien ist unter der Bezeichnung Korrelation bekannt.

Korrelationen, die einen Tag der Langen Zählung mit einem Tag im Gregorianischen Kalender verbinden wollen, müssen dies über ein Ereignis herstellen, das in beiden Kalendersystemen taggenau festgehalten worden ist. Nur ein astronomisches Ereignis, das vor dem Kontakt beider Kulturen vor 1492 in ihren Kalendersystemen aufgezeichnet wurde, kommt hierfür in Betracht. Aus diesem Grund besitzen die möglicherweise astronomischen Inhalte des Codex Dresden eine hohe Bedeutung für das Verständnis der Chronologie und damit der Kultur der Maya. Korrelationen, deren Herleitung und Begründung aus dem Kalendersystem der Klassischen Periode der Kultur der Maya erfolgt, werden daher astronomische Korrelationen genannt. (H.M. Bricker und V.R. Bricker 2001:126-27).

Astronomische Korrelationen gründen nahezu ausnahmslos auf einigen wenigen Zahlen des C.D.. Das zur Bestimmung einer konkreten Korrelation herangezogene Zahlenmaterial ist bezogen auf dessen gesamtes numerisches Inventar ausschnittartig. Es wird von verschiedenen Autoren höchst unterschiedlich interpretiert und von einigen zum Teil auch zur Herleitung einer Korrelation modifiziert. Das Bemühen um eine derartige Fundierung der Chronologie der Maya kommt in einer mehr als einhundertjährigen Forschungsgeschichte zu diesem Thema zum Ausdruck: Willson (1924), Spinden (1924), Ludendorff (1930b, 1933a), Dittrich (1936), Makemson (1946) Böhm und Böhm (1991), Stock (1998), Fuls (2007).

Eine zweifelsfreie konsensfähige Lösung dieser Frage liegt somit nicht vor. Einen substantiellen Beitrag zur Konsensbildung kann nur ein vertieftes Verständnis des diesbezüglichen wie des gesamten Zahlenmaterials des Codex Dresden liefern.

Die Lange Zählung wurde im Maya-Gebiet zu einem Zeitpunkt vor dem Kontakt mit den Europäern aufgegeben. Nach dieser Diskontinuität im Kalendersystem wurden andere Teile des Kalendersystems jedoch fortgeführt, wie beispielsweise die 260-tägige Zählung (Tzolkin), die 365-tägige Zählung (Haab), die sich aus der Kombination dieser beiden ergebende Kalenderrunde sowie die Angabe des Beginns einzelner Jahre (Tun) oder von 20 Jahren (Katun) und weitere. Alle diese Datumsangaben sind nicht absoluter Natur sondern besitzen einen zyklischen Charakter. Diese Tatsache hat zur Folge, dass die hieraus hergeleiteten Korrelationen nicht eindeutig sind. Ethnohistorische Quellen, die neben derartigen Datumsangaben der Maya parallel auch europäische enthalten − wichtige Beispiele sind die Relación de las cosas de Yucatán des Diego de Landa (o.D., 1959), die Chronik von Oxkutzcab (→ Morley 1920:471) und die Bücher des Chilam Balam (Roys 1967), (Miram 1988), (Paxton 1992), − sind in sich und/oder untereinander nicht widerspruchsfrei. Die sich aus diesen

immanenten Mängeln ergebenden Mehrdeutigkeit(en) sind ein wesentlicher Grund für die zahlreich vorliegenden unterschiedlichen Korrelationen.

Die Frage der Korrelation ist weder Gegenstand noch Ziel der vorliegenden Arbeit. Sie begründete und begründet aber eine Bearbeitung des Codex Dresden unter besonderer Berücksichtigung seines numerischen und astronomischen Inhalts.

Im Folgenden wird von der in der Wissenschaft mehrheitlich akzeptierten Korrelation ausgegangen. Joseph Thomas Goodman (1905), Juan Martínez Hernández (1926, 1944) und John Eric Sidney Thompson (1927, 1935, 1950) haben dafür einen im Ergebnis annähernd gleichartigen Vorschlag unterbreitet, der sich überwiegend auf ethnohistorische Quellen stützt. Er wird abgekürzt als GMT-Korrelation bezeichnet und wird in Darstellungen der Kulturepochen der Maya – häufig auch stillschweigend – vorausgesetzt (Abbildung 4).

Whiting (1998:210) stellt zum Stand der Forschung fest: "The Dresden Codex has been studied more than any other of the four extant Maya books, but there is still much to do. No definitive work of the codex exists."

3. Methodische Grundlagen

3.1 Wissenschaftstheoretische Ansätze

Sowohl die Mittel und Ziele der Untersuchung des Codex Dresden als auch die Darstellung seines Inhalts bedürfen eines wissenschaftstheoretischen Fundaments.

Der methodologische Begriff *Analyse* (von griech. `ανάλυσις`, Auflösung) findet in vielfältigen Formen – beispielsweise als Begriffs-, Sprach-, Beweis-, Kausal-, Funktional-, Zweckanalyse – Anwendung in Logik und Sprachphilosophie, in Mathematik und Informatik, in Physik und Chemie, in Biologie und Medizin sowie in den Sozial- und Geisteswissenschaften. (Mittelstraß 2004, Bd. 1:100). Er eignet sich daher insbesondere als Grundlage für die Untersuchung eines Diskursgegenstandes, in dem mehrere dieser wissenschaftlichen Disziplinen relevant sind. Für den Gegenstand einer anderen Kultur, wie ihn der Codex Dresden darstellt, bildet der Begriff Analyse zudem den Ausgangspunkt für eine Betrachtung, die dem Gebot, vom Vorwissen der eigenen Kultur zu abstrahieren, folgen will. Dieses soll geschehen unter der Hypothese des Strukturalismus Claude Lévi-Strauss', der "... sein wissenschaftliches Projekt nicht nur als eine ethnographische Untersuchung fremder Kulturen, sondern als die Freilegung universaler Denkstrukturen des Menschen" (Mittelstraß 2004, Bd.4:110) begreift.

Der Codex Dresden wird im Folgenden als Informationsträger verstanden. Der erste Schritt einer Analyse des Untersuchungsgegenstandes besteht daher in der Auflösung des Begriffs *Information* in seine abstrakten Konstituenten *Struktur*, *Inhalt* und *Bedeutung*.

Der Begriff *Struktur* ist ein in "... der Bildungs- und Wissenschaftssprache terminologisch wenig normiertes Synonym der Metaphern Aufbau und Gefüge zur Bezeichnung der Ordnung eines geordnet aufgebauten Ganzen." (Mittelstraß 2004, Bd. 4:107) Für die folgende Untersuchung sind sowohl seine geisteswissenschaftliche Anwendung im Begriff des Strukturalismus (\rightarrow *Paradigmatischer Ansatz 1*) als auch seine Verwendung in der Definition des Selbstverständnisses der "... moderne[n] Mathematik ... als ... Analyse formaler Strukturen." (Mittelstraß 2004, Bd. 4:107) (\rightarrow *Paradigmatischer Ansatz 2*) von Belang.

Johann Wolfgang von Goethe (1796) sowie der Anatom und Physiologe Karl Friedrich Burdach (1800) prägten unabhängig voneinander den Begriff *Morphologie* als Lehre von der Gestalt von Objekten der Biosphäre (Mittelstraß 2004, Bd. 2:940). Für die folgende Untersuchung sind die Anwendungen des Begriffs Morphe (griechisch μορφή: Form oder Gestalt) in der Mathematik

(→ Paradigmatischer Ansatz 2) und in der Kreativitätstechnik (→ Paradigmatischer Ansatz 3) von Bedeutung. Daneben existieren variierende Bedeutungen in der hier ebenfalls relevanten Linguistik sowie weiteren wissenschaftlichen Disziplinen.

Paradigmatischer Ansatz 1:

Der philosophische Strukturalismus, der " … die zentrale Stellung, von ›Anordnungen‹, ›Gliederungen‹ und ›Formen‹ [betont, wird] vor allem in der Linguistik, der Anthropologie, der Ethnologie und der Wissenschaftstheorie verwendet. … Charakteristisch für das strukturalistische Verfahren ist die Konzeption von Sprache als ein System distinkter Zeichen. Der Begriff des Zeichens … wird durch die Unterscheidung zweier Komponenten (…, Signifikant, Bedeutungsträger versus Signifikat, Bedeutetes) gebildet. … Bedeutung gewinnt das Zeichen auf Grund der Differenzen und Oppositionen zu den übrigen Elementen des Sprachsystems. … Weitere wesentliche Unterscheidungen heben die Ebene der Sprache als abstraktes Regelsystem (*langue*) gegenüber der Ebene einzelner empirisch beobachteter Äußerungen der Sprecher (*parole*) ab." (Mittelstraß 2004, Bd. 4:109)

Claude Lévi-Strauss hat zur Entwicklung des Strukturalismus und seiner Methoden wesentliche Beiträge geleistet. Für ihn bilden "Klassifikationssysteme, die man für eine Errungenschaft wissenschaftlichen Denkens gehalten habe, die Grundlage menschlichen Denkens schlechthin." (Mittelstraß 2004, Bd. 2:600)

Paradigmatischer Ansatz 2:

Die Mathematik wurde als eine "... ursprünglich aus den praktischen Aufgaben des Rechnens und Messens hervorgegangene Disziplin ... seit dem 19. Jahrhundert zu einer abstrakten Strukturwissenschaft verallgemeinert. Unter Einsatz der Computertechnologie trägt die M. heute zur Bewältigung technisch-wissenschaftlicher Probleme aller Art bei († Mathematisierung)." (Mittelstraß 2004, Bd. 2:800) In der Mathematik bezeichnet der Begriff Morphe als Bestandteil der Fachtermini Isomorphie und Homomorphie strukturerhaltende Abbildungen. Der Gedanke der strukturerhaltenden Abbildung ist sowohl Ausgangspunkt als auch Ziel der methodischen Aufbereitung und der Analyse des Codex Dresden im Sinne der Darstellungen des Anhangs 2 und des Anhangs 8.

Paradigmatischer Ansatz 3:

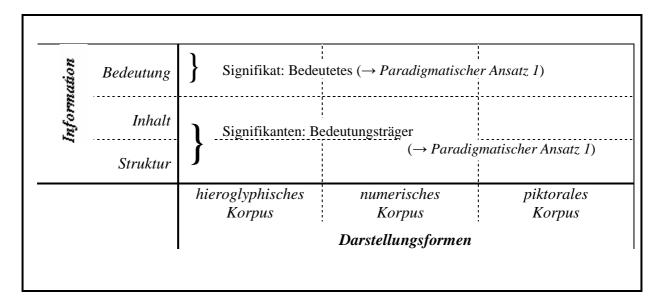
Der Schweizer Astronom Fritz Zwicky (1971:33, 88) bezeichnet eine von ihm entwickelte Kreativitätstechnik als *Morphologische Methode* bzw. *Morphologischer Kasten*. In moderner Sprache beschreibt der mathematische Begriff *Matrix* den intendierten Sachverhalt besser als der von ihm gewählte Begriff *Kasten*. Die Morphologische Methode sei hier zunächst als "geeignete Definition eines Raums der Möglichkeiten und geordnete Suche in ihm" charakterisiert. Sie wird im Folgenden näher beschrieben.

Von der Struktur bzw. den Strukturen eines Untersuchungsgegenstandes sind sein Inhalt und seine Bedeutung zu unterscheiden.

Der Begriff *Inhalt* wird im Folgenden als "... Stoff im Gegensatz zu Form ... [verstanden]. Form ist dann die besondere Weise der Gestaltung eines Stoffes ... und der Inhalt die Summe der Bestandteile ... "(Mittelstraß 2004, Bd. 2:244)

Der Begriff *Bedeutung* bezeichnet "dasjenige, was ein sprachlicher Ausdruck oder ein anderes Zeichen zu verstehen gibt." (Mittelstraß 2004, Bd. 1:259)

Die Analyse des Informationsträgers Codex Dresden als ein Buch der anderen Kultur der Maya beginnt also mit der Auflösung – und das bedeutet hier Präzisierung – des zu seiner Beschreibung üblicherweise verwendeten Terminus Inhalt (neben der äußeren Form) in die Kategorien *Struktur*, *Inhalt* und *Bedeutung*. In Verbindung mit den in Kapitel 2 definierten drei Darstellungsformen hieroglyphisches, numerisches und piktorales Korpus spannen sie den – abstrakten – Raum der folgenden Untersuchungen auf (Abbildung 5). Die Darstellungsformen bilden innerhalb des C.D. quantitativ drei etwa gleich große Teile, qualitativ werden sie im Folgenden als gleich wichtig betrachtet.


Ein Raum ist definiert durch Dimensionen, das sind Teilbereiche oder Untereinheiten, in die das Gesamtthema gegliedert ist beziehungsweise strukturiert werden kann, sowie Werte, die innerhalb jeder Dimension auftreten. Die Werte jeder Dimension werden auch Elemente genannt, sie bilden eine Skala, in der sie in kontinuierlicher oder diskreter Form zwischen zwei Extremwerten (Minimum, Maximum) angeordnet sind, ihre Zusammenfassung wird Wertebereich genannt.

Die Dimensionen sind allerdings nur dann geeignet, wenn sie die folgenden Bedingungen erfüllen:

- sie müssen paarweise sachlich voneinander unabhängig sein, d.h. sie dürfen sich nicht wechselseitig bedingen und
- sie müssen für das Problem konstituierend, d.h. für den Analysegegenstand wesentlich sein.

Die Dimensionen und ihre Werte – in der Morphologischen Methode auch Parameter und Ausprägungen genannt – sind in jedem Falle explizit zu machen.

Struktur, Inhalt und Bedeutung bilden die drei Ausprägungen der Dimension *Information* und im Untersuchungsgegenstand C.D. liegen diese Informationen in drei verschiedenen Ausprägungen – dem hieroglyphischen, dem numerischen und dem piktoralen Korpus – der Dimension *Darstellungsform* vor.

Abbildung 5: Der abstrakte Untersuchungsraum: Information und ihre Darstellungsformen im Codex Dresden

Hierzu ist anzumerken, dass sowohl die Grenzen zwischen den Begriffen *Struktur*, *Inhalt* und *Bedeutung* fließend sind, wie auch die konkret im C.D. vorzufindenden Strukturen, Inhalte und Bedeutungen nicht völlig scharf voneinander abgrenzbar sind. Gleiches gilt für die Abgrenzungen zwischen den Darstellungsformen, auf deren geringfügige Überschneidungen hingewiesen wurde ($\rightarrow 2.3$).

Die "Morphologische Methode … ist wesentlich Totalitätsforschung. Als solche kümmert sie sich bei der Behandlung irgendeines Problems nicht nur um die *Totalität aller möglichen Lösungen*, sondern auch um die wesentlichen Beziehungen dieser Lösungen zu allen lebenswichtigen Betätigungen." (Zwicky 1971:33) Die Morphologische Methode geht dabei von einer vollständigen Berücksichtigung aller Elemente des Untersuchungsgegenstandes bzw. eines geeignet gewählten Ausschnitts aus. Zwicky nennt diesen Aspekt seiner Methode "vollständige Feldüberdeckung" (1971:35). Dieser Anspruch auf Vollständigkeit erfordert die inhaltsneutrale und eindeutige Kennzeichnung oder Bezeichnung jedes einzelnen Elements des Untersuchungsgegenstandes. Das dazu erforderliche, dem Untersuchungsgegenstand angemessene und in der Mayaforschung etablierte Notationssystem wird definiert (→ 3.2 - 3.4). Es wird anhand der für die folgenden Untersuchungen relevanten Teile des C.D. präsentiert (→ Anhang 2, Anhang 8).

Die intendierte Vollständigkeit der Analyse impliziert auch, "der Versuchung [zu widerstehen], Daten wegzulassen, die nicht in die Reihe passen" (Schlosser und Cierny 1996:151) oder sie zu modifizieren. Dieses ist in der Vergangenheit geschehen. Förstemann (1901) und Thompson (1972) nehmen derartige Modifikationen, von ihnen häufig Korrekturen genannt, in Einzelfällen und ohne Nennung von nachprüfbaren Kriterien vor. Die Sinnhaftigkeit dieser Modifikationen, die teilweise in modernen Arbeiten weiter verwendet werden, wird in der nachfolgend beschriebenen statistischen Analyse ausgewählter Abschnitte des numerischen Korpus überprüft (→ Kapitel 4 und 5).

Das Konzept der Vollständigkeit einer geordneten Suche innerhalb der jeweiligen Aufgabenstellung bezieht sich sowohl auf die Ausgangsdaten als auch auf den analytischen Ansatz im Bestreben um eine vollständige Bestimmung aller Lösungsalternativen. Vollständigkeit kann jedoch nicht in allen Fällen erreicht werden, weil dem sowohl die Vielzahl oder ein Mangel an Ausgangsdaten als auch eine sehr große Zahl potentieller Lösungsalternativen entgegenstehen können.

Neben dem Begriff der "Morphologischen Methode" (Zwicky 1971) werden im Folgenden sowohl die systematische Zerlegung komplexer Sachverhalte in abgrenzbare Teile als auch die systematische Suche nach einem zutreffenden Ergebnis als "analytische Methode", "Systemanalyse" oder kurz "Analyse" bezeichnet.

Die Analyse bedarf der Ergänzung durch kompositorische Elemente, insbesondere:

- der Identifikation möglichst aller relevanten Alternativen einer Lösung,
- der Prüfung auf Plausibilität, Korrektheit und Konsistenz,
- einer Falsifikation und somit einem Ausschluss einzelner Lösungen,
- einer gegebenenfalls notwendigen Neuordnung der verbliebenen Lösungen sowie,
- im Idealfall der Identifikation einer Lösung als zutreffende.

Diese Schritte konstituieren den synthetischen Aspekt der Methode. In ihm werden zunächst Ergebnisse in jeder einzelnen Dimension gebildet und Beziehungen zwischen ihnen hergestellt. Die verschiedenen Methoden und Betrachtungsebenen (Dimensionen) werden in Bezug auf ihre Zusammenhänge untersucht, um abschließend zu einer möglichen konsistenten Deutung des Gesamtgegenstandes integriert zu werden.

Die Entscheidungsfindung beruht auf dem erkenntnistheoretischen Prinzip, dass "... ein Satz ... erfahrungswissenschaftlich zulässig [ist], wenn er (relativ zur akzeptierten Erfahrungsbasis) falsifizierbar ist." (Mittelstraß 2004, Bd. 3:290) In dieser Alternative zum Verifikationsprinzip sieht der Philosoph und Wissenschaftstheoretiker Karl Raimund Popper (1902-1994) die Möglichkeit, das Problem der Induktion zu vermeiden. Dieses Problem ist dem Untersuchungsgegenstand aber eigen. Denn es existieren nur drei weitere Handschriften aus vor-spanischer Zeit, über deren Inhalt ebenfalls kein abschließendes Wissen vorliegt. Das Material des Schriftkorpus anderer Schriftträger (Monumente, Keramik etc.) ist nur bedingt vergleichbar, denn es behandelt – teils möglicherweise, teils nachgewiesenermaßen – andere Inhalte. Die Gesamt-Hinterlassenschaft des Schriftkorpus, der den Maya zugeordnet wird, ist heterogen aus drei Gründen: sie entstammt einem Zeitraum mehrerer Jahrhunderte sowie einem relativ großen Raum, in dem nach allgemeinem Verständnis mehrere Sprachen gesprochen wurden.

Die Methode der sukzessiven Falsifikation kann eine Vielzahl von Risiken vermeiden oder zumindest minimieren helfen:

- ein Untersuchungsgegenstand könnte zu ausschnittartig gewählt sein,
- eine Deskription könnte zu einfach sein auf Grund fehlender Information über den Gegenstand oder seinen Kontext,
- eine Interpretation könnte monokausal sein, weil Induktionen, um die es sich auf Grund der geringen Quantitäten nahezu immer handelt, zu falschen Verallgemeinerungen führen können.

Sie kann unter anderem folgendes positiv leisten:

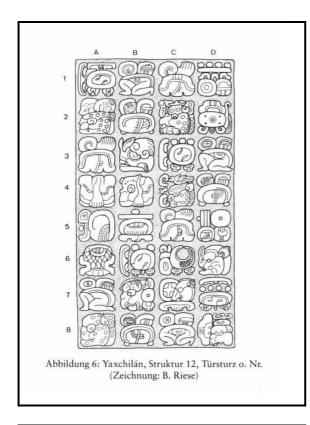
- sie macht untersuchte Aspekte des Themas ebenso sichtbar wie nicht untersuchte;
- sie stellt Ergebnisse skaliert dar, etwa zwischen "sicher" und "wenig wahrscheinlich";
- sie sucht in jeder Dimension nach der Möglichkeit zur Bestimmung einer Regelhaftigkeit oder Gesetzmäßigkeit sowie Ausnahmen und Abweichungen von ihr.

Sie unterstützt ferner:

- die Ermittlung von fehlenden Werten (Rekonstruktionen),
- die Identifizierung von Fehlern sowie die Begründung von Korrekturen für diese,
- die Durchführung von vergleichenden Untersuchungen (Komparatistik), die allerdings auch mit anderen Methoden erreicht werden können.

Die Untersuchung ist also von folgenden Prinzipien geleitet:

- (1) die Methodik der Untersuchung ist grundsätzlich explizit zu machen und muss sich an allgemeinen Grundsätzen der Wissenschaft orientieren. Deren Standards und die des Fachgebiets sind anzuwenden oder ein Abweichen davon ist darzulegen;
- (2) der methodischen Suche in einem geeignet bestimmten Raum der Möglichkeiten;
- (3) Differenzierung zwischen Struktur, Inhalt und Bedeutung durch Definition einer einheitlichen Nomenklatur für den gesamten Untersuchungsgegenstand, d.h. jedes einzelne seiner distinktiven Zeichen;
- (4) das Prinzip der Vollständigkeit ist grundsätzlich anzustreben, auch im Wissen, dass es nicht in jedem Einzelfall erreicht wird. Es bezieht sich sowohl auf den Forschungsgegenstand als Ganzes bzw. auf seine wohldefinierten Teilbereiche, z.B. in Form von zusammengehörigen Daten, als auch auf die anzuwendende(n) Methode(n) und die Darstellung ihrer Ergebnisse, z.B. in Form von Lösungsalternativen;
- (5) der Ermittlung der angemessensten aller möglichen Lösungen einer Fragestellung anhand quantitativer und qualitativer Kriterien;
- (6) das Prinzip der Falsifizierbarkeit ist mindestens in den Fällen anzuwenden, in denen das Verifikationsprinzip aus prinzipiellen oder praktischen Gründen nicht zur Anwendung kommen kann.


Das Begriffspaar Morphe und Struktur – nicht völlig identisch und nicht disjunkt – ist in verschiedener und besonderer Weise geeignet, das Fundament einer einheitlichen Sprache im multidisziplinären Untersuchungsansatz für den Diskursgegenstand bereitzustellen.

3.2 Statische und dynamische Gliederung

Im Sinne der Paradigmen werden zwei in der Forschung etablierte Methoden auf den Untersuchungsgegenstand angewendet: ein Notationssystem (kurz: Notation) und der Standard der epigraphischen Lesung der Hieroglyphen der Maya.

Ein Notationssystem ist grundlegende Voraussetzung für jede wissenschaftliche Arbeit. Die hier zur Anwendung kommende Notation betrachtet jede Seite des Codex Dresden als eine Matrix (hier: zweidimensionales Raster). In ihm ist jedes einzelne Element eindeutig identifizierbar durch eine Bezeichnung der Spalten mit fortlaufenden Großbuchstaben: *A, B, C,* ... von links nach rechts und eine Bezeichnung der Zeilen mit fortlaufenden Zahlen: *1, 2, 3,* ... von oben nach unten.

Das *Corpus of Maya Hieroglyphic Inscriptions* (Ian Graham et al. 1975 - 2006), (→ Riese 1976b) verwendet diese Notation für die Darstellung und epigraphische Lesung der Monumente und anderer Schriftträger der Maya. Sie hat sich seither zu einem Standard entwickelt, der allgemein anerkannt und angewendet wird (→ Abbildung 6).

Abbildung 6: Notationssystem (Riese 1995:70; Abbildung 6)

Eine Notation ermöglicht eine klare Differenzierung zwischen Form und Inhalt. Diese ist erforderlich, um einerseits die Inhalte durch Abgrenzung von ihren Kontexten separat untersuchen zu können und sie andererseits in ihnen zu bewahren, um sie immer auch wieder an ihnen zu reflektieren. Ziel der Anwendung dieser Notation auf die Originalseiten des C.D. ist die Identifikation jedes ihrer Elemente, d.h. jeder einzelnen Hieroglyphe (nicht jedoch ihrer Untergliederung), jeder einzelnen Vigesimalstelle einer Zahl und auch jeder bildlichen Darstellung. Diese Identifikation ist erforderlich, nicht nur um Referenzen zwischen verschiedenen Elementen einfach herstellen zu können, sondern auch um gleiche Zahlen im selben oder in verschiedenen Kontexten zu unterscheiden. Eine derartige

Notation ist darüber hinaus für jegliche informationstechnische Bearbeitung unabdingbar. Für

die praktische Anwendung des Notationssystems sind einige Regeln erforderlich. Sie bilden ein Regelwerk, das in 3.4 eingeführt wird und für den gesamten Untersuchungsgegenstand einheitlich gültig ist.

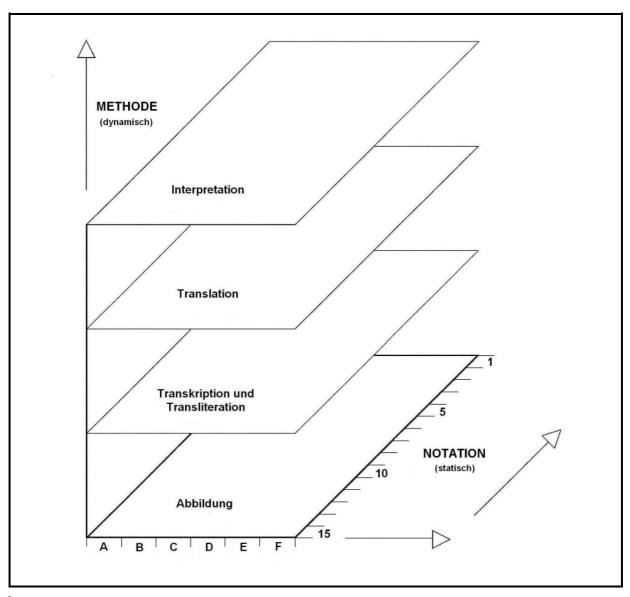
Rückgriffe auf andere in der Literatur verbreitete Bezeichnungsweisen finden nur in Ausnahmefällen Anwendung. Aus Gründen der Effizienz der Darstellung werden die Bezeichnungen a, b, c, d für die horizontalen Abschnitte ("Register") jeder Seite in der Richtungsanalyse (\rightarrow Kapitel 7) und hier insbesondere in den tabellarischen Übersichten (\rightarrow Tabellen 12, 13, 14) verwendet.

Das Notationssystem bezeichnet also alle Elemente aller Original-Seiten. Es bildet die statische Komponente ihrer Strukturen.

Die Bearbeitung ihrer Inhalte erfolgt in verschiedenen Schritten. Auch diese sind klar voneinander zu trennen, ohne den Bezug zum Originaldokument zu verlieren. Die Analyse jeder Seite des C.D. folgt dem Standard der epigraphischen Lesung der Hieroglyphentexte anderer Schriftträger der Maya, nämlich ihrer Transkription, Transliteration und Translation (Kettunen und Helmke 2008:11-12, 65).

Im Folgenden werden zwei Erweiterungen dieses Standards definiert: erstens um eine Ebene der Bedeutung (Interpretation), um diese deutlich von den Tatsachen der Quelle abzusetzen, und zweitens um eine Erweiterung, die die Bearbeitungsschritte auch körperlich – in Form so genannter *Blätter* – voneinander trennt. Die Bearbeitung jeder Seite des C.D. ist folgendermaßen gegliedert:

Blatt 1 enthält eine Abbildung der Originalseite des C.D. sowie die statische Gliederung innerhalb eines umgebenden Koordinatenrahmens mittels der oben definierten Notation. Der Koordinatenrahmen wird für die folgenden Blätter beibehalten. Die Abbildungen der Seiten des Codex Dresden basieren auf der im WorldWideWeb verfügbaren Version http://www.famsi.org/mayawriting/codices/pdf/dresden_fors_schele_all.pdf. (6.9. 2009);


Blatt 2 enthält die Transkription und Transliteration, weil sie inhaltlich eng zusammengehören;

Blatt 3 enthält eine Translation, das heißt: Textteile sind in die deutsche Sprache übersetzt, numerische Teile sind in das Dezimalsystem übertragen;

Blatt 4 enthält eine Interpretation in Form textlicher Beschreibungen und numerische Darstellungen sowie Hinweise auf die Verbindung mit benachbarten Kontexten.

Aus Gründen der Effizienz der Darstellung oder der Erleichterung des Verständnisses können Blatt 3 *Translation* und Blatt 4 *Interpretation* auch auf einem Blatt 3 *Translation/Interpretation* zusammengefaßt werden. Ferner kann die Interpretation einer Seite des C.D. so umfangreich sein, dass ein zweites Blatt erforderlich ist. Dieses kann durch einen Zusatz erfolgen, z.B.: *Interpretation(1)*.

Diese Gliederung in Darstellungsebenen bildet – anschaulich gesprochen – den Prozeß der methodischen Bearbeitung stratigraphisch ab, sie wird deshalb dynamische Komponente der Gesamtstruktur eines allgemeinen Modells der Bearbeitung des Codex Dresden genannt (→ Abbildung 7).

Abbildung 7: Gesamtstruktur eines allgemeinen Modells der Bearbeitung jeder Seite des Codex Dresden: Notation (statische Dimensionen) und Methoden (dynamische Dimension)

Neben dem abstrakten Raum (→ 3.1) ist damit der konkrete Raum der Untersuchung aufgespannt. Die Breite und die Höhe der Seiten des C.D. bilden die Dimensionen des Untersuchungsgegenstands mit den Wertebereichen (A, ..., I) für deren Spalten und (I, ..., 30) für deren Zeilen, das sind die beiden statischen Richtungen des Ordnungssystems. Die dritte beschreibt die methodischen Schritte Dimension der Bearbeitung (Abbildung, Transkription/Transliteration, Translation und Interpretation) jeder Seite, sie bildet eine dynamische Komponente des eingangs als Suchraum verstandenen Untersuchungsgegenstandes. Dieser Raum der Untersuchung des Codex Dresden kann nun zur Analyse betreten werden. Er stellt somit auch den Versuch dar, den Codex Dresden aus einer Binnenperspektive zu verstehen, jedoch im Bewusstsein, nicht immanenter Teil der Kultur der Maya zu sein.

3.3 Regelwerk zur Notation

Der grundsätzliche Aufbau der Notation besteht aus den drei Elementen:

- der Identifikation der Originalseite des C.D.,
- der Identifikation einer jeden Spalte und
- der Identifikation einer jeden Zeile dieser Seite.

Die Identifikation der Originalseite des C.D. erfolgt in der Form "Seite Spalte Zeile", also z.B. 46A07, d.h. "C.D. p.46" (Paginierung Förstemann (1892), → Anhang 1), Spalte A, Zeile 7 für alle Elemente, die einzeln identifiziert werden können oder müssen.

Die *Blätter 1* bis 4 der in 3.2 allgemein und in 4.1 konkret beschriebenen Darstellungen tragen diese Information ergänzt um die in Klammern gesetzte moderne Paginierung (Beispiel: p.46(25)) jeweils in den Kopfzeilen und den Fußzeilen der Blätter.

Die Abbildung der Originalseite des C.D. auf *Blatt 1* dient auch der Definition der Spalten (Großbuchstaben *A*, ..., *I*) und der Zeilen (Zahlen *1*, ..., *30*). Die Nummerierung der Zeilen orientiert sich an der unregelmäßigen horizontalen Ordnung des Originals. In den *Blättern 2* bis 4 tritt die Regelmäßigkeit der Matrix-Darstellung in den Vordergrund. Beide Notationen werden *kursiv* ausgeführt, um sie optisch einfach von den nicht kursiv dargestellten Inhalten des C.D. zu trennen.

Die Originalseiten enthalten verschiedene Anzahlen von Spalten und Zeilen, und auch für einzelne Seiten bestehen – zum Teil erhebliche – Unterschiede in der Zahl der Zeilen je Spalte. Die Definition der Notation der Spalten geht vom Prinzip des Minimalismus für jede einzelne Seite aus. Es werden nur so viele Spalten bzw. Zeilen definiert, wie zur Identifikation der

Elemente der jeweiligen Seite erforderlich sind, um die Anzahl der entstehenden leer bleibenden Matrix-Positionen minimal zu gestalten. In den Fällen, in denen eine Originalseite in zwei Register mit unterschiedlicher Spaltenanzahl gegliedert ist, werden die Spalten jedes Registers separat definiert. Ist die Originalseite in drei Register gegliedert, wird die Notation des mittleren Registers in der des unteren oder oberen Registers vorgenommen, wiederum geleitet vom Minimalismus-Prinzip. Dabei kann der Fall eintreten, dass eines der Register eine oder mehrere leere Spalten(elemente) aufweist. Beispielsweise sind in Seite p. 43 die Spalten A bis H für Register b definiert; Register a enthält daraus resultierend leere Elemente in den Spalten C und F. Sie sind auf *Blatt* 2 mit " - " als solche gekennzeichnet.

Die Zahl der Zeilen kann demgegenüber nicht im selben Sinne minimal gehalten werden. Sie orientiert sich an der Spalte, die das Maximum an Elementen enthält. In Spalten mit einer geringeren Anzahl an Elementen entstehen wiederum Matrix-Positionen, die kein Element der Originalseite enthalten, auch sie sind auf *Blatt* 2 mit " - " gekennzeichnet.

Das Blatt 2 (Transkription/Transliteration) enthält:

- (1) für jede Hieroglyphe:
 - ihre Transkription: CA' ta-b(a) und
 - ihre Transliteration: ca' tab

Die Transkription und die Transliteration wurden anhand Davoust (1997) durchgeführt. Für die Seiten p.24, 46-50 wurde zusätzlich Schele und Grube (1997) zum Vergleich herangezogen.

- (2) für ein Datum des Tzolkin: seine direkte *Transliteration*, Beispiel: 4 Ahau
- (3) für ein Datum des Haab: seine direkte Transliteration, Beispiel: 8 Cumku
- (4) für jede einzelne Stelle einer Vigesimalzahl: die direkte *Transliteration* aus der Punkt-Strich-Schreibweise in eine arabische Zahl, Beispiel: = 9.

Das Blatt 3 (Translation) enthält:

- (1) für jede Hieroglyphe ihre Übersetzung in die deutsche Sprache
- (2) die Daten des Tzolkin und des Haab gemäß Blatt 2
- (3) für Vigesimalzahlen (bestehend aus mehreren Stellen):
 - ihre vollständige Konversion in eine Dezimalzahl
 - ggfls. bestehende alternative Lesungen (Förstemann, Thompson) [in eckigen Klammern].

Das *Blatt 4 (Interpretation)* enthält:

(1) für jede Hieroglyphe ihre Übersetzung in die deutsche Sprache gemäß Blatt 3

- (2) für die Zahlen eine Darstellung der Perioden, die durch die statistische Analyse (→ Kapitel 4 und Kapitel 5) ermittelt wurden (→ Anhang 6 und Anhang 7)
- (3) astronomische oder kalendarischer Zyklen in Form arithmetischer Ausdrücke
- (4) Zusammenhänge mit benachbarten Elementen, die beispielsweise durch Rechenoperationen dargestellt werden können.

Die Identifikation von Vigesimalzahlen erfolgt durch das Matrix-Element, in dem ihre höchstwertige Vigesimalstelle im Blatt 2 *Transkription/Transliteration* positioniert ist.

Die Identifikation von Dezimalzahlen erfolgt durch das Matrix-Element, in dem sie in Blatt 4 *Interpretation* tatsächlich positioniert ist.

3.4 Einordnung in die Forschungsgeschichte

Eine Einordnung der in 3.1 beschriebenen Paradigmen in die Forschungsgeschichte muss zunächst feststellen, dass für die Anfänge der modernen Maya-Forschung im 19. Jahrhundert ähnliches gilt wie für die Ursprünge nahezu jeglicher wissenschaftlichen Disziplin, nämlich eine starke Präferenz für ihre Inhalte bei geringerem Interesse für Systematisierung und Methodik. Diese Tatsache ist auch völlig plausibel, denn zunächst sind nur wenige materielle Hinterlassenschaften entdeckt und gut dokumentiert, darüber hinaus mangelt es an Kenntnis über diese. Erst im Zuge einer quantitativen und qualitativen Anhäufung von Wissen entsteht die Notwendigkeit zu einer möglichst sinnvollen Ordnung.

Die Darstellungsweisen Förstemanns (1901) und Thompsons (1972) haben ihre historischen und wissenschaftlichen Ursprünge und Gründe. Ihre Vorteile sind die Kompaktheit, Dichte und Kürze. Sie ist damit angemessen für Untersuchungsgegenstände, die nahezu vollständig und im Konsens verstanden werden. Es darf aber angenommen werden, dass es sowohl Förstemanns wie auch Thompsons Selbstverständnis entspricht, wenn hier festgestellt wird, dass ihre Darstellungen den Anspruch einer alternativlosen "Ergebnis-Präsentation" und Deutung seines Inhalts erheben, den sie selbst nur in wenigen Einzelfällen relativieren oder explizit verneinen.

Beide Forscher artikulierten Absichten, die als Quelle der Inspiration und als Ausgangspunkt für die vorliegende Arbeit dienten. So weist Förstemann darauf hin, dass der Rezeption seines Kommentars eine gleichzeitige, parallele Betrachtung der Originalseiten förderlich wäre (1901:III) und bildet 22 Glyphen ab (1901:IV). Förstemann identifiziert astronomische (1901:47ff) und kalendarische Inhalte (1901:56).

Thompson etabliert mehrere Ordnungssysteme, wendet sie aber nicht durchgängig an (1972: 2) und versucht, den Nachweis einer "... dominance of the divinatory theme in this book ..." (1972:112) mittels Statistik zu erbringen.

Die Arbeit Förstemanns (1901) zum Codex Dresden zeugt implizit von einer erheblichen Systematik und inneren Ordnung und hat erkennbar das Ziel eines ganzheitlichen Verständnisses angestrebt. Ähnliches gilt auch für die Arbeiten von Thompson (1972) und Davoust (1997) sowie Schele und Grube (1997).

Für diese Arbeiten muss jedoch das Fehlen einer einheitlich und durchgängig angewendeten Notation konstatiert werden. Förstemann (1901) führt einige Darstellungskonventionen ein – beispielsweise stellt er die Numerale des Tzolkin durch römische Zahlzeichen dar –, referenziert die einzelnen Bestandteile des C.D. jedoch überwiegend durch allgemeine sprachliche Mittel.

Thompson (1972:2) führt zwar gemäß einem Vorschlag Günter Zimmermanns (1956) für die Bezeichnung der Spalten Großbuchstaben ein, beschränkt ihre Nutzung aber auf diejenigen Bereiche, die er nicht als T'ols identifiziert. Diese T'ols definiert Thompson (1972:2) als "Yucatec Maya word for column of a book." Diese Doppeldefinition des Strukturelements Spalte trägt zu dem Ergebnis bei, dass die Bezeichnungen A, B, C, … in seinem Werk selten Anwendung finden.

Davoust (1997:96-321) bildet in tabellenartigen Schemata die Strukturen der Seiten annähernd nach, bezeichnet dabei aber nur in wenigen Fällen (1997:175, 178-97, 214, 219, 257) die Spalten (mit Buchstaben) und Zeilen (mit Zahlen). Darüber hinaus existieren Fälle, in denen Davoust ausschließlich die Spalten bezeichnet (Davoust 1997:198-99), ausschließlich die Zeilen bezeichnet (Davoust 1997:179), die Spalten mit Zahlen bezeichnet (Davoust 1997:201-2) und die Spalten gemischt benennt (Davoust 1997:249).

Davoust verwendet für die Bezeichnung der Spalten von links nach rechts nicht nur die übliche aufsteigende Reihenfolge, sondern in einigen Fällen auch die absteigenden H, G, F, ..., A (Davoust 1972:198-99) und 7, 6, ..., 1 (Davoust 1972:251), offenbar um damit die Leserichtung der Passage anzudeuten.

Dieses Vorgehen verletzt das Prinzip der Einheitlichkeit einer Notation. Es vermischt den Zweck einer Notation mit einem Teilaspekt inhaltlicher Analyse, nämlich im vorliegenden Fall der Analyse der Leserichtung(en). Diese wiederum kann jedoch erst das Ergebnis einer Untersuchung sein. Sie sollte weder durch eine variierende Notation vorgenommen werden noch implizit bleiben. Die Notation hat die Aufgabe, die Untersuchungsgegenstände mittels

einer Bezeichnung zu identifizieren, sie hat insbesondere nicht die Aufgabe irgendeiner inhaltlichen Interpretation. Der Nutzen eines Notationssystems besteht vornehmlich in einer einfachen Referenzierbarkeit der bezeichneten Elemente in Kontexten, in denen das bezeichnete Objekt oder sein genaues Abbild nicht zur Verfügung stehen. Dieser Nutzen wird durch die Bezeichnungsweisen Davousts nicht erreicht.

Lounsbury (1978:778-89) analysiert die Seiten p.46-50 mit dem oben dargestellten Notationssystem (Lounsbury 1978:780), wendet es teilweise auf die Seite p.24 an (Lounsbury 1978:785) und analysiert die Seiten p.51-58 (Lounsbury 1978:789-804) anhand einer "Column number (=node number)" (Lounsbury 1978:792).

Notationssysteme verschiedener Art werden auch in mehreren anderen Arbeiten zur Untersuchung einzelner Abschnitte verwendet. Milbrath (1999) untersucht p.24 mit Notation (Milbrath 1999:168-69) und p.43-45 ohne Notation (Milbrath 1999:220) sowie p.46-50 ohne Spaltenbezeichnung (Milbrath 1999:164-65).

Das Fehlen einer konkret dargelegten Methodik ist für die überwiegende Mehrzahl der Publikationen zu einzelnen Themen oder speziellen Abschnitten des C.D. festzustellen. Eine explizit konstituierte Methode stellt also ein wichtiges Desiderat aktueller Mayaforschung dar. Sie ist insbesondere für die Bearbeitung des umfangreichen numerischen Korpus sowie für die Anwendung informationsverarbeitender Techniken nutzbringend.

3.5 Ergebnis und Schlussfolgerungen

Der methodische Ansatz (\rightarrow 3.1, 3.2) und seine Regeln und Konventionen (\rightarrow 3.3) ist auf diejenigen Seiten des C.D. angewendet worden, die für die nachfolgende Untersuchungen relevant sind. Damit ist die Durchführbarkeit dieses Konzepts nachgewiesen (\rightarrow Anhang 2 und Anhang 8). Somit ist für das gesamte Schriftkorpus der Maya – Monumente, Codices, Objekte verschiedener Art – ein einheitlicher Standard etabliert.

Diese Form der Darstellung bildet die Grundlage für die nachfolgenden morphologischen Strukturanalysen:

- die statistische Analyse ausgewählter Teile des numerischen Korpus (→ Kapitel 4 und 5),
- die deterministischen Untersuchungen am numerischen Korpus (→ Kapitel 6),
- die Analyse der Richtungsinformationen (\rightarrow Kapitel 7).

Insbesondere für die statistische Analyse des numerischen Korpus (Kapitel 4 und 5) war diese Form der Darstellung unabdingbar. Sie erleichterte in vielfältiger Weise die Validierung der informationstechnischen Realisierung.

Diese Form der Darstellung des C.D. erfüllt im Sinne des gewählten paradigmatischen Ansatzes folgende Funktionen:

- (1) Der Inhalt des Codex Dresden wird struktur-erhaltend abgebildet, um die Bedeutungsträger Struktur und Inhalt (Signifikanten) sowie die Bedeutung (Signifikat) deutlich voneinander zu unterscheiden (\rightarrow 3.1). Die Zeichen erlangen Bedeutung im Zusammenhang mit allen übrigen Elementen, indem sie im Kontext verbleiben und als wohldefiniertes Ganzes analysiert werden können. So wird nicht nur ein einzelner empirischer Befund, wie beispielsweise die Deutung einer Zahl als Vielfaches einer anderen ermöglicht, sondern das immanente Regelsystem, das alle Zahlen miteinander verbindet und durch sie konstituiert wird, erkennbar (\rightarrow Anhang 2, Anhang 8).
- (2) Innere Zusammenhänge werden explizit gemacht. Beispielsweise werden auf der Interpretationsebene arithmetische Operationen mit den Mitteln und Darstellungskonventionen unserer Kultur, beschrieben.
- (3) Der modulare Aufbau dieses Konzepts ermöglicht zukünftige Erweiterungen, wenn der Stand der Forschung dieses ermöglicht oder erfordert. Beispielsweise könnte es sich als sinnvoll und notwendig erweisen, dem Stand der linguistischen Forschung entsprechend die Ebenen der *morphologischen Segmentation* und der *morphologischen Analyse* (Kettunen und Helmke 2008:11-12, 65) hinzuzufügen.
- (4) Die komparatistische Analyse verschiedener wissenschaftshistorisch bedeutsamer Arbeiten wird durch eine einheitliche Notation erleichtert.

Der Codex Dresden wird somit unter Bewahrung seiner Andersartigkeit als Kulturgut der Anderen in eine Form transponiert, die es dem modernen Leser ermöglicht, ihn weiterhin zu erforschen und möglicherweise dereinst in einer Art und Weise zu rezipieren wie es jedem bedeutsamen Buch angemessen ist.

4. Statistische Analysen ausgewählter Teile des numerischen Korpus

4.1 Der Untersuchungsgegenstand

Der Codex Dresden besteht aus verschiedenen, im Folgenden mit *Abschnitt* bezeichneten Teilen unterschiedlicher Inhalte (\rightarrow 2.2). Der Inhalt der Seiten p.24, 46-50 wird von der Wissenschaft ebenso unumstritten mit dem für einen irdischen Beobachter sich darstellenden Umlauf des inneren Planeten Venus um die Sonne identifiziert wie die Seiten p.51-58 mit der Gesetzmäßigkeit der Erscheinung von Sonnen- oder Mondfinsternissen. Darüber hinaus werden einerseits die Seiten p.58-59 sowie andererseits die Seiten p.43-44 wegen des auf den Seiten 44 und 45 dargestellten zoomorphen Kopfes eines auch als Mars-Monster oder Mars-Biest bezeichneten Wesens mit dem für einen irdischen Beobachter sich darstellenden Umlauf des äußeren Planeten Mars um die Sonne identifiziert (Willson 1924). Diese Annahme ist wissenschaftlich nicht völlig unumstritten, weil unter anderem die in ihnen zu Tage tretende Periode von 780 zwar mit dem modernen astronomischen Wert der synodischen Umlaufzeit des Mars [$U_{\rm syn}({\rm Mars}) = 779,936d$] sehr gut übereinstimmt, jedoch die Zahl 780 auch der dreifachen Länge des als Ritualkalender bezeichneten Tzolkin entspricht.

Neben den genannten Abschnitten der

```
- Seiten p.24, 46-50 (Venustafeln) (Ausgangspunkt: 1 Ahau) [→ Anhang 2.1]
```

bilden Teile der

```
- Seiten p.69-73 (Ausgangspunkt: 9 Ix) [\rightarrow Anhang 2.5]
```

- Seiten p.31-32 (Ausgangspunkt: multipel) [→ Anhang 2.6]
- Seiten p.62-64 (Ausgangspunkt: multipel) [→ Anhang 2.7]

den Gegenstand der Untersuchung, deren Vorbereitung und Durchführung nachfolgend beschrieben wird. Ihre Ergebnisse werden in Kapitel 5 und weitere Folgerungen in Kapitel 6 dargestellt.

⁻ Seiten p.51-58 (Finsternistafeln) (Ausgangspunkt: multipel) [→ Anhang 2.2]

⁻ Seiten p.58-59 (Ausgangspunkt: 13 Muluk) [→ Anhang 2.3]

⁻ Seiten p.43-44 (Ausgangspunkt: 3 Lamat) [→ Anhang 2.4]

⁻ Seiten p.69-73 (Ausgangspunkt: 4 Eb) [→ Anhang 2.5]

Diese acht Abschnitte sind jeweils zusammengehörige, jedoch formal voneinander getrennte Teile. Ihre inhaltliche Separierung ist begründet durch die Gliederung des C.D. selbst, die ikonographisch durch vorhandene Linien erkennbar ist. Jeder dieser Teile des numerischen Korpus besitzt ferner einen inhaltlichen Zusammenhang durch eine oder mehrere klar definierte Tagesangaben im Tzolkin, von dem oder denen aus alle Zahlen (des jeweiligen Teils) zu verstehen sind. Die Mehrheit der in einem Abschnitt enthaltenen Zahlen ist darüber hinaus leicht als Vielfaches einer oder mehrerer kleiner Zahlen erkennbar, wodurch ein weiterer Zusammenhang gebildet wird. Zwischen ihnen erscheinen aber auch Zahlen, die diesen oder ähnlichen einfachen Bildungsregeln nicht folgen. Jede Zahl des numerischen Materials jedes Abschnitts ist durch das Notationssystem bezeichnet und eindeutig lokalisiert. Die Abschnitte überschneiden sich lokal nicht. Jede Zahl gehört genau einem Abschnitt an, jedoch kann eine bestimmte Zahl in mehr als einem Abschnitt auftreten.

Die Daten dieser Abschnitte wurden durch eine eigene Lesung des Codex Dresden gemäß der Edition http://www.famsi.org/mayawriting/codices/pdf/dresden_fors_schele_all.pdf ermittelt und anhand weiterer evaluiert (→ Anhang 2, (2)). Die eigene Lesung verzichtet bewusst auf Modifikationen des numerischen Materials der Quelle. Modifikationen werden allerdings vorgenommen, wenn ein zusätzliches Kriterium zur Verfügung steht. Im Beispiel 71 E 11 beträgt die Differenz zwischen den zugehörigen Angaben im Tzolkin (71 D14, 71 E 14) 702. Eine Güte-Abwägung spricht somit für eine Modifikation der Vigesimalziffer 15 (71 E 12) in den Wert 17. Diese ist in Blatt *Transkription/Transliteration* in der Form (15 →) 17 dargestellt. Das Blatt *Translation* stellt den originären Wert in der Form 662 und das Ergebnis der Modifikation 702 dar. Das Blatt *Interpretation* enthält nur den modifizierten Wert 702.

Die Daten, die Ernst W. Förstemann in seinem Commentar zur Mayahandschrift der Königlichen öffentlichen Bibliothek zu Dresden (1901) liest, stimmen nicht in allen Fällen mit denen der eigenen Lesung derselben Abschnitte überein. Die Gründe hierfür sind unterschiedliche Interpretationen oder Rekonstruktionen - im folgenden zusammenfassend Modifikationen genannt - des Quellenmaterials. Eine Übersicht über alle Modifikationen ist in Förstemann (1901) nicht enthalten. Die für die nachfolgende Untersuchung relevanten Modifikationen Förstemanns am numerischen Korpus der ausgewählten Abschnitte wurden daher in einer eigenen Tabelle Modifikationen (→ Anhang 3.1) zusammengestellt.

Die Daten, die J.E.S. Thompson in seinem *A Commentary on the Dresden Codex* (1972) in denselben Abschnitten liest, weichen ebenfalls in einigen Fällen von denen der eigenen Lesung

oder derjenigen Förstemanns (1901) ab. Thompson stellt seine Modifikationen in einem "Appendix: Apparent Errors in Original Codex" zusammen (1972:115-16), weitere sind jedoch im Textteil enthalten (1972:24, 71, 81, 94). Beide sind in Anhang 3.2 zusammengefasst. Die Gründe für Modifikationen bestehen auch hier in unterschiedlichen Interpretationen oder Rekonstruktionen einzelner Stellen. Thompson kommentiert ganz überwiegend anhand der Vigesimalzahlen. Diese Tatsache erschwerte die Zusammenstellung der Daten ebenso wie die von ihm verwendeten unterschiedlichen Notationen. Sie mussten daher mittels Anhang 2, Blatt 2 *Transkription/Transliteration* identifiziert werden.

Die in Förstemann (1901) und Thompson (1972) vorhandenen jeweiligen numerischen Bestände sind nicht unerheblich voneinander verschieden (→ Anhang 3). So ergeben sich zwei weitere unterschiedliche "Datensätze". Ihre Modifikationen sind in den Darstellungen des Codex Dresden (→ Anhang 2) jeweils in Blatt 3 *Translation* – neben der eigenen Lesung – in eckigen Klammern […] dargestellt sowie zitiert. Die statistische Analyse dieser Datensätze erfolgt, um zu evaluieren, ob ihre Modifikationen zu anderen Ergebnissen der statistischen Analyse führen als die der Originaldaten gemäß der eigenen Lesung.

Auf die Zusammenstellung weiterer Datensätze aus Arbeiten anderer Autoren und deren Analyse wurde verzichtet, weil die überwiegende Mehrzahl aller wissenschaftlichen Arbeiten vornehmlich vom Zahlenmaterial Förstemanns und Thompsons und deren Interpretationen ausgehen. Dies gilt beispielsweise für die Bearbeitungen des C.D. durch Schele und Grube (1997) sowie Davoust (1997), dessen numerisches Material mit dem Thompsons praktisch identisch ist. Die Ergebnisse der vergleichenden Untersuchung dieser drei Lesungen werden diese Beschränkung zusätzlich begründen.

Auf diese drei Datensätze, die aus unterschiedlichen Interpretationen, Rekonstruktionen und Modifikationen resultieren, wird im Folgenden mit dem Begriff *Lesung* Bezug genommen. Die Daten der drei Lesungen sind in Anhang 4 parallel tabelliert. Dessen Teile 4.1 bis 4.8 enthalten das numerische Material der acht ausgewählten Abschnitte des C.D.. Innerhalb jedes Abschnitts ist das Zahlenmaterial in absteigender Folge der Zahlen der eigenen Lesung sortiert. Anhang 4 enthält in Spalte (*I*) die Identifikation jeder Zahl des C.D. im Sinne der eingeführten Notation (→ Kapitel 3.2), d.h. die Matrixposition der Darstellung des Anhangs 2. Die Lesungen Förstemann (1901) und Thompson (1972) sind dokumentiert durch ihre Zahlenwerte (Spalten

(5) und (7)) sowie die Zitierung ihrer Fundstellen (Spalten (4) und (6)) in ihren Arbeiten. Die Unterschiede in den Daten der drei Lesungen sind durch Fettdruck hervorgehoben.

Die nachfolgend dargestellte Untersuchung erfolgt für jede der drei Lesungen getrennt, um die Wirkung der verschiedenen Modifikationen im Hinblick auf das Ergebnis der Analyse und die aus ihm ableitbaren Schlussfolgerungen miteinander vergleichen zu können. Innerhalb der Untersuchung jeder Lesung erfolgt diese auch getrennt für jeden der acht Abschnitte.

Die drei Untersuchungen unterscheiden sich also in Bezug auf die ihnen zugrundeliegenden Daten (→ Anhang 4). Auf jede Lesung wird jedoch die nachfolgend definierte Methode gleichartig angewendet (→ Kapitel 4.2). Daten und Methode bilden die Grundlage für die informationstechnische Realisierung (→ Kapitel 4.3), die ebenfalls für jede der drei Lesungen identisch ist.

Die Daten des Anhangs 4 sind mit den Positions-Notationen in das der Auswertung zugrunde liegende *Programm der statistischen Analyse* (\rightarrow Anhang 5.1 – 5.4) übernommen worden und bilden damit die Grundlage für die durch das Programm erzeugten Ergebnisse (\rightarrow Anhang 6).

4.2 Die Untersuchungsmethode

Schon Ernst Förstemann (1901) gibt für viele Vigesimalzahlen des numerischen Inventars faktorielle Zerlegungen an. Er zeigt für Mayazahlen (M), dass sie ganzzahlige Vielfache (n) numerisch-kalendarisch oder astronomisch relevanter Perioden (P) (synonym: Zyklen, Umlaufzeiten) sind, also der Form M = n · P genügen. Thompson unternimmt dies auch (Beispiel: Thompson 1972:107).

Förstemann (1901) und Thompson (1972) stellen jedoch nicht dar, mit welcher Methode das numerische Korpus analysiert wurde. Ferner machen beide Autoren keine Angaben zur Frage der Vollständigkeit ihrer Analysen und Ergebnisse. Sie erzeugen vielmehr sowohl durch ihre Ergebnisse als auch durch die Art und Weise ihrer Darbietung den Eindruck von Lösungen und Ergebnissen im Einzelfall. Die Venus-Tafeln (p.24, 46-50) und die Finsternis-Tafeln (p.51-58) bilden hiervon insofern Ausnahmen, als ihr wesentlicher Inhalt in seiner Gesamtheit identifiziert ist. Sie sind jedoch sowohl aufgrund der intendierten Vollständigkeit der durchgeführten Analysen Gegenstand nachfolgender Betrachtungen. Darüber hinaus können deren Ergebnisse einen Maßstab für einen Vergleich mit denen der sonstigen Abschnitte liefern.

Eine Vervollständigung der Arbeiten Förstemanns (1901) und Thompsons (1972) ist in zweierlei Weise möglich: erstens wird jede Zahl der Abschnitte auf das Vorhandensein von Faktoren überprüft werden und das kann zweitens für alle ganzzahligen Faktoren erfolgen, d.h. nicht nur auf einige wenige vermutete Perioden beschränkt bleiben.

Theoretischer Ausgangspunkt für die im Folgenden durchgeführte Untersuchung ist die Annahme, dass die Zahlen des numerischen Korpus astronomische Perioden, wie z.B. synodische Umlaufzeiten der inneren oder äußeren Planeten oder die Dauer des Sonnenjahres enthalten. Wenn derartige astronomische Phänomene durch die Maya beobachtet und numerisch aufgezeichnet wurden, dann sollten deren Perioden oder kalendarische Perioden in der Form ganzzahliger Vielfacher in einer statistisch signifikanten Häufigkeit im numerischen Korpus auftreten und erkennbar sein. Die Bedeutung dieses Tatbestandes hat Förstemann durch die Aussage "... die Hauptsache ... [ist die] ... Eigenschaft der Teilbarkeit in die verschiedensten wichtigen Zeiträume." (1901:163) hervorgehoben.

Diese Untersuchung wird auf ganzzahlige Vielfache beschränkt, der verbreiteten Annahme folgend, dass das arithmetische Wissen der Maya auf diese Form von Zahlen beschränkt war. Die Untersuchung einer Zahl auf ihre Teilbarkeit ist äquivalent einer Untersuchung auf die in ihr enthaltenen Faktoren. Aus diesem Grund wird im Folgenden zwischen den Begriffen Teiler und Faktor nicht unterschieden.

Methodischer Ansatz für die Ermittlung unbekannter Perioden (oder Frequenzen) ist die Spektralanalyse. Der Begriff Spektralanalyse wird im allgemeinen Sprachgebrauch überwiegend mit den meßtechnischen Verfahren in Verbindung gebracht, die in Astronomie, Chemie, Medizin u.v.a. die Bestandteile verschiedener Materialien anhand der von ihren Inhaltsstoffen emittierten Strahlung – und das heißt deren Frequenz – bestimmen helfen. Der Spektralanalyse liegt ein mathematisches Verfahren zugrunde, das Fourier-Transformation heißt (Edwards 1979, Zygmund 1977, Stein und Weiss 1971). Ihre für das Folgende wesentliche Funktion besteht in der Ermittlung von Perioden, die innerhalb einer Grundgesamtheit – das sind hier jeweils alle Zahlen jedes der acht definierten Abschnitte – einfach oder in Form ihrer Vielfachen vorkommen. Diese Perioden werden zusammen mit und anhand ihrer statistischen Signifikanz und Hochsignifikanz unter der Annahme einer Normalverteilung (Gauß-Verteilung) aller in der Grundgesamtheit enthaltenen Zahlen bestimmt (Schlosser und Cierny 1996:149-55). Diese quantitative Information lässt Folgerungen auf die

Bedeutungen der Teiler/Faktor und der sie enthaltenen Zahlen zu, indem sie als Perioden bekannter Phänomene erkannt werden können und somit Indizien für das Phänomen darstellen.

Diese Untersuchungsmethode und das ihr zugrunde liegende Rechenverfahren werden im Folgenden als statistische Analyse bezeichnet. Ihre Durchführung erfolgt mit Mitteln der Informationstechnik (\rightarrow Kapitel 4.3, \rightarrow Anhang 5).

Die Beschreibung der Untersuchungsmethode wird vervollständigt durch die Erläuterung ihrer Ergebnisse anhand der Darstellungsform der informationstechnischen Verarbeitung am Beispiel der Ergebnisse der statistischen Analyse der Daten der eigenen Lesung des Abschnitts p.24, 46-50 (→ Anhang 6.1.1):

- 1. Die Häufigkeit $N(T_i)$ des Auftretens jedes ganzzahligen Teilers T ($28 \le T \le Maximum$ der Zahlen eines Abschnitts) in allen Zahlen eines Abschnitts wird ermittelt. Treten mehrere Teiler auf, werden sie mit T_i (i=1, ..., N) bezeichnet, d.h. von T_1 bis T_N nummeriert (\rightarrow Spalte (1)).
- 2. Ein Teiler T_i erscheint nur dann in den Tabellen des Anhangs 6 (\rightarrow Spalten (1), (2)), wenn seine Häufigkeit $N(T_i)$ (\rightarrow Spalte (4)) im Vergleich mit der Häufigkeit des um 1 kleineren Nachbarn $N(T_i-1)$ (\rightarrow Spalte (3)) und der Häufigkeit des um 1 größeren Nachbarn $N(T_i+1)$ (\rightarrow Spalte (5)) die Bedingung

$$N(T_i) > s \cdot (\sqrt{N(T_i)}) + \frac{1}{2} \cdot [N(T_i - 1) + N(T_i + 1)]$$
 erfüllt.

Sämtliche Berechnungen erfolgen für zwei Standardabweichungen:

- (a) für $s = 2\sigma$: ermittelte Teiler werden im Folgenden als *signifikant* bezeichnet und ihre Häufigkeit ist in Spalte (4) in Normalschrift (nicht fett) dargestellt,
- (b) für $s = 3 \sigma$: ermittelte Teiler werden im Folgenden als *hochsignifikant* bezeichnet und ihre Häufigkeit ist in Spalte (4) in Fettschrift dargestellt,

Das <u>erste</u> Ergebnis der statistischen Analyse bilden die ermittelten Teiler (\rightarrow Spalte (2)) und ihre statistische Signifikanz (\rightarrow Spalte (4)).

3. Jeder ermittelte Teiler T_i kann ausgewählt werden, um ihn auf seine spezifische – und hier noch hypothetische – Relevanz im numerischen Material des Abschnitts zu prüfen. Als Beispiel

möge der Teiler T_{18} (= 260) dienen. Der Teiler T_{18} wird im Folgenden Kandidat K_1 genannt (\rightarrow Anhang 6.1.1, Spalte (6)). Der Kandidat K_1 wird mit jedem ermittelten Teiler T_i folgendermaßen multiplikativ verknüpft dargestellt:

- (a) $K_1 = F_i \cdot T_i$ für alle Teiler, die kleiner als der Kandidat K_1 sind, d.h. für K_1 bis K_1 ,
- (b) $K_1 = 1 \cdot T_{18}$ für den Teiler, der als Kandidat K_1 gewählt wurde, d.h. für T_{18} ,
- (c) $K_1 \cdot F_i = T_i$ für alle Teiler, die größer als der Kandidat K_1 sind, d.h. für T_{19} bis T_N .
- 4. Im Anschluss an diese Darstellung der Ergebnisse der statistischen Analyse jedes Abschnitts wird je eine **Bilanz** (→ Anhang 6) erstellt. Sie enthält die Anzahl aller *signifikanten* und die Anzahl aller *hochsignifikanten* Teiler/Faktoren, die <u>ganzzahlige</u> Vielfache hypothetischer Kandidaten als relevant erachteter Perioden sind. Diese Anzahlen werden für jeden Kandidaten ermittelt und zwar
- die Anzahl ganzzahliger Vielfacher größer oder gleich (≥) der hypothetischen Periode
- die Anzahl ganzzahliger Vielfacher kleiner (<) der hypothetischen Periode
- die Gesamtanzahl, d.h. der Summe der beiden vorgenannten.

Das <u>zweite</u> Ergebnis der statistischen Analyse bilden die <u>Anzahlen</u> von statistisch *signifikanten* und *hochsignifikanten* ganzzahligen Teilern (→ Anhang 6, Bilanz jedes Abschnitts).

Beispiel 1: $(\rightarrow \text{Anhang } 6.1.1: p.24,46-50)$

Der Teiler T_7 (hier 65 aus Spalte (2)) tritt in 10 Zahlen (\rightarrow Spalte (4)) des Abschnitts p.24,46-50 auf. Das heißt im Kontext der Nachbarn $N(T_i-1)$ und $N(T_i+1)$ signifikant, was durch Normalschrift kenntlich gemacht ist. Der Teiler T_7 (= 65) multipliziert mit 4 (7. Wert der Spalte (6), und im Folgenden mit F_7 bezeichnet) ist gleich 260 (der hypothetische Kandidat K_1 : Überschrift der Spalte (6)), allgemein: $T_7 \cdot F_7 = K_1$. Mit anderen Worten: der Kandidat K_1 ist ein ganzzahliges Vielfaches des ursprünglichen Teilers T_7 . Für den Kandidaten K_1 werden die Anzahl der signifikanten und der hochsignifikanten ganzen Zahlen ermittelt; sie sind in der Bilanz in den Spalten " 2σ " sowie " 3σ " ausgewiesen.

Beispiel 2: $(\rightarrow \text{Anhang } 6.1.1: \text{ p.}24, 46-50)$

Der Kandidat K_2 (hier 365 in der Überschrift der Spalte (7)) multipliziert mit 4 (31. Wert in Spalte (7) und im Folgenden mit F_{31} bezeichnet) ist gleich 1460 (Teiler T_{31} aus Spalte (2)), allgemein: $K_2 \cdot F_{31} = T_{31}$. Mit anderen Worten: der ursprüngliche Teiler T_{31} (= 1460) ist ein ganzzahliges Vielfaches des Kandidaten K_2 ist. Der Teiler T_{31} tritt in 17 Zahlen des Abschnitts

p.24, 46-50 auf. Das heißt im Kontext der Nachbarn $N(T_{31} - 1)$ (= 1459) und $N(T_{31} + 1)$ (= 1461) *hochsignifikant*, was durch **Fettschrift** der Zahl **17** in Spalte (4) kenntlich gemacht ist.

In der Statistik (Ehrenberg 1986:153-73) werden Unterschiede zwischen Größen oder Variablen dann als *signifikant* bezeichnet, wenn die Wahrscheinlichkeit, dass sie durch Zufall zustande gekommen sind, gering ist. Damit weist *Signifikanz* auf einen inhaltlichen Zusammenhang hin. Dieser kann unterschiedlich stark ausgeprägt sein und kann quantifiziert werden durch geeignete Wahl des Faktors s. Für eine Normalverteilung von Zufallsgrößen bedeutet *Signifikanz* einen Faktor s=2σ und entspricht einer Wahrscheinlichkeit, dass ein Zusammenhang der Größen auf Zufall zurückzuführen ist, von weniger als 5%. D.h. umgekehrt, dass ein inhaltlich begründeter Zusammenhang zu mehr als 95% wahrscheinlich ist. Ein Faktor s=3σ entspricht einer Wahrscheinlichkeit, dass ein Zusammenhang der Größen auf Zufall zurückzuführen ist, von weniger als 0,3% und d.h. umgekehrt, dass ein inhaltlich begründeter Zusammenhang zu mehr als 99,7% wahrscheinlich ist. Ein solcher Zusammenhang wird *hochsignifikant* genannt.

Die Signifikanz beschreibt also quantitativ einen noch unbekannten inhaltlichen Zusammenhang. Eine höhere Signifikanz entspricht einer größeren Informationsqualität.

4.3 Informationsverarbeitung

4.3.1 Software-Programm

Zur Durchführung der in 4.2 beschriebenen statistischen Analyse und der Ermittlung der Häufigkeiten aller Perioden wurde ein Software-Programm in der Programmiersprache GWBASIC (www.antonis.de/qbebooks/gwbasman/index.html) entwickelt (Anhang 5.1). Dieses Programm ermittelt für alle Zahlen eines Abschnitts in jeder der drei Lesungen separat alle signifikanten und hochsignifikanten Teiler oder Faktoren sowie deren Häufigkeiten.

4.3.2 Das Datenmaterial

Die Zahlen jeder der drei Lesungen sind dabei in der Form von DATA-Anweisungen Bestandteil in je einer Version des Programms. Die jeder DATA-Zeile vorausgehende REM-Zeile ist eine als Überschrift zu lesende Kommentarzeile. Sie enthält jeweils die Identifikation der Zahlen des C.D. gemäß der eingeführten Notation. In Anhang 5.2 sind die Daten der eigenen Lesung, in Anhang 5.3 die der Lesung Förstemann (1901) und in Anhang 5.4 die Daten

der Lesung Thompson (1972) in der Form des Datenteils des GWBASIC-Programms dokumentiert. Diese DATA-Anweisungen enthalten neben den Zahlen des C.D. je zwei Kennziffern. Die Abschnitte des C.D. werden innerhalb der Software-technischen Realisierung mittels Kennziffer 2 identifiziert (→ Tabelle 1, Spalte (3)).

4.3.3 Das Ergebnis der Informationsverarbeitung

Eine Übersicht über die Ergebnisse der Informationsverarbeitung enthält Anhang 6. Anhang 6.1 enthält die Ergebnisse der statistischen Analyse der Daten der eigenen Lesung und zwar in der in Anhang 4 angegeben Reihenfolge der acht Abschnitte. Anhang 6.2 enthält die Ergebnisse der statistischen Analyse der Daten der Lesung Förstemann (1901) und Anhang 6.3 diejenigen der Lesung Thompson (1972) in derselben Reihenfolge der Abschnitte.

5. Ergebnisse der statistischen Analysen

5.1 Allgemeines zur Ergebnis-Präsentation

Die statistischen Analysen identifizieren die im numerischen Material jedes ausgewähltem Abschnitts des Codex Dresden (\rightarrow Tabelle 1, Spalte (I)) enthaltenen Perioden. Diese Ergebnisse sind für die Daten der eigenen Lesung jedes der acht ausgewählten Abschnitte vollständig und im Einzelnen in je einer Tabelle dokumentiert (\rightarrow Anhang 6.1.1 - 6.1.8).

Die statistisch bedeutsamen Perioden werden als *Inhalt (Signifikant)*, und deren astronomische Interpretation als *Bedeutung (Signifikat)* im Sinne der Definition des Kapitels 3.1 verstanden. Sie werden in Kapitel 5.2 als Ergebnisse der statistischen Analyse der Daten der eigenen Lesung beschrieben (Spalte (4)).

In Kapitel 5.3 (\rightarrow Tabelle 1, Spalte (5)) werden – die Abschnitte des C.D. übergreifend – die Existenz von Signaturen des Sonnenjahrs (\rightarrow 5.3.1), der synodischen Umlaufzeiten des Merkur (\rightarrow 5.3.2), der Venus (\rightarrow 5.3.3), des Mars (\rightarrow 5.3.4) ebenso besprochen wie die der weiteren ermittelten Perioden von 390 (\rightarrow 5.3.5) und 260 (Tzolkin) (\rightarrow 5.3.6). Darüber hinausgehende Implikationen sind in einer Zusammenfassung dargestellt (\rightarrow 5.3.7).

Einen zusammenfassenden Überblick über die Struktur der nachfolgenden Präsentation und Diskussion dieser Ergebnisse innerhalb dieses Kapitels 5 zeigt Tabelle 1.

Abschnitt des C.D.	Ausgangs- punkt	software- technische Kenn- ziffer 2	Ergebnisse der eigenen Lesung	Interpretation der Ergebnisse der eigenen Lesung	Vergleich der Ergebnisse mit denen nach Förstemann (1901), Thompson (1972)
(1)	(2)	(3)	(4)	(5)	(6)
p.24, 46-50	1 Ahau	1	5.2.1	5.3.1, 5.3.3, 5.3.6	5.4.2
p.51-58	multipel	0	5.2.2	5.3.2, 5.3.6	5.4.3
p.58-59	13 Muluk	2	5.2.3	5.3.2, 5.3.3, 5.3.4,	5.4.4
				5.3.5, 5.3.6	
p.43-44	3 Lamat	3	5.2.4	5.3.4, 5.3.5, 5.3.6	5.4.5
p.70-71	9 Ix	4	5.2.5	5.3.2, 5.3.3, 5.3.4,	5.4.6
				5.3.5, 5.3.6	
p.69-73	4 Eb	5	5.2.6	5.3.1, 5.3.4, 5.3.5,	5.4.7
				5.3.6	
p.31-32	multipel	6	5.2.7	5.3.1, 5.3.6	5.4.8
p.63-64	multipel	7	5.2.8	5.3.1, 5.3.6	5.4.9

Tabelle 1: Die Struktur der Präsentation der Ergebnisse der statistischen Analyse

Die Einzelergebnisse der statistischen Analysen der Daten derselben acht Abschnitte gemäß der Lesung Förstemann (1901) sind ebenso aufgebaut und in Tabellen dokumentiert (→ Anhang 6.2.1 - 6.2.8). Die Einzelergebnisse gemäß der Lesung der Daten der acht Abschnitte durch Thompson (1972) sind entsprechend dargestellt (→ Anhang 6.3.1 - 6.3.8).

Kapitel 5.4 stellt diese Ergebnisse komprimiert nebeneinander dar. Das Ziel dieser Untersuchung besteht darin, die Auswirkungen der von beiden Autoren vorgenommenen Modifikationen am originalen Datenbestand (→ Anhang 3) auf die Ergebnisse der statistischen Analysen zu überprüfen. Diese Befunde werden daher auch mit den Ergebnissen der eigenen Lesung (→ Tabelle 1: Spalte (6)) verglichen, in der nur wenige Daten vom Original abweichen.

5.2 Identifikation von Perioden der eigenen Lesung

Die vollständigen Ergebnisse der statistischen Analysen aller untersuchten Abschnitte - im Sinne der eigenen Lesung - ist in den Tabellen des Anhang 6.1 dargestellt. Es sind dies alle signifikanten und hochsignifikanten Teiler (\rightarrow Anhang 6.1: Spalte (2)) und die für sie durch die statistischen Analysen ermittelten Anzahlen N(T_i) (Anhang 6.1: Spalte (3)) sowie eine jeden Abschnitt zusammenfassende Bilanz der signifikanten und hochsignifikanten Häufigkeiten jedes identifizierten Teilers. Hochsignifikante Teiler sind durch Fettdruck ihrer Anzahlen N(T_i) hervorgehoben. Anzahlen N(T_i) in Normalschrift kennzeichnen signifikante Teiler.

Die Ergebnisse werden nachfolgend für jeden Abschnitt separat erläutert und grafisch dargestellt. In den Grafiken werden die prozentualen Häufigkeiten der statistisch signifikanten und hochsignifikanten ganzzahligen Teiler der identifizierten Perioden dargestellt. In ihnen sind aus darstellungstechnischen Gründen jeweils ausschließlich die prozentualen Häufigkeiten der ermittelten signifikanten und hochsignifikanten ganzzahligen Teiler der ermittelten Perioden in Balkenform dargestellt.

Die Abszissen sind jeweils wie die tabellarischen Ergebnisdarstellungen (\rightarrow Anhang 6.1) nichtlinear skaliert und mit den minimalen und maximalen Teilern (T_1 und T_N) sowie einigen Vielfachen von 260 beschriftet.

5.2.1 Die Seiten p.24, 46-50

Die Seiten p.24, 46-50 gelten in der wissenschaftlichen Literatur unbestritten als Beschreibung des synodischen Umlaufs des inneren Planeten Venus. Beleg hierfür ist nicht nur die gute Übereinstimmung zwischen der in diesen Tafeln erscheinenden Zahl 584 (und ihrer Vielfachen)

mit der synodischen Umlaufzeit der Venus von $U_{syn}(Venus)=583,92$ Tagen, sondern auch die ebenfalls auftretenden Zahlenwerte für die Dauern der Teilperioden "Morgenstern", "obere Konjunktion", "Abendstern" und "untere Konjunktion" (\rightarrow Kapitel 6.1). Die angenäherten Werte für die Dauer dieser Teilperioden (236, 90, 250, 8) treten im Abschnitt in drei Formen parallel in Erscheinung, und zwar jeweils als Differenzen zwischen:

- (a) Daten im Tzolkin: beginnend mit 3 Cib, 2 Cimi, 5 Cib, 13 Kan, 2 Ahau, ..., 9 Ahau (46 A 01 bis 46 D 01, 47 A 01 u.s.w. bis 50 D 13) und
- (b) Daten im Haab: beginnend mit 4 Yaxkin, 14 Zac, 19 Zac, 7 Xul, 3 Cumku, ..., 13 Mac (46 A 14 bis 46 D 14, 47 A 14 u.s.w. bis 50 D 14) sowie 46 A 22 bis 50 D 22 und 46 A 27 bis 50 D 27 und
- (c) absoluten Vigesimalzahlen: beginnend mit 236, 326, 576, 584, 820, ..., 2920 (46 A 19 bis 50 D 19).

Das Ergebnis der statistischen Analyse besteht aus den im numerischen Material des Abschnitts p. 24, 46-50 identifizierten Perioden 260, 365 und 584 (→ Abbildung 8). Es beruht auf 43 Zahlen dieser Seiten, die 45 mindestens signifikante – davon 13 hochsignifikante – Teiler enthaltenen (→ Anhang 6.1.1).

Die Dauer eines Tzolkin tritt in 9 der 43 Zahlen (20,9%) als Teiler/Faktor 260, in 7 Zahlen (16,3%) als Teiler/Faktor 520 sowie in jeweils 5 Zahlen (11,6%) als Teiler/Faktor 1040, 18980 und 37960 signifikant auf.

Der Teiler/Faktor 365 (als Näherungswert für das Sonnenjahr) tritt in 17 der 43 Zahlen (39,5%) in der Form n · 365 mit n=1, 2, 4 und 8 statistisch hochsignifikant auf. Ferner tritt n · 365 für n=3, 6, 12, 13, 16, 24, 26, 52 und 104 mit Häufigkeiten zwischen 5 und 8 (11,6% bis 18,6%) statistisch signifikant auf.

Der Teiler/Faktor $U_{hyp}(Venus)=584d$ tritt in 21 der 43 Zahlen (d.h. in 48,8% der Fälle) in der einfachen Form [n · $U_{hyp}(Venus)$ mit n=1] sowie für n=2 (in 10 von 43 Zahlen, d.h. 23,3% der Fälle) und für n=5 (in 17 von 43 Zahlen, d.h. 39,5% der Fälle) statistisch hochsignifikant auf. Der Teiler/Faktor $U_{hyp}(Venus)$ tritt ferner für n=3, 4, 10, 13, 15 und 65 mit Häufigkeiten zwischen 5 und 8 (das entspricht 11,6% bis 18,6% der Fälle) statistisch signifikant auf.

Der maximale Teiler der Zahlen dieser Seiten verbindet die Perioden 260 (Tzolkin), 365 und 584 folgendermaßen: $37960 = 146 \cdot 260 = 104 \cdot 365 = 65 \cdot 584$.

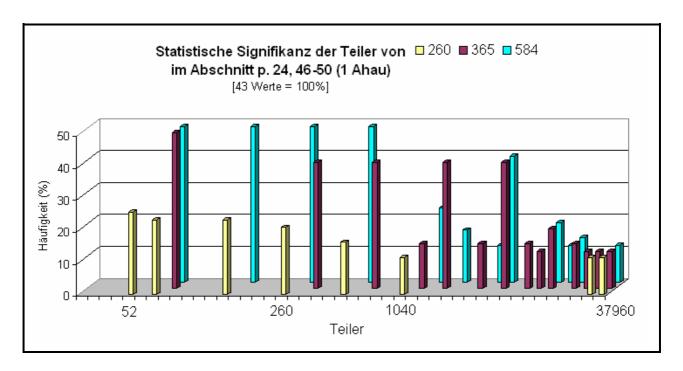


Abbildung 8: Die statistisch signifikanten Teiler des Abschnitts p.24,46-50: 260, 365 und 584

5.2.2 Die Seiten p.51-58

Die Seiten p.51-58 beschreiben oder prognostizieren nach weit verbreitetem wissenschaftlichem Verständnis die Zeitpunkte des Eintretens von Sonnen- und/oder Mondfinsternissen durch parallele Angaben in drei Formen:

- (a) den Zahlen 148, 177 und 178 (53A09 bis 58D09 im oberen Register und 51A25 bis 58B20 im unteren Register) sowie 157 (54G20), bei der es sich um einen Schreib- oder Kopierfehler bei der Herstellung des C.D. handeln kann. Sie werden von Förstemann (1901:122) als Näherungswerte für 5 (148 = $5 \cdot 29$,6) bzw. 6 synodische Mondumläufe (177 = $6 \cdot 29$,5 und 178 = $6 \cdot 29$ %) gedeutet. Diese Zahlen werden von je drei Angaben im Tzolkin begleitet.
- (b) der akkumulierten (Zwischen-)Summe(n) aus der Addition dieser Lunationen, d.h. Zahlenwerten zwischen 157 (53A03) bis 5197 (58D06) und 5374 (51A19) bis 11958 (58B13); (c) weiteren Zahlen zwischen 13780 (52C03) und 1.578.968 (51A12).

Die Zahlen gemäß Buchstabe (a) wurden nicht in die durchgeführte statistische Analyse einbezogen, weil ihre Bedeutung als o.a. Approximationen des synodischen Mondumlaufs identifiziert ist und eine weitere astronomische Bedeutung auszuschließen ist. Die Analyse der

Zahlen der Seiten p.51-58 erfolgte daher mit insgesamt 88 Zahlen, die den Bestand gemäß Buchstaben (b) und (c) ausmachen.

Das Ergebnis der statistischen Analyse besteht aus den im numerischen Material des Abschnitts p. 51-58 identifizierten Perioden 115 und 260 (\rightarrow Abbildung 9). Die statistische Analyse ermittelt 30 mindestens signifikante Teiler dieser 88 Zahlen, darunter 7 hochsignifikante (\rightarrow Anhang 6.1.2, Spalten (2) bis (7)).

Ganzzahlige Vielfache der Dauer des Tzolkin treten in 12 der 88 Zahlen (13,6%) als Teiler/Faktor 260 und in 10 der 88 Zahlen (11,4%) als Teiler/Faktor 520 hochsignifikant auf, ferner treten das 4-fache, 23-fache, 46-fache und das 92-fache (von 260) statistisch signifikant auf und zwar mit Häufigkeiten zwischen 5 (5,7%) und 9 (10,2%).

Der Teiler/Faktor $U_{hyp}(Merkur)=115d$ tritt in 10 Zahlen in der einfachen Form $[n \cdot U_{pot}(Merkur)]$ mit n=1] hochsignifikant auf, das entspricht 11,4%. Der Teiler $n \cdot U_{hyp}(Merkur)$ tritt für n=2, 4, 8, 13, 26, 52, 104 mit der Häufigkeit 9 von 88 (10,2%) auf, was dem Kriterium 3σ sehr nahe kommt und tritt darüber hinaus für n=16 und n=208 mit der Häufigkeit 5 von 88 (5,7%) signifikant auf. In den Zahlen der Finsternistafeln treten also Vielfache von $U_{hyp}(Merkur)=115d$ statistisch signifikant auf. Diese Tatsache bedarf einer weitergehenden astronomischen Interpretation, die in 5.3.2 gegeben wird.

Eine Kommensurabilität mit Venus liegt nicht vor, denn die *hypothetische Umlaufperiode* U_{hyp}(Venus)=585d ist nicht ganzzahliges Vielfaches von 115d (sondern von 117d), ferner ist Venus weder nach wissenschaftlichem Verständnis Gegenstand der Finsternis-Tafeln p.51-58 noch tritt ein Teiler/Faktor in der statistischen Analyse in Erscheinung, der mit diesem Planeten in Verbindung gebracht werden kann.

Eine Kommensurabilität mit dem Mondmonat kann ebenfalls ausgeschlossen werde, weil der synodische Mondmonat $U_{syn}(Mond)$ =29,53d beträgt. Dieser Wert ist nicht ganzzahliges Vielfaches der Periode 115d (= 4 · 28,75d), die als signifikanter Teiler dieses Abschnitts identifiziert ist. Eine derartige Abweichung kann mit an Sicherheit grenzender Wahrscheinlichkeit insbesondere für die Finsternis-Tafel ausgeschlossen werden, weil in ihnen gerade bessere Näherungswerte für $U_{syn}(Mond)$ zur Bestimmung von Sonnen- oder Mondfinsternissen vorliegen, nämlich die in Buchstabe (a) genannten 29,5 und 29,6 sowie $29\frac{29}{3}$.

Abbildung 9 stellt das Ergebnis der statistischen Analyse des Abschnitts p.51-58 dar. Die Grafik zeigt die relativen Häufigkeiten (bezogen auf die Gesamtanzahl der 88 zugrunde

liegenden Daten des Abschnitts) jedes ermittelten statistisch signifikanten und hochsignifikanten ganzzahligen Teilers der Perioden 115 und 260.

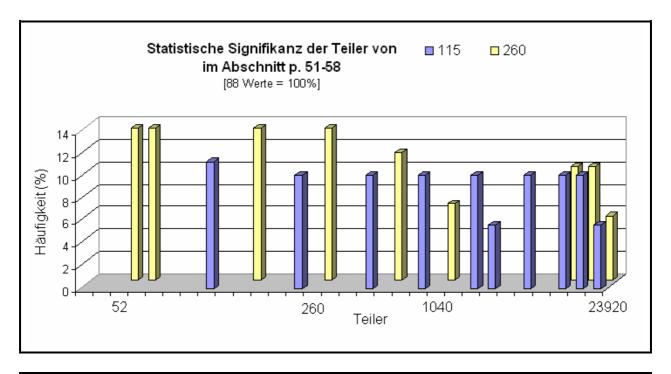


Abbildung 9: Die statistisch signifikanten Teiler des Abschnitts p.51-58: 115 und 260

Die Balken für die Periode 260 stehen (von links nach rechts) für die Teiler 52 (= $1/5 \cdot 260$), 65 (= $1/4 \cdot 260$), 130 (= $1/2 \cdot 260$), 260, 520 (= $1/2 \cdot 260$), 1040 (= $1/2 \cdot 260$), 5980 (= $1/2 \cdot 260$), 11960 (= $1/2 \cdot 260$) und 23920 (= $1/2 \cdot 260$).

Die Balken für die Periode 115 stehen (von links nach rechts) für die Teiler 115, 230 (= $2 \cdot 115$), 460 (= $4 \cdot 115$), 920 (= $8 \cdot 115$), 1495 (= $13 \cdot 260$), 1840 (= $16 \cdot 115$), 2990 (= $26 \cdot 115$), 5980 (= $52 \cdot 115$), 11960 (= $104 \cdot 115$) und 23920 (= $208 \cdot 115$).

Um zu ermitteln, welche Zahlen des Abschnitts zur statistisch signifikanten Bedeutung der Periode 115 beitragen, wurde eine zweite statistische Analyse durchgeführt. Diese basiert ausschließlich auf dem Zahlenmaterial gemäß (c), d.h. unter Ausschluss der Zahlen gemäß (b). Die Ergebnisse dieser Analyse sind Anhang 6.1.2 (Spalten (2), (3a), (4a), (5a) sowie (6) und (7)) zu entnehmen. Sie zeigen geringfügige Unterschiede zu den Ergebnissen der Analyse unter Einschluß der Zahlen gemäß Buchstabe (b). Das bedeutet bezüglich der Periode 115, dass der überwiegende Beitrag für ihre Signifikanz auf die großen Zahlen, also den nach Buchstabe (c) definierten, zurückzuführen ist.

5.2.3 Die Seiten p.58-59

Das Ergebnis der statistischen Analyse besteht aus den im numerischen Material des Abschnitts p.58-59 mit dem Ausgangspunkt 13 Muluk identifizierten Perioden 117, 260, 390, 585 und 780 (→ Abbildung 10). Es beruht auf 43 zweifelsfrei lesbaren Zahlen dieser Seiten. Die statistische Analyse ergibt 76 mindestens statistisch signifikante – davon 25 hochsignifikante – Teiler dieser Zahlen (→ Anhang 6.1.3).

Die Dauer eines Tzolkin tritt in 31 der 43 Zahlen (72,1%) als Teiler/Faktor 260 ebenso wie für n · 260 mit n=2, 3, 6 und 9 mit Häufigkeiten zwischen 10 (23,3%) und 28 (65,1%) statistisch hochsignifikant auf. Ferner erscheinen die Vielfachen n=4, 5, 12, 15, 19, 27 und 57 von 260 mit Häufigkeiten zwischen 5 (11,6%) und 8 (18,6%) statistisch signifikant.

Der Teiler/Faktor $U_{hyp}(Merkur)=117d$ ist in 13 Fällen in der einfachen Form [$n \cdot U_{hyp}(Merkur)$ mit n=1], d.h. in 30,2% aller Zahlen enthalten. Dieser Teiler ist ebenso statistisch hochsignifikant wie die weiteren Vielfachen für n=2,4,5,10 und 20 dieses Teilers mit Häufigkeiten zwischen 10 (23,3%) und 13 (30,2%). Dabei ist zu beachten, dass für n=5,10 und 20 Kommensurabilität mit $U_{hyp}(Venus)=585d$ besteht. Ferner besteht für n=3,6,12,15,30 und 60 eine Signifikanz gemäß dem 2σ -Kriterium mit Häufigkeiten von 5 und 6 (11,6% und 14,0%), wobei wiederum die Kommensurabilität mit $U_{hyp}(Venus)=585d$ für n=15,30 und 60 zu beachten ist. Andererseits existieren mit n=1,2 und 4 drei hochsignifikante und mit n=3,6 und 12 drei signifikante Teiler, die jedenfalls nicht mit $U_{hyp}(Venus)$ oder einer anderen relevanten Periode kommensurabel sind. Somit liegt die Folgerung nahe, dass $U_{hyp}(Merkur)=117d$ zwar Inhalt, jedoch nicht der einzige Gegenstand des Zahlenwerks der Seiten p.58-59 ist, denn der Teiler $7020=60 \cdot U_{hyp}(Merkur)$ ist nicht der maximale Teiler der 43 Zahlen.

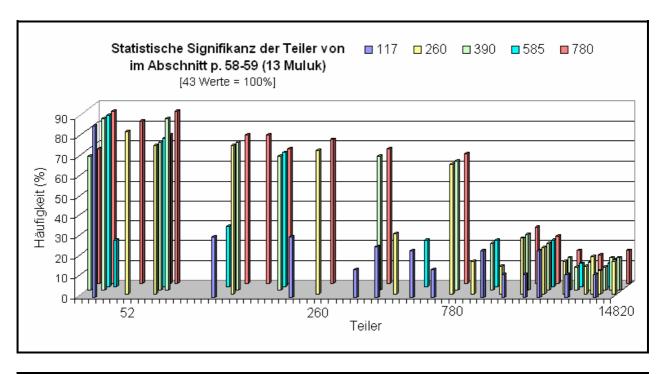
Der Teiler/Faktor 390 tritt in 29 der 43 Zahlen (67,4%) in der Form $n \cdot 390$ mit n=1 ebenso statistisch hochsignifikant auf wie für n=2, 3, 4 und 6 mit Häufigkeiten zwischen 10 und 28 der 43 Zahlen, das entspricht 23,3% bis 65,1% aller Zahlen des Abschnitts. Ferner tritt $n \cdot 390$ für n=5, 8, 9, 10, 18, 19 und 38 mit Häufigkeiten zwischen 5 und 7 von 43 (11,6% bis 16,3%) statistisch signifikant auf. Für alle geradzahligen Werte n ist Kommensurabilität mit einer hypothetischen Periode $U_{hyp}(Mars) = 780$ zu beachten. Andererseits existieren mit n=1 und 3 zwei hochsignifikante und mit n=5, 9 und 19 drei signifikante Teiler, die jedenfalls nicht mit

 $U_{hyp}(Mars)$ oder einer anderen relevanten Periode kommensurabel sind. Eine Bewertung der Bedeutung der Periode 390 erfolgt in 5.3.5.

Der Teiler/Faktor $U_{hyp}(Venus)=585d$ tritt in 10 der 43 Zahlen (23,3%) in den Formen $n \cdot U_{hyp}(Venus)$ mit n=1, 2 und 4 statistisch hochsignifikant auf. Ferner besteht für n=3, 6 und 12 Signifikanz mit einer jeweiligen Häufigkeit von 5, d.h. zu jeweils 11,6% aller Zahlen dieses Abschnitts.

Der maximale Teiler der 43 Zahlen ist 14820 und damit nicht identisch mit dem maximalen ganzzahligen Vielfachen (7020 = $12 \cdot 585$). Es liegt die Folgerung nahe, dass $U_{hyp}(Venus)=585d$ in den Daten der Seiten p.58-59 signifikant ist, jedoch nicht den primären Gegenstand des Zahlenmaterials darstellt.

Der Teiler/Faktor $U_{hyp}(Mars) = 780d$ tritt in 28 der 43 Zahlen (65,1%) in der einfachen Form [$n \cdot U_{hyp}(Mars)$ mit n=1] ebenso statistisch hochsignifikant auf wie für n=2 (in 12 von 43 Zahlen, d.h. 27,9%) und n=3 (in 10 von 43 Zahlen, d.h. 23,3%). Ferner besteht für n=4, 5, 9 und 19 mit Häufigkeiten zwischen 5 und 7 von 43 (11,6% bis 16,3%) Signifikanz.


Der maximale Teiler T₇₆ des Abschnitts ist die Zahl 14820. Er ist ein statistisch signifikanter Teiler/Faktor von 7 der 43 Zahlen, das entspricht 16,3%, mit folgenden Kommensurabilitäten:

$$\begin{aligned} 14820 &= 19 \cdot 780 \ (= 19 \cdot U_{hyp}(Mars)) \\ &= 38 \cdot 390 \ (= 38 \cdot U_{hyp}(Jupiter) \approx 38 \cdot U_{syn}(Jupiter) = 38 \cdot 398,88d) \\ &= 38 \cdot 390 \ (= 38 \cdot U_{hyp}(Saturn) \ \approx 38 \cdot U_{syn}(Saturn) = 38 \cdot 378,09d) \\ &= 57 \cdot 260 \ (= 57 \ Tzolk'in) \end{aligned}$$

Der drittgrößte Teiler T₇₄ der 43 Zahlen ist 7020. Er ist ein statistisch signifikanter Teiler/Faktor von 5 der 43 Zahlen dieses Abschnitts, das entspricht 11,6%:

```
\begin{array}{lll} 7020 = & 9 \cdot 780 \ (= & 9 \cdot U_{hyp}(Mars)) \\ & = & 12 \cdot 585 \ (= 12 \cdot U_{hyp}(Venus)) \\ & = & 18 \cdot 390 \ (= 18 \cdot U_{hyp}(Jupiter) \approx 18 \cdot U_{syn}(Jupiter) = 18 \cdot 398,88d) \\ & = & 18 \cdot 390 \ (= 18 \cdot U_{hyp}(Saturn) \ \approx 18 \cdot U_{syn}(Saturn) = 18 \cdot 378,09d) \\ & = & 27 \cdot 260 \ (= 57 \ Tzolk'in) \\ & = & 60 \cdot 117 \ (= 60 \cdot U_{hyp}(Merkur)). \end{array}
```

7020 ist in Abschnitt p. 69-73 (9 Ix) (\rightarrow 5.2.5) hochsignifikanter Teiler (dort T₇₇).

Abbildung 10: Die statistisch signifikanten Teiler des Abschnitts p.58-59: 117, 260, 390, 585 und 780

Zusammenfassend kann gefolgert werden, dass die Periode 780 den primären Gegenstand des Abschnitts bildet. Darüber hinaus existieren deutliche Indizien für eine hypothetische Venus-Periode von 585d sowie Indizien für eine hypothetische Periode von 390d, die astronomisch nur mit Jupiter oder Saturn erklärt werden kann.

Der Kandidat 702 besitzt vier hochsignifikante und sechs signifikante ganzzahlige Teiler/Faktoren. Von diesen 10 sind 8 Teiler/Faktoren mit 117 kommensurabel und der Teiler T_{12} =78=702/9 ist mit 780 kommensurabel. Nur T_8 =54=702/13 ist mit keiner anderen Periode kommensurabel. Somit stellt der Kandidat 702 keine eigenständige statistisch relevante Periode innerhalb des Abschnitts p.58-59 dar. Diese Aussage gilt entsprechend für die Teiler/Faktoren 520 und 1040. Sie wurden in der tabellarischen Darstellung (\rightarrow Anhang 6.1.3) belassen, um zu zeigen, dass sie sowohl im Vergleich mit der Periode 260 als auch mit der Periode 780 geringere statistische Signifikanz zeigen. Das stützt zusätzlich die Hypothese der Bedeutung des Mars, denn nur mit ihm erhält die Periode 780 eine inhaltliche Bedeutung.

Eine Deutung dieser Daten im Zusammenhang mit Mars wurde schon von Förstemann (1901:133) und Willson (1924:21-26) vorgenommen und durch verschiedene Arbeiten (V.R. Bricker und H.M. Bricker 1986a), (H.M. Bricker und V.R. Bricker 1997) verstärkt. Hier ist jedoch erstmals ein statistischer Nachweis erfolgt, der die Aussage rechtfertigt, dass dieser

Abschnitt des C.D. mit an Sicherheit grenzender Wahrscheinlichkeit den Planeten Mars anhand seiner näherungsweise bestimmten synodischen Umlaufzeiten beschreibt.

Das Ergebnis identifiziert ferner signifikante Indizien für Perioden in diesen Daten, die als Näherungswerte für die synodischen Umlaufperioden der inneren Planeten Merkur und Venus gedeutet werden können.

5.2.4 Die Seiten p.43-44

Das Ergebnis der statistischen Analyse besteht aus den im numerischen Material des Abschnitts p.43-44 mit dem Ausgangspunkt 3 Lamat identifizierten Perioden 260, 390 und 780 (→ Abbildung 11). Es beruht auf 24 zweifelsfrei lesbaren Zahlen dieser Seiten. Mittels statistischer Analyse sind 36 mindestens statistisch signifikante – davon 10 hochsignifikante – Teiler dieser Zahlen identifizierbar (→ Anhang 6.1.4).

Die Dauer eines Tzolkin tritt in 13 der 24 Zahlen (54,2%) als Teiler/Faktor 260 statistisch hochsignifikant auf, ferner für n \cdot 260 mit n=2, 3, 5, 6 und 7 mit Häufigkeiten zwischen 5 (20,8%) und 9 (37,5%) statistisch signifikant. Daneben treten ½ (130), ¼ (65) und 1/5 (52) von 260 mit Häufigkeiten von 14 (58,3%) und 17 (70,8%) statistisch hochsignifikant auf, d.h. dieselben Teilperioden wie in p.69-73 (9 Ix) (\rightarrow 5.2.5) und p.69-73 (4 Eb) (\rightarrow 5.2.6) sowie in ähnlich hohen Häufigkeiten.

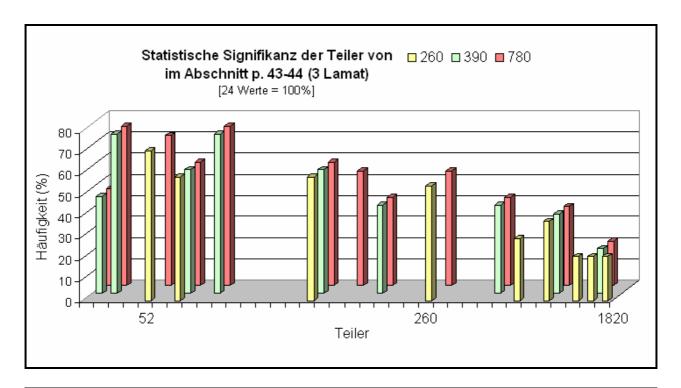


Abbildung 11: Die statistisch signifikanten Teiler des Abschnitts p.43-44: 260, 390, 780

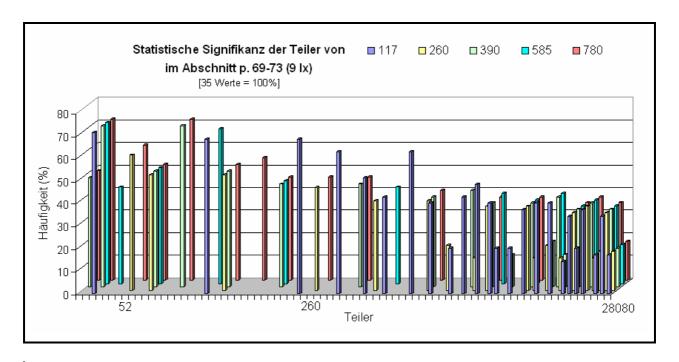
 $U_{hyp}(Merkur)$ tritt als einfacher ($T_{14} = 117$) und zweifacher ($T_{23} = 234$) Teiler/Faktor in jeweils 5 dieser 24 Zahlen (20,8%) statistisch signifikant auf. Diese Werte entsprechen 1/5 bzw. 2/5 einer Venusperiode von 585d. Somit ist hier eine Deutung als Indiz für Merkur (\rightarrow 5.3.2) wahrscheinlicher als eine Deutung als Indiz für Venus, jedenfalls unter der Annahme, dass die Maya eine Form von Bruchrechnung nicht betrieben hätten.

Der Teiler/Faktor 390 tritt in 10 der 24 Zahlen (41,7%) in der Form $n \cdot 390$ mit n=1 statistisch hochsignifikant auf; das entspricht ½ · $U_{hyp}(Mars)$. Ferner tritt $n \cdot 390$ mit n=2 und n=4 mit Häufigkeiten von 9 (37,5%) und 5 (20,8%) statistisch signifikant auf, die allerdings mit $U_{hyp}(Mars)=780$ d kommensurabel sind.

Der Teiler/Faktor $U_{hyp}(Mars)=780d$ tritt in der Form $n \cdot U_{hyp}(Mars)$ mit n=1 in 9 von 24 Zahlen (37,5%) und n=2 in 5 dieser 24 Zahlen (20,8%) statistisch signifikant auf.

Der Kandidat 520 wurde (wie schon in 5.2.3) in der tabellarischen Darstellung (→ Anhang 6.1.4) belassen, um zu zeigen, dass er sowohl im Vergleich mit der Periode 260 als auch mit der Periode 780 deutlich geringere statistische Signifikanz zeigt. Das stützt wiederum zusätzlich die Hypothese der Bedeutung des Mars.

Der maximale Teiler/Faktor des Abschnitts p.43-44 ist 1820 und somit nur wenig größer als 2 Marsumläufe. Er ist der kleinste maximale Teiler aller Abschnitte mit festen Ausgangspunkten. Die Vielzahl der hochsignifikanten Teiler, die kleiner als die Periode 780 selbst sind, legt eine Interpretation als Phasen (Rückläufigkeit) des äußeren Planeten Mars nahe. Die ebenfalls häufigen hochsignifikanten Teiler, die kleiner als die Periode 390 sind, sind sämtlich kommensurabel mit Mars. Sie sind damit nur ein schwaches Indiz für die dieser Periode nahe kommenden Perioden der Planeten Jupiter und Saturn (\rightarrow 5.3.5).


5.2.5 Die Seiten p.69-73 (9 Ix)

Das Ergebnis der statistischen Analyse besteht aus den im numerischen Material des Abschnitts p.69-73 mit dem Ausgangspunkt 9 Ix identifizierten Perioden 117, 260, 390, 585 und 780 (→ Abbildung 12). Es beruht auf 35 zweifelsfrei lesbaren Zahlen dieser Seiten. Die statistische Analyse liefert 81 mindestens statistisch signifikante – davon 45 hochsignifikante – Teiler dieser Zahlen (→ Anhang 6.1.5).

Die Dauer eines Tzolkin tritt in 16 der 35 Zahlen (45,7%) als Teiler/Faktor 260 ebenso wie für $n \cdot 260$ mit n=2, 3, 6, 9, 18, 27 und 54 mit Häufigkeiten zwischen 12 (34,3%) und 14 (40,0%)

statistisch hochsignifikant auf. Ferner erscheinen die Vielfachen n=4, 5, 10, 12, 15, 30, 36 und 108 von 260 mit Häufigkeiten zwischen 5 (14,3%) und 7 (20,0%) als statistisch signifikante Teiler/Faktoren. Daneben treten ½ (130), ¼ (65) und 1/5 (52) von 260 mit Häufigkeiten von 18 (51,4%) und 21 (60,0%) statistisch hochsignifikant auf.

Der Teiler/Faktor $U_{hyp}(Merkur)=117d$ tritt in 24 dieser 35 Zahlen (68,6%) in der einfachen Form [$n \cdot U_{hyp}(Merkur)$ mit n=1] und ferner für n=2,3,4,5,6,8,10,12,15,20,24,30,40,60 und 120 mit Häufigkeiten zwischen 12 und 24 (von 35), entsprechend 34,3% bis 68,6%, statistisch hochsignifikant auf. Darüber hinaus tritt der Teiler $n \cdot U_{hyp}(Merkur)$ für n=9,16,18,36,48,80 und 240 mit Häufigkeit zwischen 5 und 7 (von 35) auf (14,3% bis 20,0%) signifikant auf. Dabei ist zu berücksichtigen, dass für n=5,10,15,20,30,40,60,80 und 120 Kommensurabilität mit $U_{hyp}(Venus)=585d$ besteht. Andererseits existieren mit n=1,2,3,4,6,8,12 und 24 acht hochsignifikante und mit n=9,16,18,36 und 48 fünf weitere signifikante Teiler, die jedenfalls nicht mit $U_{hyp}(Venus)$ oder einer anderen relevanten Periode kommensurabel sind.

Abbildung 12: Die statistisch signifikanten Teiler des Abschnitts p.69-73 (9 Ix): 117, 260, 390, 585 und 780

Der Teiler/Faktor 390 tritt in 16 der 35 Zahlen (45,7%) in der Form n · 390 mit n=1 ebenso statistisch hochsignifikant auf wie für n=2, 3, 4, 6, 9, 12, 18 und 36 mit Häufigkeiten zwischen 12 und 15 der 35 Zahlen, das entspricht 34,3% bis 42,9% aller Zahlen des Abschnitts. Ferner

tritt n · 390 für n=5, 8, 10, 20, 24 und 72 mit Häufigkeiten zwischen 5 und 7 von 35 (14,3% bis 20,0%) statistisch signifikant auf. Davon bedeuten alle geradzahligen Vielfachen Kommensurabilität mit 780, so dass nur die Fälle n=1, 3, 5 und 9 nicht mit $U_{hyp}(Mars)$ kommensurabel sind, wovon allerdings 3 statistisch hochsignifikant sind.

Der Teiler/Faktor $U_{hyp}(Venus)=585d$ tritt in 15 dieser 35 Zahlen (=42,9%) in der einfachen Form [$n \cdot U_{hyp}(Venus)$ mit n=1] auf und ist hier ebenso wie für n = 2, 3, 4, 6, 8, 12 und 24, die mit Häufigkeiten zwischen 12 von 35 (d.h. 34,3%) und 15 von 35 (42,9%) auftreten, hochsignifikant. Darüber hinaus tritt der Teiler $U_{hyp}(Venus)$ für n = 16 und n = 48 mit der Häufigkeit 6 von 35 (d.h. 17,1%) signifikant auf. Festzustellen ist also ein statistisch hochsignifikantes Auftreten der Vielfachen von $U_{hyp}(Venus)=585d$.

Der Teiler/Faktor $U_{hyp}(Mars)$ =780d tritt in 14 dieser 35 Zahlen (40,0%) in der einfachen Form [$n \cdot U_{hyp}(Mars)$ mit n=1] ebenso statistisch hochsignifikant auf wie auch für n=2, 3, 6, 9, 18 mit Häufigkeiten von 12 bzw. 13 (von 35 Zahlen) auf; das entspricht 34,3% bzw. 37,1%. Darüber hinaus tritt der Teiler $U_{hyp}(Mars)$ für n = 4, 5, 10, 12 und 36 mit Häufigkeiten zwischen 5 und 7 (von 35 Zahlen) statistisch signifikant auf, das entspricht 14,3% bzw. 20,0%. Festzustellen ist also ein statistisch signifikantes Auftreten der Vielfachen von $U_{hyp}(Mars)$ =780d (\rightarrow 5.3.4).

Der Teiler $T_{81} = 28080$, ist der maximale Teiler der 35 Zahlen. In ihm sind folgende Faktoren vereint:

```
\begin{split} 28080 &= 240 \cdot 117 \; (= 240 \cdot U_{hyp}(Merkur)) \\ &= 48 \cdot 585 \; (= 48 \cdot U_{hyp}(Venus)) \\ &= 36 \cdot 780 \; (= 36 \cdot U_{hyp}(Mars)) \\ &= 72 \cdot 390 \; (= 72 \cdot U_{hyp}(Jupiter) \approx 72 \cdot U_{syn}(Jupiter) = 72 \cdot 398,88d) \\ &= 72 \cdot 390 \; (= 72 \cdot U_{hyp}(Saturn) \approx 72 \cdot U_{syn}(Saturn) = 72 \cdot 378,09d) \\ &= 108 \cdot 260 \; (= 108 \; Tzolk'in). \end{split}
```

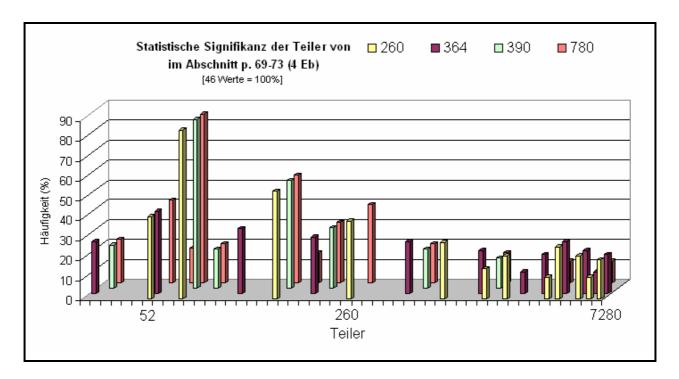
Der Kandidat 702 besitzt 12 hochsignifikante und vier signifikante ganzzahlige Teiler/Faktoren. Von diesen 16 sind 14 Teiler/Faktoren mit 117 kommensurabel und der Teiler T₁₅=78=702/9 ist mit 780 kommensurabel. Nur T₉=54=702/13 ist mit keiner anderen Periode kommensurabel. Somit stellt der Kandidat 702 keine eigenständige statistisch relevante Periode innerhalb des Abschnitts p.58-59 dar. Diese Aussage gilt entsprechend für die Teiler/Faktoren 520 und 1040.

Sie wurden in der tabellarischen Darstellung (→ Anhang 6.1.5) belassen, um zu zeigen, dass sie sowohl im Vergleich mit der Periode 260 als auch mit der Periode 780 geringere statistische Signifikanz zeigen. Das stützt zusätzlich die Hypothese der Bedeutung des Mars, denn nur mit ihm erhält die Periode 780 eine inhaltliche Bedeutung.

5.2.6 Die Seiten p.69-73 (4 Eb)

Das Ergebnis der statistischen Analyse besteht aus den im numerischen Material des Abschnitts p.69-73 mit dem Ausgangspunkt 4 Eb identifizierten Perioden 260, 364, 390 und 780 (→ Abbildung 13). Es beruht auf 46 zweifelsfrei lesbaren Zahlen dieser Seiten. Die statistische Analyse ergibt 50 mindestens statistisch signifikante – davon 22 hochsignifikante – Teiler dieser Zahlen (→ Anhang 6.1.6).

Die Dauer eines Tzolkin tritt in 18 der 46 Zahlen (39,1%) als Teiler/Faktor 260 ebenso statistisch hochsignifikant auf wie für n \cdot 260 mit n=2, 4, 7 und 14 mit Häufigkeiten zwischen 10 (21,7%) und 13 (28,3%). Ferner erscheinen die Vielfachen n=3, 6, 21 und 28 von 260 mit Häufigkeiten zwischen 5 (10,9%) und 9 (19,6%) statistisch signifikant. Daneben treten 1/2 (130), 1/4 (65) und 1/5 (52) von 260 mit Häufigkeiten zwischen 19 (41,3%) und 39 (84,8%) statistisch hochsignifikant auf, d.h. dieselben Teilperioden wie in p.43-44 (3 Lamat) sowie p.69-73 (9 Ix) und in ähnlich hohen Häufigkeiten (\rightarrow 5.2.4, 5.2.5).


Der Teiler/Faktor 364 tritt in 12 der 46 Zahlen (26,1%) in der Form $n \cdot 364$ mit n=1 und 5 sowie in 10 der 46 Zahlen (21,7%) mit n=2 und 10 statistisch hochsignifikant auf. Darüber hinaus tritt $n \cdot 364$ für n=4 und n=20 mit der Häufigkeit 9 von 46 (19,6%) und für n=3 und n=15 mit der Häufigkeit 5 von 46 (10,9%) statistisch signifikant auf.

Ferner treten von der Periode 364 sowohl die Hälfte (182), als auch ein Viertel (91), ein Siebtel (52) und ein Dreizehntel (28) mit Häufigkeiten zwischen 12 und 19 der 46 Zahlen (d.h. 26,1% bis 41,3%) statistisch hochsignifikant auf. Diese hochsignifikanten Bruchteile von 364 sind dieselben wie in den Abschnitten p.31-32 (\rightarrow 5.2.7) und p.63-64 (\rightarrow 5.2.8), die sämtlich auch dort signifikant bzw. hochsignifikant sind.

Der Teiler/Faktor 390 tritt in 9 der 46 Zahlen (19,6%) in der Form n · 390 mit n=1 ebenso statistisch signifikant auf wie für n=2, 4, 7 und 14 mit Häufigkeiten von 5 und 7 der 46 Zahlen, das entspricht 10,9% bis 15,2% aller Zahlen des Abschnitts.

Davon bedeuten alle geradzahligen Vielfachen Kommensurabilität mit $U_{hyp}(Mars)=780d$, so dass allerdings die Fälle n=1 und 7 nicht mit Mars kommensurabel sind.

Der Teiler/Faktor $U_{hyp}(Mars)=780d$ tritt in 7 der 46 Zahlen (15,2%) in der einfachen Form [$n \cdot U_{hyp}(Mars)$ mit n=1] ebenso statistisch signifikant auf wie für n=2 und 7 mit der jeweiligen Häufigkeit von 5 (10,9%).

Abbildung 13: Die statistisch signifikanten Teiler des Abschnitts p.69-73 (4 Eb): 260, 364, 390 und 780

Der maximale Teiler des Abschnitts ist $7280 = 20 \cdot 364 = 28 \cdot 260$, liefert eine Verbindung zwischen dem Tzolkin und der Periode 364.

5.2.7 Die Seiten p.31-32

Das Ergebnis der statistischen Analyse besteht aus den im numerischen Material des Abschnitts p.31-32 identifizierten Perioden 260 und 364. Es beruht auf 19 zweifelsfrei lesbaren Zahlen dieser Seiten. Die statistische Analyse liefert einen hochsignifikanten Teiler, nämlich 91, sowie zwei signifikante Teiler (52 und 182) (→ Anhang 6.1.7). Diese Tatsache ist vor dem Hintergrund zu betrachten, dass die Zahlen der Seiten p.31-32 den am stärksten beschädigten Stellen des C.D. entstammen, die in die vorliegende Untersuchung Eingang gefunden haben.

Die Dauer eines Tzolkin tritt ausschließlich in der Form des 1/5 (52) von 260 mit der Häufigkeit von 5 von 19 (26,3%) statistisch signifikant auf.

Der Teiler/Faktor 364 tritt in der Form seines Viertels (91) in 11 der 19 Zahlen (57,9%) statistisch hochsignifikant sowie in seiner Hälfte (182) und seinem Siebtel (52) mit Häufigkeiten von 6 bzw. 5 (von 19), d.h. zu 31,6% bzw. 26,3% statistisch signifikant auf.

5.2.8 Die Seiten p.63-64

Das Ergebnis der statistischen Analyse besteht aus den im numerischen Material des Abschnitts p.63-64 identifizierten Perioden 260 und 364. Es beruht auf 42 zweifelsfrei lesbaren Zahlen dieser Seiten. Aus der statistischen Analyse resultieren 35 mindestens statistisch signifikante − davon 20 hochsignifikante − Teiler dieser Zahlen (→ Anhang 6.1.8).

Die Dauer eines Tzolkin tritt in 12 der 42 Zahlen (28,6%) als Teiler/Faktor 260 ebenso statistisch hochsignifikant auf wie als 7 · 260 mit der Häufigkeit von 11 (26,2%). Ferner erscheinen die Vielfachen n · 260 mit n=2, 4, 14 und 28 mit Häufigkeiten von 8 (19,0%) statistisch signifikant. Daneben treten 1/2 (130), 1/4 (65) und 1/5 (52) von 260 mit Häufigkeiten zwischen 13 (31,0%) und 18 (42,9%) statistisch hochsignifikant auf.

Der Teiler/Faktor 364 tritt in 16 der 42 Zahlen (38,1%) in der Form n · 364 mit n=1 sowie für n=2, 4 und 5 mit den Häufigkeiten 10 bzw. 11 (23,8% bzw. 26,2%) statistisch hochsignifikant auf. Ferner tritt n · 364 für n= 8, 10 und 20 mit Häufigkeiten von 5 bzw. 8 (11,9% bzw. 19,0%) statistisch signifikant auf.

Ferner treten von der Periode 364 sowohl die Hälfte (182), als auch ein Viertel (91), ein Siebtel (52) und ein Dreizehntel (28) mit Häufigkeiten zwischen 16 und 31 der 42 Zahlen (d.h. 38,1% bis 73,8%) statistisch hochsignifikant auf.

5.2.9 Ergänzende Evaluation

5.2.9.1 Zufallsdaten

Zur Absicherung der Aussagekraft der Ergebnisse wurden mehrere Datensätze von 45 Zufallszahlen mittels Software generiert. Die Anzahl 45 wurde gewählt, weil sie etwa der Anzahl der Zahlen der Abschnitte p.24, 46-50 sowie p.58-59 und p.69-73 entspricht. Ein ohne weitere Randbedingungen erzeugter Datensatz hat schlicht keine Teiler/Faktoren. Die Zahlen der Abschnitte des C.D. sind über die Zehnerpotenzen (Größenordnungen) etwa nach folgender Regel verteilt: sie enthalten wenige kleine [im Bereich 10¹ und 10²] und wenige große Zahlen

[im Bereich 10⁶ und 10⁷], aber relativ viele im mittleren Bereich von 10³ bis 10⁵. Steuert man die Generierung der Zufallszahlen derart, dann erzeugt die statistische Analyse wiederum keine Teiler/Faktoren. Steuert man die Generierung der Zufallszahlen, indem man nur genau eine "kleine Zahl" erzeugt und sie mit zufällig erzeugten Zahlen multipliziert, dann erzeugt die statistische Analyse in aller Regel eine Periode mit einigen signifikanten – jedoch keinen hochsignifikanten – Teilern/Faktoren, nämlich die "kleine Zahl" und einige ihrer Vielfachen. Ein derartiges Ergebnis entspricht ebenfalls nicht den Ergebnissen der statistischen Analyse der Abschnitte des C.D., denn diese enthalten mindestens zwei verschiedene Perioden mit mehreren signifikanten oder hochsignifikanten Teilern/Faktoren. Da die statistischen Analysen für derartig erzeugte Tabellen von Zufallszahlen praktisch keine Teiler/Faktoren erzeugen, wurde auf deren grafische Darstellung verzichtet. In den obigen Grafiken der Ergebnisse der statistischen Analysen würden Vergleichswerte für derartig erzeugte Zufallszahlen nahe bei Null liegen.

Damit kann mit an Sicherheit grenzender Wahrscheinlichkeit ausgeschlossen werden, dass das numerische Inventar von sieben der acht analysierten Abschnitte eine Zusammenstellung von Zufallszahlen darstellt. Die Tatsache stützt die folgende Interpretation (\rightarrow 5.3). Für den achten Abschnitt p.31-32 kann eine Zufälligkeit seiner Ergebnisse auf Grund des geringen Umfangs an Originalwerten nicht mit derselben Gewissheit ausgeschlossen werden.

5.2.9.2 Das Wissen um den Inhalt der Abschnitte p.24, 46-50 und p.51-58

Der Inhalt der Seiten p.24,46-50 des C.D. ist von Förstemann und vielen anderen als den synodischen Umlauf der Venus betreffend erkannt worden. Dieses Ergebnis wurde – nach Wissen des Verfassers – nicht mit der Methode der statistischen Analyse gewonnen. Das durch die statistische Analyse ermittelte Ergebnis der hochsignifikanten Existenz der Perioden 260, 365 und 584 im numerischen Korpus dieser Seiten (→ 5.2.1) stellt somit eine methodisch unabhängige Bestätigung ihres wissenschaftlich akzeptierten Inhalts dar.

Daneben ist auch der Inhalt der Seiten p.51-58 als der Bestimmung von Zeitpunkten von Sonnen- und/oder Mondfinsternissen dienend weithin unbestritten. Die statistische Analyse wurde für diesen und den Abschnitt p. 24, 46-50 gerade wegen der bestehenden guten Akzeptanz ihres Inhalts ausgeführt. Die relativen Häufigkeiten ganzzahliger Vielfacher in ihren Ergebnissen liefern einen Referenzmaßstab, mit dem die relativen Häufigkeiten anderer Abschnitte verglichen werden können. Ihr Vergleich mit den Häufigkeiten von Vielfachen in den Ergebnissen der anderen sechs Abschnitte zeigt für fünf Abschnitte ähnlich hohe

Häufigkeiten. Diese Tatsache kann als zusätzliche Bestätigung für die Interpretation der Ergebnisse gelten.

5.2.10 Zusammenfassung

Die statistische Analyse ist für jede Lesung für alle Teiler/Faktor zwischen 28 und dem Maximalwert des jeweiligen Abschnitts durchgeführt worden. Die statistische Bewertung wurde dabei sowohl mit dem Kriterium 2σ (signifikant) als auch mit dem Kriterium 3σ (hochsignifikant) ausgeführt. Wesentliche Eigenschaften aller acht Abschnitte und ihrer Ergebnisse sind in komprimierter Form in Tabelle 2 dargestellt. Neben den Häufigkeiten der ermittelten Teiler/Faktoren gemäß den Untersuchungen auf statistische Signifikanz und Hochsignifikanz enthält sie weitere Informationen, die die Daten der Abschnitte charakterisieren. Sie sind folgendermaßen definiert:

- Basis: der Ausgangs- oder Nullpunkt im Tzolkin (eines Abschnitts),

- Anzahl der Zahlen: der Umfang des numerischen Materials (eines Abschnitts);

- $min. Zahl Z_{min}$: das Minimum aller Zahlen (eines Abschnitts) - $max. Zahl Z_{max}$: das Maximum aller Zahlen (eines Abschnitts)

- max. Teiler T_{max} [2 σ]: der maximale Teiler bezeichnet den größten signifikanten Teiler eines

Abschnitts, d.h. den gemäß dem 2σ-Kriterium ermittelten Teiler (→ 4.2). Dieser Teiler muss nicht notwendigerweise selbst als Zahl im

Datenbestand (des Abschnitts) auftreten.

-· N: gibt den Zahlenwert des Faktors an, mit dem der maximale Teiler zu

multiplizieren ist, um das

- max. $Produkt P_{max}$ zu erzeugen. Das maximale Produkt ist das Maximum (der Zahlen

des Abschnitts), das durch Multiplikation mit dem *maximale Teiler* erzielbar ist. Dieses Maximum ist nicht notwendigerweise das

Maximum aller Zahlen des Abschnitts.

In der Spalte *ermittelte Perioden* sind die statistisch relevanten Perioden aller Abschnitte dargestellt. Ihr tatsächliches Auftreten in einem bestimmten Abschnitt ist durch Zahlenwerte erkennbar, die die Häufigkeit des Auftretens ihrer Vielfachen als Faktor/Teiler gemäß den 2σ - und dem 3σ - Kriterium ausdrücken. Diese Häufigkeiten sind Ergebnisse der statistischen Analyse der eigenen Lesung (Anhang 6.1).

Codex Dres	sden: Seite	p.24,	46-50	p.5	1-58	p.5	58-59	p.	.43-44	р	.69-73	p.69	9-73	p.3	1-32	p.	.62-64
	Basis	1 A	hau	mul	tipel	13 1	Muluk	3	Lamat		9 Ix	4]	Eb'	mul	tipel	m	ultipel
Anzahl der Zahlen		4	13	8	88	43			24		35	46		19			42
m	in. Zahl Z _{min}		236		157		12		78		86		65		17		17
ma	ax. Zahl Z _{max}	1.3	66.560	1.5	78.988	1	426.360	1.	435.980	12.	391.470	12.3	81.728	2.8	04.100	1.	.538.342
max. Teile	er T _{max} [2σ]		37.960		23.920	i i i i i i i i i i i i i i i i i i i	14.820		1.820		28.080		7.280		182		7.280
	$\cdot N =$		· 36 =		• 9 =		• 9 =		· 789 =		· 10 =		· 15 =	-6.992=	1.272.544		· 20 =
max.	Produkt Pmax	1.3	366.560	2	215.280		133.380	1	.435.980		280.800		109.200	-6.970=	1.268.540		145.600
	hn. Kennziffer		I	- 2	9		2		3		4		5		5		7
siehe I	Text-Abschnitt	200,00	2.1		2.2		.2.3		5.2.4		5.2.5	5.2	2.6		2.7		5.2.8
	siehe Anhang	6.	1.1	6	1.2	6	.1.3		6.1.4		6.1.5		1.6	6.	1.7		6.1.8
statist.	Signifikanz	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ
ermittelte	hypothet.			A	nzahl ge	ınzzahl	iger Teile	$r T \ge$	geprüfte	Perio	ode (Anz	ahl 0 ist e	explizit ge	schrieben)		
Perioden	Deutung	[.	Anzahl g	ganzzah	liger Tei	ler T <	geprüfte .	Perio	de] (Anz	ahl 0	ist aus dars	tellungste	echnischei	n Gründe	n <u>nicht</u> ge	schriet	ren)
115	Mouleum	-	-	9	1	-	147	1-1	-	-	-	-	5.70	-	-	-	
117	Merkur	-	-	-	11-1	6	6+[1]	-		7	16+[1]	-		-	-	-	
260	Tzolkin	5+[1]	0+[2]	4+[1]	2+[2]	7	5+[3]	5	1+[3]	7	9+[3]	4	5+[3]	[1]	-	4	2+[3]
364	Jahr	E	7=	-	je	=	-	-	-	-	-	4	4+[4]	[2]	[1]	3	4+[4]
365	Jaili	9	4+[1]	+	+	N a	-	-	-	-	-	-	-	-	-	-	-
390	Saturn? Jupiter?	A		B	18	7	5+[6]	2	1+[6]	5	10+[5]	5+[1]	0+[4]			-	-
584	Venus	6	3+[3]	1-	ilex	-	-		-	-		-	4	-	-	-	-
585	venus	r=1	-	1	11-0	3	3+[5]	1	-	2	8+[5]		-			-	-
780	Mars	-			15	4	3+[11]	2	0+[11]	5	6+[11]	3+[4]	0+[6]	.= 8	A	-	-

Tabelle 2: Ergebnisse der statistischen Analyse der Daten von acht Abschnitten des numerischen Korpus gemäß eigener Lesung

5.3 Interpretation der Ergebnisse der eigenen Lesung

5.3.1 Die Signaturen des Sonnenjahres

Die ermittelten Perioden 364 und 365 können als Näherungswerte des Sonnenjahres (tropisches Jahr $a_{trop} = 365,24219d$) verstanden werden. Der Wert 365 tritt sowohl im Abschnitt p.24, 46-50 (Venus-Tafeln) als Teiler/Faktor auf (\rightarrow 5.2.1) wie auch im Abschnitt p.51-58 (Finsternis-Tafeln) – hier jedoch überwiegend implizit – zutage (\rightarrow 5.2.2). Diese Tatbestände sind wissenschaftlich seit langem unbestritten.

Der Wert 364 erscheint in den Abschnitten p.69-73 (\rightarrow 5.2.6) und p.63-64 (\rightarrow 5.2.8) statistisch hochsignifikant, ferner im Abschnitt p.31-32 (\rightarrow 5.2.7), wo 364 maximaler Teiler aller Zahlen des Abschnitts ist, aber drei signifikante (Bruch-)Teile (28, 52 und 182) und ein hochsignifikanter (Bruch-)Teil (91) das Analyse-Ergebnis dominieren. Eine weitere, allerdings schwache Ausprägung der Periode 364 erscheint in Abschnitt p.43-44 (\rightarrow 5.2.4).

Eine astronomische Deutung des Wertes 364 ist zumindest für den Abschnitt p.69-73 (\rightarrow 5.2.6) naheliegend, weil hierin auch Beziehungen zu Mars (\rightarrow 5.3.4) und möglicherweise weiteren astronomischen Inhalten (\rightarrow 5.3.5) bestehen.

5.3.2 Die Signaturen des Merkur

Die ermittelten Perioden 115 und 117 können als Näherungswerte der synodischen Umlaufzeit des inneren Planeten Merkur (U_{svn}(Merkur)=115,88d) verstanden werden.

Der Wert 115 tritt im Abschnitt p.51-58 (Finsternis-Tafeln) hochsignifikant zutage (→ 5.2.2). Die Seiten p.51-58 zeigen neben der Bestimmung von Sonnen- oder Mondfinsternissen auch eine Relevanz im Sinne der Beobachtung und Berechnung des inneren Planeten Merkur. Eine einfache Gesetzmäßigkeit zwischen Sonnen- oder Mondfinsternissen einerseits und der Beobachtung des Merkur andererseits ist jedoch astronomisch nicht gegeben. Eine Evaluation des Zusammenhangs anhand mehrerer Finsternisse zeigt stark schwankende positive und negative Unterschiede zwischen 0° und 30° in den ekliptikalen Längen (Schlosser 2008, persönliche Kommunikation). Somit sind folgende Interpretationen möglich:

- (1) das Ergebnis ist in Bezug auf die Periode 115 trotz der gewählten hohen statistischen Sicherheit von mehr als 95% (entsprechend 2σ) zufällig,
- (2) die Maya beobachteten Merkur mit Hilfe der den Teiler 115 enthaltenden Zahlen des Abschnitts, wobei seine Position in Bezug auf Sonnen- oder Mondfinsternisse für sie jedoch von geringer Bedeutung war,

(3) andere Abschnitte des C.D. enthalten möglicherweise Zahlen, die diese Phänomene miteinander verbinden.

Eine Kommensurabilität mit dem Planeten Venus ist im Zahlenmaterial nicht enthalten und kann mit an Sicherheit grenzender Wahrscheinlichkeit ausgeschlossen werden.

Schon Förstemann erkannte in der Zahl 11.960 (p.51-52) ein ganzzahliges Vielfaches von 115, die er als Umlaufperiode des Merkur interpretiert (1901:118-21). Ferner sah er Hinweise auf Merkur in p.58-59 (1901:136) sowie in p.70-71 (1901:161-62).

Der Wert 117 tritt in den Abschnitten p.58-59 (\rightarrow 5.2.3) und p.70-71 (\rightarrow 5.2.5) statistisch hochsignifikant auf und des Weiteren marginal im Abschnitt p.43-44 (\rightarrow 5.2.4) zutage.

5.3.3 Die Signaturen der Venus

Die ermittelten Perioden 584 und 585 können als Näherungswerte der synodischen Umlaufzeit des inneren Planeten Venus (U_{syn}(Venus)=583,92d) verstanden werden.

Der Wert 584 tritt im Abschnitt p.24, 46-50 (Venus-Tafeln) hochsignifikant zutage (→ 5.2.1). Dieser Tatbestand ist wissenschaftlich seit langem unbestritten.

Der Wert 585 tritt in den Abschnitten p.58-59 (\rightarrow 5.2.3) und p.70-71 (\rightarrow 5.2.5) statistisch hochsignifikant auf. Dieser Tatbestand ist bislang wissenschaftlich nicht nachgewiesen worden.

5.3.4 Die Signaturen des Mars

Die ermittelte Periode 780 kann als Näherungswert der synodischen Umlaufzeit des äußeren Planeten Mars (U_{syn}(Mars)=779,936d) verstanden werden.

Dieser Wert tritt im Abschnitt p.58-59 in Form der Faktoren 780, 1560 und 2310 statistisch hochsignifikant auf (\rightarrow 5.2.3). Im Abschnitt p.43-44 (\rightarrow 5.2.4) existieren die signifikanten Teiler 780 und 1560 sowie des Weiteren 11 hochsignifikante Bruchteile der Zahl 780, nämlich: $\frac{1}{2}$ (390), $\frac{1}{3}$ (260), $\frac{1}{4}$ (195), $\frac{1}{5}$ (156), $\frac{1}{6}$ (130), $\frac{1}{10}$ (78), $\frac{1}{12}$ (65), $\frac{1}{13}$ (60), $\frac{1}{15}$ (52), $\frac{1}{20}$ (39), $\frac{1}{26}$ (30).

Schon Förstemann erkannte in p.58-59 (1901:133) und in p.43-44 (1901:91) Hinweise auf den Planeten Mars. Diese wurden seither in einer Vielzahl wissenschaftlicher Publikationen ergänzt und reichen bis in die jüngste Vergangenheit. Beispielhaft seien daher hier Bricker und Bricker (1986, 1997) und Fuls (2007:63-65) erwähnt.

Somit stellen die Ergebnisse der statistischen Analyse für diese Abschnitte eine methodisch unabhängige Bestätigung dieses Befundes dar.

Im Abschnitt p.69-73 9 Ix (\rightarrow 5.2.5) erscheinen 17 statistisch hochsignifikante Teiler/Faktoren. Dieser Wert ist der maximale Wert im gesamten Ergebnismaterial. Von diesen 17 repräsentieren 11 Teiler/Faktoren dieselben Bruchteile wie sie in Abschnitt p.43-44 (\rightarrow 5.2.4) identifiziert worden sind. Sowohl diese Anzahl 11 (der Teiler, die kleiner als 780 sind) als auch die Anzahl aller Teiler von 780 übertrifft die Anzahl der (entsprechenden) Teiler/Faktoren von 260 (und der mit ihr kommensurablen Perioden 520 und 1040) deutlich. Daraus kann gefolgert werden, dass die Periode 780 ein Gegenstand des Abschnitts p.69-73 (9 Ix) ist, die als synodische Umlaufzeit des äußeren Planeten Mars gedeutet werden kann.

Im Abschnitt p.69-73 4 Eb (\rightarrow 5.2.6) treten 3 signifikante Teiler/Faktoren der Zahl 780 auf. Die statistische Analyse weist also auch auf eine Relevanz des Planeten Mars in den Abschnitten p.69-73 9 Ix und p.69-73 4 Eb hin.

Ein wissenschaftlicher Nachweis einer Relevanz der Periode 780 gelang bislang vor allem deshalb nicht, weil dazu eine eigenständige Deutung der Zahl 780 unabhängig von ihrer Interpretation als Dreifaches des Tzolkin erforderlich ist. Diese Differenzierung ist hier für alle vier genannten Abschnitte mit statistischen Mitteln erbracht und quantitativ abgesichert worden.

5.3.5 Die Signaturen der Periode 390 (Saturn und Jupiter ?)

Der Teiler/Faktor 390 tritt im Abschnitt p.69-73 (9 Ix) in 3 Fällen (nämlich 390, 1170 und 3510) statistisch hochsignifikant sowie in einem weiteren Fall (nämlich 1950) statistisch signifikant auf (\rightarrow 5.2.5), die sämtlich nicht mit Mars kommensurabel sind. Ähnlich ist das Analyse-Ergebnis für den Abschnitt p.58-59 mit 2 statistisch hochsignifikanten (nämlich 390 und 1170) sowie 3 signifikanten Fällen (nämlich 1950, 3510 und 7410), die ebenfalls sämtlich nicht mit Mars kommensurabel sind (\rightarrow 5.2.3). Weitere Fälle existieren im Abschnitt p.43-44 (\rightarrow 5.2.4) mit einem hochsignifikanten Teiler/Faktor (nämlich 390) sowie im Abschnitt p.69-73 (4 Eb) (\rightarrow 5.2.6) mit den signifikanten Teilern/Faktoren 390 und 2730, die nicht mit Mars kommensurabel sind. Diese Ergebnisse lassen mindestens drei Deutungen zu:

- (a) als Werte für n $\cdot \frac{1}{2}$ U_{syn}(Mars), die dann die Relevanz des Ergebnisses für Mars verstärken ($\rightarrow 5.3.4$) und/oder
- (b) als Näherungswerte für $U_{syn}(Saturn) = 378,09d$ und/oder
- (c) als Näherungswerte für $U_{syn}(Jupiter) = 398,88d$.

Ein Nachweis der Annahmen (b) und/oder (c) kann möglicherweise über den Nachweis von im C.D. vorliegenden Näherungsrechnungen für die synodische(n) Umlaufperiode(n) erfolgen. Ein derartiger Nachweis überschreitet den Rahmen der vorliegenden Untersuchung deutlich.

Ein einziger direkter Anhaltspunkt für den Planeten Saturn ($U_{syn}(Saturn) = 378,09d$) besteht in genau einem signifikanten Teiler/Faktor, nämlich dem Wert T_{41} =380, im Abschnitt p.58-59 (\rightarrow Anhang 6.1.3). Dieser ist allerdings deutlich zu geringfügig, um als Nachweis der Relevanz des Planeten im untersuchten Abschnitt gelten zu können.

Teiler/Faktoren in der Größenordnung $U_{hyp}(Jupiter) \approx 400d$, die mit der synodischen Umlaufzeit des äußeren Planeten Jupiter ($U_{syn}(Jupiter) = 398,88d$) in numerisch engerem Zusammenhang stehen, sind nicht nachweisbar.

Insbesondere wegen der näherungsweise bestehenden Kommensurabilität der Umlaufzeiten von Saturn und Jupiter sowohl miteinander als auch mit der halben Periode des synodischen Marsumlaufs ist deren positiver Nachweis im numerischen Korpus des C.D. nicht möglich. Die Behandlung von Saturn und Jupiter kann aber auch nicht definitiv ausgeschlossen werden. Förstemann vermutet in p.51-58 eine "... nebensächliche Behandlung von Saturn und Jupiter ..." (1901:133).

5.3.6 Die Signaturen des Tzolkin

Der Tzolkin (260 Tage) tritt – als einzige aller identifizierten Perioden – in allen untersuchten Abschnitten (\rightarrow 5.2.1 - 5.2.8) statistisch signifikant oder hochsignifikant auf.

Für den Abschnitt p.31-32 (\rightarrow 5.2.7) gilt dies mit einer gewissen Einschränkung, insofern hier nur der Teiler/Faktor $52 = 1/5 \cdot 260$ statistisch signifikant enthalten ist. Dies ist vornehmlich auf die Tatsache zurückzuführen, dass dieser Abschnitt aufgrund des schlechten Erhaltungszustandes die geringste Anzahl lesbarer Daten aller untersuchten Abschnitte aufweist. Das Erscheinungsbild der Seiten lässt aber erkennen, dass in ihm ca. 10 bis 20 weitere Daten verzeichnet gewesen sein sollten, so dass in die Analyse nur ca. 50% bis 70% des ursprünglichen Materials Eingang finden konnten. Die genannten Tatbestände sind des weiteren der Grund für die Abweichungen zwischen den drei Lesungen der Daten. Förstemann identifiziert 22 Zahlen, Thompson 24, während eine eigene Lesung auch unter Würdigung der Vorschläge beider Forscher nur 19 Zahlen zweifelsfrei feststellen kann.

Das numerische Material aller untersuchten Abschnitte geht von einem oder mehreren Ausgangsdaten (Nullpunkten) im Tzolkin aus. Das Ergebnis der Analysen bedeutet dennoch eine Erweiterung seiner bisherigen Deutung, denn:

Es war nicht zu erwarten, dass der Tzolkin mit allen hypothetischen astronomischen Perioden statistisch so stark korreliert ist. Somit stellt die Periode 260 einen gemeinsamen Maßstab dar, in dem alle astronomischen Aufzeichnungen der acht Abschnitte dargestellt sind. Der Tzolkin ist damit das arithmetische Grundelement, mit dem alle Berechnungen durchgeführt wurden. Darüber hinaus existiert kein anderer gemeinsamer Maßstab, mit dem die Maya ihre Astronomie betrieben haben. Insbesondere bildet der *Haab* genannte Kalender des Sonnenjahres einen solchen Maßstab nicht, denn er tritt in deutlich geringerem Maße in Erscheinung (\rightarrow 5.3.1 und Tabelle 3).

Diese Deutung des Tzolkin ergänzt seine Bedeutung als Ritualkalender.

5.3.7 Weitere Ergebnisse

- (1) Die Untersuchung folgte dem Paradigma der *morphologischen Strukturanalyse*. Im Informationsträger (hier: die acht analysierten Abschnitte) wurde die *Struktur* bestimmt und bewahrt (→ Anhang 2), die statistische Analyse ermittelte den *Inhalt* (hier: Perioden) und für diese wird eine astronomische *Bedeutung* hypothetisiert. Sie erhält ihre Relevanz aus der statistischen Quantifizierung (→ 4.2) in zwei Stufen (2σ- und 3σ-Kriterium), die den Deutungsspielraum variiert. Sie folgt darüber hinaus dem Totalitätsanspruch, denn sie wurde für alle tabellenartigen Abschnitte des C.D. durchgeführt, die eine für eine statistische Analyse hinreichende Anzahl von zusammengehörigen Zahlen aufweisen. In jedem dieser Teile wurden alle in ihm enthaltenen Zahlen auf alle potenziellen ganzzahligen Teiler/Faktoren analysiert. Das Ergebnis ermöglicht darüber hinaus einen Vergleich der untersuchten Abschnitte untereinander.
- (2) Das Ergebnis der statistischen Analysen der acht untersuchten Abschnitte besteht in der Identifikation von neun hochsignifikanten Perioden (\rightarrow Tabelle 3). Von diesen ist eine die 260-tägige Periode (Tzolkin). Die Werte 364 und 365 können als Näherungswerte des tropischen Jahres ($a_{trop}=365,24219$) gedeutet werden. Die übrigen fünf Perioden können als Näherungswerte der synodischen Umlaufzeiten U_{syn} von Planeten verstanden werden: die Perioden 115 und 117 als Näherungswerte für U_{syn} des inneren Planeten Merkur, die Perioden 584 und 585 als Näherungswerte für U_{syn} des inneren Planeten Venus, die Periode 780 als Näherungswert für U_{syn} des äußeren Planeten Mars. Schließlich ist die Periode 390 als Näherungswert für U_{syn} der äußeren Planeten Jupiter oder Saturn erklärbar, dies geschieht jedoch mit einiger Vorsicht, weil der Wert 390 auch als halbe synodischen Umlaufzeit des Mars gedeutet werden kann.

Die Interpretation dieses Ergebnisses beruht auf drei Tatbeständen:

- (2.1) der innerhalb jedes untersuchten Abschnitts ermittelten statistischen Signifikanz (2 σ) und Hochsignifikanz (3 σ) der jeweils ermittelten Perioden (\rightarrow Tabelle 2),
- (2.2) der innerhalb jedes untersuchten Abschnitts ermittelten Erklärungsquoten der jeweils ermittelten Perioden gemäß ihrer statistischen Signifikanz und Hochsignifikanz (→ Tabelle 5).
- (2.3) Für die Abschnitte p.24,46-50 und p.51-58 ist ihre Deutung als Venustafeln und Finsternistafeln wissenschaftlich nahezu unumstritten. Die ermittelten statistischen Signifikanzen und Hochsignifikanzen der jeweils ermittelten Perioden der anderen analysierten Abschnitte (→ Tabelle 2) liegen im Vergleich mit diesen Abschnitten in annähernd gleicher Größenordnung vor. Dieser Vergleich der Ergebnisse der Abschnitte untereinander unterstützt die astronomische Interpretation der Abschnitte p.58-59, p.43-44, p.70-71 (9 Ix), p.69-73 (4 Eb) und p.62-64 zusätzlich; für den Abschnitt p.31-32 gilt dies mit Vorbehalt (→ Tabelle 3).

Periode	115	117	260	364	365	390	584	585	780
	Me	rkur	Tzolkin	Jahr		Jupiter?	Ve	nus	Mars
Abschnitt		!			!	Saturn?		!	?
p.24,46-50	_	_	+	_	+	_	+	_	_
p.51-58	+	_	+	_	_	_	_	_	_
p.58-59	_	+	+	_	_	+	_	+	+
p.43-44	_	_	+	_	_	+	_	_	+
p.70-71 (9 Ix)	_	+	+	_	_	+	_	+	+
p.69-73 (4 Eb)	1	_	+	+	_	+	_	-	+
p.31-32		_	(+)	(+)	_	_	_	_	_
p.62-64	_	_	+	+	_	_	_	_	_

Tabelle 3: Identifizierte Perioden in acht Abschnitten des Codex Dresden

- (3) Tabelle 3 ist zu entnehmen, dass
- (a) jeder (analysierte) Abschnitt mindestens zwei hochsignifikante Perioden enthält und
- (b) jede (hypothetische) Deutung (Tzolkin, synodische Umlaufzeit eines Planeten, Jahreslänge) in mindestens zwei Abschnitten auftritt.

Auf dieser Grundlage kann vermutet werden, dass inhaltliche Verbindungen zwischen den Abschnitten bestehen. Diese könnten folgender Art sein:

in einem Abschnitt erfolgt die Beobachtung/Berechnung eines Himmelsobjekts in Verbindung mit oder anhand eines zweiten Himmelsobjekts (oder des Jahres oder des Tzolkin) bis zu einem gewissen (Zeit-)Punkt. Wird die Abweichung dieser Berechnung/Beobachtung innerhalb eines Abschnitts zu groß, dann könnte die Beobachtung/Berechnung dieses Himmelsobjekts anhand eines anderen Himmelsobjekts (oder des Jahres oder des Tzolkin) mit Hilfe eines anderen Abschnitts fortgesetzt werden.

Für diese Verbindungen oder Übergänge zwischen den verschiedenen Abschnitten könnten folgende Elemente des C.D. in Frage kommen:

- jede der absoluten Zahlen jedes analysierten Abschnitts, insbesondere auch die nicht ganzzahligen Vielfachen der Zahlen, die im jeweiligen Abschnitt häufig sind;
- diejenigen Almanache, die durch iterative Addition einen oder mehrere Tzolkin-Perioden durchlaufen (V.R. Bricker und H.M. Bricker 1992).

Die Identifikation solcher Abschnitte und ihrer verbindenden Bestandteile muss insbesondere die Ausgangspunkte jedes Abschnitts berücksichtigen.

(4) Ausgangspunkte der analysierten Abschnitte

Die Verbindung zwischen den analysierten Abschnitten kann über ihre Ausgangspunkte hergestellt werden. Die Tabelle 4 enthält eine Übersicht über die Zusammenhänge der Abschnitte mit genau einem Ausgangspunkt.

Differenz		bis	1 Ahau	13 Muluk	3 Lamat	9 Ix	4 Eb
von	C.D.	Perioden					
1 Ahau	p.24, 46-50	260, 365, 585	0	+ 129	+ 28	+ 34	+ 172
13 Muluk	p.58-59	117, 260, 390, 585, 780	+ 131	0	+ 159	+ 165	+ 43
3 Lamat	p.43-44	260, 390, 780	+ 232	+ 101	0	+ 6	+ 144
9 Ix	p.70-71	117, 260, 390, 585, 780	+ 226	+ 95	+ 254	0	+ 138
4 Eb	p.69-73	260, 364, 390, 780	+ 88	+ 217	+ 116	+ 122	0

Tabelle 4: Differenzen zwischen den Ausgangspunkten derjenigen Abschnitte mit genau einem Ausgangspunkt

Codex Dresden: Seite	p.24,46-50	p.51-58	p.58-59	p.43-44	p.69-73	p.69-73	p.31-32	p.62-64
Basis	1 Ahau	multipel	13 Muluk	3 Lamat	9 Ix	4 Eb'	multipel	multipel
Anzahl der Zahlen	43	88	43	24	35	46	19	42
min. Zahl Z _{min}	236	157	12	78	86	65	17	17
max. Zahl Z _{max}	1.366.560	1.578.988	1.426.360	1.435.980	12.391.470	12.381.728	2.804.100	1.538.342
max. Teiler T _{max} [2σ]	37.960	23.920	14.820	1.820	28.080	7.280	182	7.280
· N =	· 36 =	· 9 =	· 9 =	· 789 =	· 10 =	· 15 =	·6.992=1.272.544	· 20 =
max. Produkt P _{max}	1.366.560	215.280	133.380	1.435.980	280.800	109.200	·6.970=1.268.540	145.600
programm-technische Kennziffer	I	0	2	3	4	5	6	7
siehe Text-Abschnitt	5.2.1	5.2.2	5.2.3	5.2.4	5.2.5	5.2.6	5.2.7	5.2.8
siehe Anhang	6.1.1	6.1.2	6.1.3	6.1.4	6.1.5	6.1.6	6.1.7	6.1.8
Gesamtanzahl der Teiler T _i [≥2σ]	45	30	76	36	81	50	3	35
Anzahl erklärter Teiler T _i [≥2σ]	27	16	35	15	45	26	3	16
Erklärungsquote [≥2σ]	60,0%	53,3%	46,1%	41,7%	55,6%	52,0%	100%	45,7%
Gesamtanzahl der Teiler T _i [≥3σ]	13	7	25	11	45	24	1	20
Anzahl erklärter Teiler T _i [≥3σ]	11	5	21	10	32	15	1	11
Erklärungsquote [≥3σ]	84,6%	71,4%	84,0%	90,9%	71,1%	62,5%	100%	55,0%
nicht erklärte Teiler [≥3σ]:		(1)				25 50 740		25 50 140
n·35						35, 70, 140, 280		35, 70, 140
n · 36					36, 72, 108, 216			
n · 40	40, 80			60		80	1377	3 4
n · 46	We THE	46		THE THURSDAY STATE AND	a series establica recordens		Nagi	
n · 54					54, 108, 216, 270, 540, 1080			
n · 56		195	196		L	- 1		56, 112
n · 104		104	104, 208, 312		104, 312	104, 208		104, 208
n · 120			120, 180		120, 180, 360, 540, 1080			
n · 135			(No. 1) Section 10		135, 270			
n · 455						455, 910	K	455, 910

Tabelle 5: Charakteristika der statistischen Analyse der Daten von acht Abschnitten des numerischen Korpus gemäß eigener Lesung

- (5) Tabelle 5 zeigt sowohl die Gesamtzahl der signifikanten und hochsignifikanten Teiler der Ergebnisse jedes Abschnitts als auch die Anzahl der gemäß der Interpretation (→ 5.3.1 bis 5.3.6) erklärten Teiler. Das Verhältnis dieser Anzahlen ergibt eine Erklärungsquote. Die Erklärungsquote ist für die hochsignifikanten Teiler größer als für die signifikanten. Dies kann als Indiz dahin gehend gedeutet werden, dass die hochsignifikanten einzelnen Zahlen eines Abschnitts untereinander einen inhaltlichen Zusammenhang haben, wie er durch die astronomische Interpretation gegeben ist.
- (6) Neben den erklärten Perioden (\rightarrow 5.3.1 bis 5.3.6) treten im Ergebnis der statistischen Analyse einige weitere hochsignifikante Perioden auf, die nicht erklärt sind. Sie sind in (\rightarrow) Tabelle 5 in den Zeilen " *nicht erklärte Teiler* [>3 σ] " in Gruppen zusammengehöriger Vielfacher und nach ihrer Größe geordnet. Auch diese Teiler/Faktoren bedürfen einer Erklärung (\rightarrow 6.2). Diese Zahlen weisen keinen offenkundigen Zusammenhang mit anderen Kontexten der Astronomie, der Mythologie, den Riten oder den Glaubensvorstellungen der Maya auf. In Datensätzen, die einige hochsignifikante Teiler/Faktoren enthalten, treten mit einiger Wahrscheinlichkeit auch zufällige Teiler auf. Mit einiger Berechtigung kann davon ausgegangen werden, dass einige in der Rubrik "*nicht erklärte Teiler* [>3 σ]" aufgeführte Werte zufällige Bestandteile der Abschnitte darstellen.
- (7) Aus Gründen der Vollständigkeit ist festzustellen, dass gemäß der vorliegenden Analyse positive Hinweise auf den Metonischen Zyklus und die Saros-Periode nicht vorliegen. Mit diesem Ergebnis ist jedoch nicht der Nachweis erbracht, dass diese Perioden den Maya unbekannt waren. Sie treten nur im Sinne dieser Untersuchung nicht mindestens signifikant in Erscheinung.
- (8) Die Anhänge 7.1 bis 7.8 zeigen für jeden der acht untersuchten Abschnitte jeweils alle ihre Ursprungsdaten (Spalte (1)) sowie alle ermittelten Perioden (Spalten (5) und folgende). Durch Fettdruck sind die ganzzahligen Multiplikatoren hervorgehoben, die eine Ursprungszahl mit einer Periode verknüpfen. Somit ist leicht erkennbar, dass einige Ursprungsdaten ganzzahlige Vielfache von mehr als einer signifikanten Periode sind.

5.4 Vergleichende Interpretation der Ergebnisse mit den alternativen Lesungen durch Förstemann (1901) und Thompson (1972)

5.4.1 Allgemeines

Förstemanns (1901) und Thompsons (1972) Lesung der Daten der acht Abschnitte unterscheiden sich voneinander sowie von der eigenen Lesung, weil sie diese Daten verschieden interpretierten oder im Sinne ihrer Untersuchung ändern. Die Daten Förstemanns und Thompsons sind mit denen der eigenen Lesung parallelisiert in Anhang 4 dargestellt. Im Folgenden werden die Auswirkungen dieser Modifikationen auf das Ergebnis der statistischen Analysen und im Vergleich zu den präsentierten Ergebnissen ohne solche Modifikationen (→ 5.2. 5.3) evaluiert.

Die Ergebnisse der statistischen Analysen dieser Abschnitte sind für die Lesung Förstemann in Anhang 6.2 und für die Lesung Thompson in Anhang 6.3 vollständig und im Einzelnen in Form von Tabellen dokumentiert. Deren Darstellung entspricht derjenigen der eigenen Lesung (→ Kapitel 5.1, Anhang 6.1).

Weitere wesentliche Eigenschaften der Abschnitte und ihrer Ergebnisse sind in komprimierter Form für die Lesung Förstemann in Tabelle 6 sowie für die Lesung Thompson in Tabelle 7 zusammengefasst. Deren Aufbau entspricht der Tabelle 2 (für die eigene Lesung) und ist in 5.2.10 erläutert.

5.4.2 Die Seiten p.24, 46-50

Die durch die statistischen Analysen ermittelten Perioden 260, 365 und 584 sind in allen drei Lesungen identisch. Die Anzahlen der signifikanten Teiler der Perioden 365 und 584 sind in den Ergebnissen für die Lesungen Förstemann und Thompson um jeweils 1 größer als in der eigenen Lesungen; in allen übrigen Anzahlen besteht Übereinstimmung zwischen allen Lesungen (→ Tabellen 2, 6 und 7). Alle Lesungen bestätigen den wissenschaftlich akzeptierten Inhalt, der den synodischen Venusumlauf im Kontext mit Angaben im Tzolkin und im Haab beschreibt. Zusätzliche Erkenntnis ist, dass in allen Lesungen dieses Abschnitts weitere astronomische Zyklen statistisch nicht nachweisbar sind.

Codex Dres	sden: Seite	p.24,	46-50	p.5	1-58	p.5	8-59	p	43-44	p	.69-73	p.69	9-73	p.31	-32	p.	62-64	
	Basis	1 A	hau	mul	multipel		13 Muluk		Lamat	9 Ix		4 Eb'		multipel		multipel		
Anzai	hl der Zahlen	4	13	8	88		43		24	37		4	6	21			42	
m	nin. Zahl Z _{min}		236	,24	177		78		78		86		65		17		17	
m	ax. Zahl Z _{max}	1.3	66.560	1.5	78.988	1.	426.360	1.	435.980	12.	391.470	12.3	81.728	2.80	4.100	1.	538.342	
max. Teil	er T _{max} [2σ]		37.960		35.880		14.820		3.900		28.080		14.560		910		7.280	
STATE OF THE PARTY	· N =	10	· 36 =		· 13 =		· 9 =		· 28 =		· 6 =		· 5 =	• 1	.394 =		· 20 =	
(max. I	Produkt) P _{max}	1.3	366.560		466.440		133.380		109.200		168.480		72.800	1.26	58.540		145.600	
	hn. Kennziffer		1		0		2		3		4		5	6			7	
siehe '	Text-Abschnitt		4.2		4.3		.4.4		5.4.5		5.4.6		4.7	5.4.			5.4.9	
10 //40	siehe Anhang	6.2			2.2	- 1212	.2.3	6.2.4 6.2.5 6.2.6		6.2.			6.2.8					
statist.	Signifikanz	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	
ermittelte	hypothet.			\boldsymbol{A}	nzahl ga	nzzahli	ger Teiler	$T \geq$	geprüfte .	Perio	ode (Anz.	ahl 0 ist e	xplizit ge:	schrieben)				
Perioden	Deutung	[A	inzahl ge	anzzahl	iger Teil	er T < 2	geprüfte l	Perio	de] (Anzi	ahl 0 i	ist aus dars	tellungste	chnischer	n Gründen	<u>nicht</u> ge	schrie	ben)	
115	Merkur	-	=	10	8	-	-	-	-	-	-	-	-		100		-	
117	Merkui	1-1	-	-	-	8	6+[1]	-		7	16+[1]	-	- 4-	-		-	. i	
260	Tzolkin	5+[1]	0+[2]	6	4+[3]	8	5+[3]	6	2+[3]	4	8+[3]	5	6+[3]	1+[3])-x	4	2+[3]	
299	?	-		10	8	-	-	-	-	D=1		-	-	-	-	-	-	
364	Jahr	-	-	-	-	-	-	-	-	-	-	4	6+[4]	2+[2]	[2]	3	4+[4]	
365	Jaili	10	4+[1]	+	+	=	J=	-		•	-	-	-	1		-	-	
390	Saturn? Jupiter?			2	-	8	5+[6]	4	2+[6]	3	9+[6]	5+[2]	[3]	-	-	-	J-	
584	Vanua	7	3+[3]	-	121	-	-	-	-	-	=	-		-	-	-		
585	Venus	i=1	-	-	-	4	3+[5]	-	1	2	8+[5]	-		-	-	3-3	7 <u>-</u> 1	
780	Mars	22	-	-	1 12	5	3+[11]	3	1+[11]	3	6+[11]	3+[5]	[5]	-		-	-	

Tabelle 6: Ergebnisse der statistischen Analyse der Daten von acht Abschnitten des numerischen Korpus gemäß der Lesung Förstemann (1901)

Codex Dres	sden: Seite	p.24,	46-50	p.5	1-58	p.5	8-59	p.	43-44	P	.69-73	p.69	9-73	p.3	1-32	p.	62-64
	Basis	1 A	hau	mul	tipel	13 N	Muluk	3	Lamat		9 Ix	41	∃b'	mul	tipel	m	ultipel
Anzak	hl der Zahlen	4	3	8	38		43		24		35	4	6	2	?7	ATTO 9	42
m	in. Zahl Z _{min}		236		177		78		78		86		65		17		17
ma	ax. Zahl Z _{max}	1.3	66.560	1.5	78.988	1.	426.360	1.	435.980	12	.391.470	12.3	81.728	2.8	04.100	1	538.342
max. Teile	er T _{max} [2σ]		37.960		35.880		14.820		5.200		28.080	Va	21.840		7280		7.280
	· N =		· 36 =		• 13 =		· 9 =		· 21 =		· 6 =		· 5 =		· 3 =		· 20 =
(max. F	Produkt) P _{max}	1.3	66.560		466.440		133.380		109.200		168.480		109.200		21.840		145.600
programmtec	hn. Kennziffer		1		0		2		3		4		5		6		7
	Text-Abschnitt	1000	1.2	1000.000	4.3		.4.4		5.4.5		5.4.6	The state of	4.7		4.8		5.4.9
The second second	siehe Anhang	6.3			3. <i>2</i>		.3.3		6.3.4		6.3.5		3.6		3.7		6.3.8
statist.	Signifikanz	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ	2σ	3σ
ermittelte	hypothet.			A	nzahl ga	nzzahli	ger Teile	$r T \ge$	geprüfte .	Peri	ode (Anz	ahl 0 ist e	xplizit ges	schrieber	2)		
Perioden	Deutung		inzahl ge	anzzahi	iger Teil	ler T <	geprüfte .	Perio	de] (Anz	ahl 0	ist aus dars	itellungste	chnischer	ı Gründe	n <u>nicht</u> ge	schrie	ben)
115	Madam	-	-	10	8	-	-	-	-	-	-	-	-	_	-	-	-
117	Merkur	-	-	-	-	4	6+[1]	-	17-1	7	16+[1]	387		-	-		U=
260	Tzolkin	5+[1]	0 +[2]	6	4+[3]	7	5+[3]	9	2+[3]	4	8+[3]	9	6+[3]	5	1+[3]	2	4+[3]
299	?		-	10	8	-	4		-	-		147	1-1	=	-	-	18
364	T.1	-	-	=	141	_	-	-	-	-	-	8	6+[4]	4	2+[4]	2	5+[4]
365	Jahr	10	4+[1]	+	+	-	-	-	- 1	-	- 1	11-	- F	h -		-	-
390	Saturn? Jupiter?	-	-	-	-	6	5+[6]	4	2+[6]	3	9+[6]	7	1+[5]	15	<u>-</u>	-	-
584	Venus	7	3+[3]		1-1	-			-	-	-	-	(- .	-	1 1-	-	-
585	v Clius	-	-	-	-	1	3+[5]		-	2	8+[5]	-	-	-	-		-
780	Mars	-	1-	-	-	4	3+[11]	3	1+[11]	3	6+[11]	6+[2]	0+[8]	1-	-	-	14

Tabelle 7: Ergebnisse der statistischen Analyse der Daten von acht Abschnitten des numerischen Korpus gemäß der Lesung Thompson (1972)

5.4.3 Die Seiten p.51-58

Die Modifikationen Förstemanns (1901) und Thompsons (1972) sind zahlreich (→ Anhänge 3 und 4.2). Die durch die statistischen Analysen ermittelten Perioden sind – in Übereinstimmung mit der eigenen Lesung – 115 und 260. Zusätzlich tritt als Folge der Modifikationen in beiden alternativen Lesungen die Periode 299 auf und zwar ebenso signifikant oder hochsignifikant wie die Periode 115 in beiden alternativen Lesungen erscheint. Die Anzahlen der signifikanten Teiler der Periode 115 sind in den Ergebnissen der alternativen Lesungen geringfügig erhöht, die ihrer hochsignifikanten Teiler sind deutlich erhöht. Die Anzahlen der signifikanten und der hochsignifikanten Teiler der Periode 260 sind in den Ergebnissen beider alternativer Lesungen identisch, jedoch geringfügig größer als in den Ergebnissen der eigenen Lesung (→ Tabellen 2, 6 und 7).

Die Auswirkung der Modifikationen ist bezüglich der Periode 115 als negativ zu betrachten, weil eine einfache Gesetzmäßigkeit zwischen Finsternissen und dieser Periode, die astronomisch nur mit Merkur erklärt werden könnte, nicht gegeben ist (\rightarrow 5.2.2).

Ein weiterer negativer Effekt der Modifikationen besteht in der Erhöhung der Anzahlen einer Periode der Länge 299. Förstemann und Thompson nehmen Modifikationen am numerischen Material des Abschnitts überwiegend gemäß einer Regel vor, die mit folgendem Beispiel beschrieben werden kann. In einem relativ kleinen lokalen Ausschnitt wie z.B. 51C-E03 und 52A-C06 wird ein Faktor (hier: 11.960 = 40 · 299) als Bestandteil mehrerer Zahlen zutreffend identifiziert. Daraus folgern beide Autoren, dass weitere Zahlen des Ausschnitts diesen Faktor besitzen sollten. Daraus ergeben sich in den Ergebnissen ihrer Lesungen 8 hochsignifikante Teiler (hier: 299) dieser Periode, während in den Ergebnissen der eigenen Lesungen – in Übereinstimmung mit den alternativen Lesungen – zwar 10 ganzzahlige Teiler erscheinen, die aber nur signifikant sind.

Das Beispiel illustriert das Risiko dieser Art des induktiven Schlussfolgerns. Die Methode der Adaption einzelner Zahlen an eine augenscheinliche Regelhaftigkeit weniger benachbarter Zahlen ist in der Literatur verbreitet, beispielsweise modifiziert Aveni (1980:197) in p.43 G06 von 69600 auf 62400. Sowohl die wenigen Zahlen des Ausschnitts als auch eine aus ihnen scheinbar herleitbare Regelhaftigkeit sind offenkundig unvollständige Informationsquellen. Der gesamte Informationsgehalt eines Abschnitts ist in seiner Gesamtheit zu sehen. Sein numerischer Inhalt darf nur geschlossen einer Analyse unterzogen werden und dies sollte ohne

präjudizierende Annahmen in Form einer einzelnen Regel geschehen, so zutreffend sie für einen Teil der Daten auch sein mag.

Andererseits zeigt das Beispiel die Funktionalität des gewählten Paradigmas auf. Aus der statistischen Analyse aller Zahlen eines Abschnitts kann eine Information gewonnen werden, die zwar in mehreren einzelnen Zahlen verborgen ist, ihnen jedoch nicht einzeln, sondern nur gemeinsam im Verbund mit allen anderen entnommen werden kann. Dies ist aber auch ein Indiz für das Potential der gewählten Analysemethode: sie lässt Daten-Modifikationen auch aus dem Gesamtergebnis hervortreten, indem sie einen Zyklus bedeutsam erscheinen lässt, der ohne Modifikation in deutlich geringerem Maße auftritt.

5.4.4 Die Seiten p.58-59

Die Unterschiede zwischen den drei Lesungen des Ausgangsdatenmaterials dieses Abschnitts sind gering. Die durch die statistischen Analysen ermittelten Perioden 117, 260, 390, 585 und 780 sind in allen drei Lesungen identisch. Die Anzahlen ihrer signifikanten und hochsignifikanten Teiler weichen nur geringfügig voneinander ab (\rightarrow Tabellen 2, 6 und 7). Die alternativen Lesungen bestätigen also das Ergebnis der eigenen Lesung für alle dort genannten Perioden (\rightarrow 5.2.3) und stützen somit deren Interpretationen (\rightarrow 5.3).

5.4.5 Die Seiten p.43-44

Förstemann und Thompson modifizieren gleichartig 43G06 (69.600 auf 62.400), 43H06 (30.940 auf 31.200) und 43F11 (3.380 auf 3.120). Ferner ändert Thompson 43D11 (151.320 auf 152.880) und 44B06 (13.000 auf 12.740), Förstemann ändert diese Zahl auf 13.260 und zusätzlich 43F06 von 72.800 auf 72.540 (\rightarrow Anhang 4.4). Auf Grund dieser jeweils fünf Modifikationen an insgesamt 24 Daten dieses Abschnitts sind die Anzahlen der hochsignifikanten Teiler/Faktoren in den Ergebnissen beider Vergleichslesungen für die – in allen Ergebnissen übereinstimmend identifizierten – Perioden 260, 390 und 780 geringfügig größer als in der eigenen Lesung (\rightarrow Tabellen 2, 6 und 7). Die alternativen Lesungen bestätigen also das Ergebnis der eigenen Lesung für alle dort genannten Perioden (\rightarrow 5.2.4) und stützen somit deren Interpretationen (\rightarrow 5.3)

5.4.6 Die Seiten p. 69-73 (9 Ix)

Förstemann diskutiert – im Unterschied zu Thompson und zur eigenen Lesung – die Date 70B18 (1.202.240) im Kontext mit anderen Zahlen des Abschnitts p.69-73 (9 Ix). Daher ist sie Bestandteil in seiner Lesung dieses Abschnitts.

Die Zahlen der Positionen 70E01 und 70F01 sind stark zerstört. Die verbliebenen lesbaren Vigesimalstellen und der Kontext der lesbaren Zahlen lassen zwei Rekonstruktionen gleichermaßen sinnvoll erscheinen: Förstemann und Thompson rekonstruieren 168.480 und 154.440, für die eigene Lesung wurden 280.800 sowie 210.600 gewählt.

Die statistischen Analysen ermitteln die Perioden 117, 260, 390, 585 und 780 in allen drei Lesungen gleichartig. Die Anzahlen ihrer signifikanten und hochsignifikanten Teiler unterscheiden sich zwischen den alternativen Lesungen nur sehr geringfügig (\rightarrow Tabellen 2, 6 und 7). Diese Übereinstimmungen bestätigen also das in 5.2.5 beschriebene Ergebnis der eigenen Lesung für alle dort genannten Perioden und stützen deren Interpretationen (\rightarrow 5.3).

5.4.7 Die Seiten p. 69-73 (4 Eb)

Die Lesung Förstemanns weicht in vier und die Thompsons in fünf der insgesamt jeweils 46 Daten von der eigenen ab (\rightarrow Anhang 4.6). Die Auswirkungen auf die Ergebnisse der statistischen Analysen sind geringfügig: es treten in allen Lesungen dieselben Perioden auf, nämlich 260, 364 und 780. Thompsons Lesung liefert signifikantere Ergebnisse als diejenige Förstemanns, die minimal signifikanter als die der eigenen Lesung sind (\rightarrow Tabellen 2, 6 und 7). Die alternativen Lesungen bestätigen also das in 5.2.6 beschriebene Ergebnis der eigenen Lesung für alle dort genannten Perioden und stützen somit deren Interpretationen (\rightarrow 5.3).

5.4.8 Die Seiten p. 31-32

Die Zahlen dieses Abschnitts sind in etwa 50% seiner Gesamtfläche nicht oder nicht eindeutig lesbar. Von allen Autoren wird ferner eine Unregelmäßigkeit in der Anordnung der Zahlen festgestellt, die im C.D. selten ist. Daraus resultiert ein hohes Maß an Unterschieden zwischen den verschiedenen Lesungen. Dieses gilt sowohl für die Anzahl der identifizierten bzw. rekonstruierten Zahlen als auch für deren Größe (→ Anhang 3, Anhang 4.7).

Die Auswirkungen auf das Ergebnis der statistischen Analysen sind dennoch geringfügig: es treten in allen Lesungen ausschließlich die Perioden 260 und 364 auf. Thompsons Lesung liefert minimal signifikantere Ergebnisse als diejenige Förstemanns, die minimal signifikanter als die der eigenen Lesung sind (→ Tabellen 2, 6 und 7). Die alternativen Lesungen bestätigen

zwar das in 5.2.7 beschriebene Ergebnis der eigenen Lesung für die genannten Perioden. Diese Ergebnisse sind aber diejenigen mit der statistisch schwächsten Absicherung innerhalb der durchgeführten Untersuchung.

5.4.9 Die Seiten p. 62-64

Förstemann und Thompson modifizieren je drei Zahlen dieses Abschnitts (\rightarrow Anhang 3, Anhang 4.8). Die Auswirkungen auf das Ergebnis der statistischen Analysen sind geringfügig zu nennen. Es treten in allen Lesungen ausschließlich die Perioden 260 und 364 auf. Die Anzahlen ihrer signifikanten und hochsignifikanten Teiler weichen nur sehr geringfügig voneinander ab (\rightarrow Tabellen 2, 6 und 7). Die alternativen Lesungen bestätigen also das in 5.2.8 beschriebene Ergebnis der eigenen Lesung für diese Perioden und stützen deren Interpretationen (\rightarrow 5.3).

5.4.10 Schlussfolgerungen aus der synoptischen Betrachtung der drei Lesungen

- (1) Die graduellen Unterschiede zwischen den drei Lesungen in Bezug auf die Häufigkeiten signifikanter und hochsignifikanter Teiler/Faktoren beruhen auf dem regelhaften Charakter, mit dem sowohl Förstemann als auch und insbesondere Thompson Modifikationen am numerischen Material vornehmen. Diese Modifikationen wirken überwiegend dahingehend, höhere Anzahlen von ohnehin enthaltenen Perioden zu erzeugen.
- (2) Die Modifikationen können aus mehreren Gründen als nicht zielführend bewertet werden: Erstens erzeugen sie in den Ergebnissen der statistischen Analyse der Lesungen Förstemann (1901) und Thompson (1972) die Periode 299 (\rightarrow 5.4.3), für die keinerlei Erklärung vorliegt. Zweitens erzeugen die Modifikationen kein zusätzliches Ergebnis, das im Rahmen der Interpretation des Codex Dresden von Belang ist.

Drittens entziehen die Modifikationen die ursprünglichen Daten einer anderen Betrachtung und damit möglicherweise korrekteren Interpretation des Quelltextes.

(3) Aus diesen Tatsachen ist abzuleiten, dass Modifikationen am Material des Codex Dresden nur als Ausnahmen in wohldefinierten Fällen vorgenommen werden sollten. Als Beispiel für eine solche wohldefinierte Ausnahme möge das Beispiel des Abschnitts p.51-58 dienen. In ihm liegen gewisse Angaben von Zeitpunkten in drei verschieden Formen vor (\rightarrow 5.2.2). Sind diese drei Informationen untereinander widersprüchlich, dann kann ein Mehrheitskriterium

Codex Dresden: Seite	p.24,46-50	p.51-58	p.58-59	p.43-44	p.69-73	p.69-73	p.31-32	p.62-64
Basis	1 Ahau	multipel	13 Muluk	3 Lamat	9 Ix	4 Eb'	multipel	multipel
Anzahl der Zahlen	43	88	43	24	37	46	21	42
min. Zahl Z _{min}	236	177	78	78	86	65	17	17
max. Zahl Z _{max}	1.366.560	1.578.988	1.426.360	1.435.980	12.391.470	12.381.728	2.804.100	1.538.342
max. Teiler T _{max} [2σ]	37.960	35.880	14.820	3.900	28.080	14.560	910	7.280
· N =	· 36 =	· 13 =	· 9 =	· 28 =	· 6 =	· 5 =	• 1.394 =	· 20 =
max. Produkt P _{max}	1.366.560	466.440	133.380	109.200	168.480	72.800	1.268.540	145.600
programm-technische Kennziffer	1	0	2	3	4	5	6	7
siehe Text-Abschnitt	5.4.2	5.4.3	5.4.4	5.4.5	5.4.6	5.4.7	5.4.8	5.4.9
siehe Anhang	6.2.1	6.2.2	6.2.3	6.2.4	6.2.5	6.2.6	6.2.7	6.2.8
Gesamtanzahl der Teiler T _i [≥2σ]	46	50	79	37	65	58	15	35
Anzahl erklärter Teiler T _i [≥2σ]	28	26	38	19	42	29	9	16
Erklärungsquote [≥2σ]	60,9%	52,0%	48,1%	51,4%	64,6%	50,0%	60,0%	45,7%
Gesamtanzahl der Teiler T _i [≥3σ]	14	21	25	13	46	28	2	20
Anzahl erklärter Teiler T _i [≥3σ]	11	13	21	12	33	16	2	11
Erklärungsquote [≥3σ]	78,6%	61,9%	84,0%	92,3%	71,7%	57,1%	100%	55,0%
nicht erklärte Teiler [≥3σ]		8						
$n \cdot 32$	32				-			
n · 35						35, 70, 140, 280, 560	Part State of the	35, 70, 140
n · 36					36,72,108,216	-25		W 8 135 × 1105 11 - 1
n · 40	40, 80	47 02 104				80		
n · 46 n · 54		46, 92, 184			54, 108, 216,			10.
<i>n</i> 37					270, 540, 1080			
n · 56					9	56, 112		56, 112
n · 104		104	104, 312	312	208, 312	104, 208		104, 208
n · 120			120, 180		120, 180, 360	13		
n · 135					135, 270, 540, 1080			
n · 299		299, 598, 1196, 2392						
n · 455	30			10	537	455, 910		455, 910

Tabelle 8: Charakteristika der statistischen Analyse der Daten von acht Abschnitten des numerischen Korpus gemäß der Lesung Förstemann (1901)

Codex Dresden: Seite	p.24,46-50	p.51-58	p.58-59	p.43-44	p.69-73	p.69-73	p.31-32	p.62-64
Basis	1 Ahau	multipel	13 Muluk	3 Lamat	9 Ix	4 Eb'	multipel	multipel
Anzahl der Zahlen	43	88	43	24	35	46	27	42
min. Zahl Z _{min}	236	177	78	78	86	65	17	17
max. Zahl Z_{max}	1.366.560	1.578.988	1.426.360	1.435.980	12.391.470	12.381.728	2.804.100	1.538.342
max. Teiler T _{max} [2σ]	37.960	35.880	14.820	5.200	28.080	21.840	7280	7.280
· N =	· 36 =	· 13 =	· 9 =	· 21 =	· 6 =	· 5 =	· 3 =	· 20 =
max. Produkt P _{max}	1.366.560	466.440	133.380	109.200	168.480	109.200	21.840	145.600
programm-technische Kennziffer	1	0	2	3	4	5	6	7
siehe Text-Abschnitt	5.4.2	5.4.3	5.4.4	5.4.5	5.4.6	5.4.7	5.4.8	5.4.9
siehe Anhang	6.3.1	6.3.2	6.3.3	6.3.4	6.3.5	6.3.6	6.3.7	6.3.8
Gesamtanzahl der Teiler T _i [≥2σ]	45	52	72	54	67	72	27	35
Anzahl erklärter Teiler T _i [≥2σ]	28	26	34	22	41	35	15	16
Erklärungsquote [≥2σ]	62,2%	50,0%	47,2%	40,7%	61,2%	48,6%	55,5%	45,7%
Gesamtanzahl der Teiler T _i [≥3σ]	14	22	25	13	45	31	15	23
Anzahl erklärter Teiler T _i [≥3σ]	11	13	21	12	32	19	9	13
Erklärungsquote [≥3σ]	78,6%	59,1%	84,0%	92,3%	71,1%	61,3%	60,0%	56,5%
nicht erklärte Teiler [≥3σ]:	FI							
$n \cdot 32$	32							
n·35		=				35, 70, 140, 280, 560	35, 70	35, 70, 140, 280
n · 36					36, 72, 108, 216)
n · 40	40, 80	40				80	4.00	
n · 46		46, 92, 184						,
n · 56					54, 108, 216, 270, 540, 1080			
n · 56	.16311	n marka sina a sa a sa a sa a sa a sa a sa a s				56, 112	56	56, 112,
n · 104		104	104, 312	312	104, 312	104, 208	104	104, 208
n · 120	1 200		120, 180		120, 180, 360, 540, 1080		l.	
n · 135				10 14	135, 270			
n · 299		299, 598, 1196, 2392						
n · 455					i.	455, 910	455, 910	455, 910

Tabelle 9: Charakteristika der statistischen Analyse der Daten von acht Abschnitten des numerischen Korpus gemäß der Lesung Thompson (1972)

angewendet werden, wenn zumindest zwei der drei miteinander konsistent sind. Unter dieser Voraussetzung mag eine Modifikation im Sinne einer Anpassung – der dritten an die beiden anderen – vorgenommen werden. Es sollten jedoch auch durch eine derartige Modifikation keine anderen Diskrepanzen, Widersprüche oder ähnliches entstehen.

(4) Die Tabelle 8 für die Lesung Förstemann sowie die Tabelle 9 für die Lesung Thompson stellen in Analogie zu Tabelle 5 (für die eigene Lesung) weitere Ergebnisse dar.

Die Erklärungsquoten sowohl für die signifikanten als auch die hochsignifikanten Teiler differieren zwischen den verschiedenen Lesungen nur geringfügig. Insbesondere werden durch die Modifikationen Förstemanns und Thompsons keine nennenswert höheren Erklärungsquoten für die verschiedenen Abschnitte erzielt.

Auch die "nicht erklärten Teiler [3σ]" zeigen im Vergleich der drei Lesungen weitgehende Übereinstimmungen.

6. Deterministische Analysen im numerischen Korpus

6.1 Die Deutung des Venus-Zyklus der Seiten C.D. p.24, 46-50

6.1.1 Der Status der Interpretation des Venus-Zyklus

Im Codex Dresden beginnt in Position 46A19 eine Zahlenfolge mit dem Wert 236 und durch mehrfache sukzessive Addition der Werte 90, 250, 8 und 236 wird das Ergebnis 2920 (50D19) erzielt. Die Zwischensummen bilden eine mathematische Reihe absoluter Zahlen. Ihnen zugeordnet sind je 13 Datumsangaben im Tzolkin (in 46A01-13 beginnend) und je drei Datumsangaben im Haab (in 46A14, 46A22 und 46A24 beginnend), die sämtlich in den entsprechenden Zeilen der Spalte 50 D enden.

Bereits Ernst Förstemann (1901:109) identifiziert die Folge 236-90-250-8 mit dem inneren Planeten Venus: "Die 236 bezeichnet aber die Zeit der östlichen Elongation, des Abendsterns, die 90 die der Unsichtbarkeit des Planeten während der oberen Konjunktion, die 250 die der westlichen Elongation, des Morgensterns, die 8 die der Unsichtbarkeit während der unteren Konjunktion. Die Ungleichheit von 236 und 250 fällt etwas auf; gewöhnlich rechnet man diese Perioden, welche allerdings nicht gleich zu sein brauchen, als 243 Tage. Die kurze Periode ist nur auf sehr scharfe Augen berechnet; …".

Thompson (1972:62, 66) diskutiert die Bedeutung dieser Teilabschnitte des synodischen Venusumlaufs nicht.

Lounsbury (1978:776-77) schreibt: "The eight days ascribed to inferior conjunction are a fair approximation to a mean value for a period of invisibility that can vary from a couple of days to a couple of weeks. As for the other subdivisions, they are of appropriate orders of magnitude, although more nearly equal intervals might have been anticipated for the two periods of visibility. A reason for the slight disproportion is not readily apparent, although considerations of lunar reckoning (236 days are eight lunar months, 250 are about eight and a half), or of canonical days chartered by myth, have been suggested as possibilities."

Rose (2000:113) fasst ihre Interpretation zusammen in den Worten: "I take 90 days as a *window* within which the superior conjunction invisibility occurs, and the 8 days as a *window* within which the heliacal rising of the Morning Star occurs. Numbers 236 and 250 are then simply the intervals between the two windows."

Diese Zitate mögen als Beispiele dafür dienen, dass die Seiten p.24, 46-50 von der Wissenschaft bislang ausschließlich als Phasen des Umlaufs des inneren Planeten Venus um die Sonne betrachtet wurden wie er sich einem Beobachter von der Erde aus darbietet. Eine Berücksichtigung eines vierten Himmelskörpers, wie beispielsweise des Mondes, ist meines Wissens zur Erklärung der Zahlenfolge 236, 90, 250, 8 bislang nicht erwogen worden.

6.1.2 Die Interpretation des Venus-Zyklus unter Berücksichtigung des Mondes

Die ergänzende Hypothese ist, dass die Maya den Umlauf der Venus um die Sonne nicht nur in Bezug auf Konjunktionen mit ihr, sondern auch in Bezug auf Konjunktionen mit dem Mond beobachtet haben könnten. Diese Vermutung kann zunächst an dem Kriterium geprüft werden, inwieweit sie in der Lage ist, die vier wesentlichen Zahlenwerte der Seiten p.24, 46-50 (236 - 90 - 250 - 8) zu erklären. Sie ist aber auch mit der bisherigen Interpretation ohne Berücksichtigung des Mondes, für die die obigen Zitate Beispiele darstellen, zu vergleichen.

Der Nullpunkt der Beschreibung des Venusumlaufs durch die Maya in p.46 entspricht dem Zeitpunkt des Endes der Unteren Konjunktion. In der modernen Astronomie ist es üblich, den Nullpunkt der Berechnungen mit dem Zeitpunkt der Unteren Konjunktion zu identifizieren. Die grundsätzliche Korrektheit der nachfolgenden Darstellung ist von diesen unterschiedlichen Ausgangspunkten der Beobachtungen und ihrer Aufzeichnung nicht beeinflusst.

Die astronomischen Grundlagen der Bewegungen der Planeten Venus und Erde um die Sonne sowie des Mondes um die Erde sind in Abbildung 14 dargestellt. Sonne und Erde können dabei in einer festen Position gedacht werden. Die synodische Umlaufzeit der Venus beträgt $U_{syn}(Venus) = 583,9d$, die des Mondes beträgt $U_{syn}(Mond) = 29,5306d$. Während eines Umlaufs der Venus treten rund 20 Konjunktionen auf, dies ergibt sich als Quotient ihrer synodischen Umlaufperioden: $U_{syn}(Venus)/U_{syn}(Mond) = 583,9d/29,5306d \approx 19,77$. Mit einem mathematischen Modell, das vereinfachend konstante Winkelgeschwindigkeiten annimmt, können die ungefähren Zeitpunkte der Konjunktionen mit den entsprechenden Winkelabständen zur Sonne ermittelt werden. Als Zeitnullpunkt wird dabei die untere Konjunktion der Venus angenommen. Die Zeitpunkte und Sonnenabstände der Venus-Mond-Konjunktionen hängen jedoch vom Startwinkel des Mondes ab.

Von Bedeutung ist hierbei, dass der Winkel nicht kleiner als ca. 7° sein darf. Eine Mondsichel so nahe an der Sonne ist als Folge der optischen Eigenschaften des Staubes der Mondoberfläche unsichtbar. Bei der Venus spielt dieser Winkel hingegen keine Rolle, da ihre Helligkeit durch die Atmosphäre bedingt ist, die keine vergleichbare Erscheinung zeigt. Die

Venus ist gelegentlich selbst während ihrer unteren Konjunktion (entspricht Neumond) mit einer Helligkeit von – 4 Größenklassen neben der Sonne sichtbar.

Das einfache mathematische Modell ergibt, dass der Mond bei einem Startwinkel von etwa 250° (also zwischen Vollmond und Letztem Viertel während der unteren Konjunktion) mit der Venus in einer Weise zusammentrifft, die die im C.D. genannten vier Zahlen 8, 236, 90 und 250 zur Folge hat.

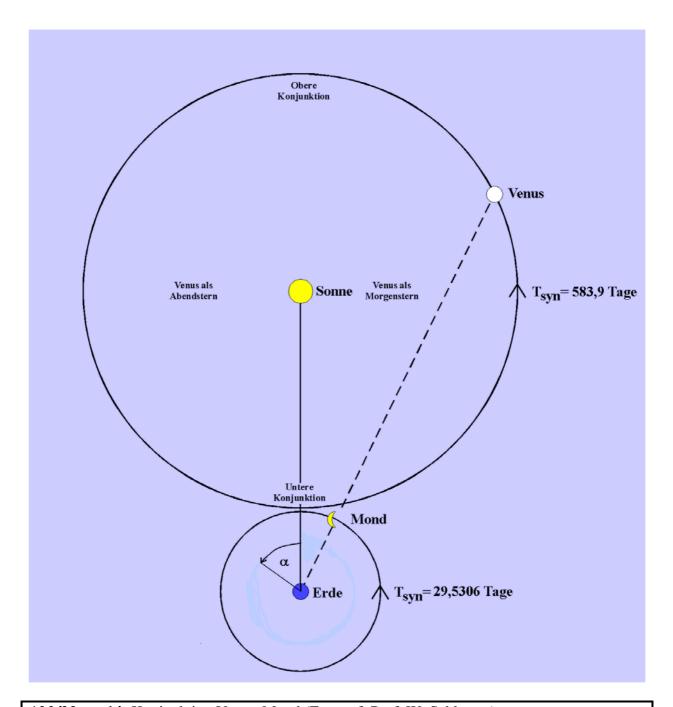


Abbildung 14: Konjunktion Venus-Mond (Entwurf: Prof. W. Schlosser)

Eine Überprüfung dieses Ergebnisses kann anhand des letzten Venusdurchganges am 8. Juni 2004 vorgenommen werden, denn der Winkel des Mondes entsprach mit 251,7° dieser Situation genau. Die Zeiten und Winkel der Konjunktionen für die folgenden 584 Tage wurden dabei mittels strenger himmelsmechanischer Rechnung ermittelt (Tabelle 10).

Unter 'Konjunktion' wird hierbei die Gleichheit der ekliptikalen Längen von Mond und Venus verstanden. Eingeklammert sind Konjunktionen mit einem unter dem obigen Limit von ca. 7°, die somit nicht sichtbar waren. Abbildung 15 zeigt die Fixpunkte (Untere Konjunktion sowie die 1., 9. und 12. Mond-Venus-Konjunktion) der Tabelle 10 in graphischer Darstellung. Diese Interpretation ist nicht an unsere Zeit gebunden, sondern gilt für alle historisch interessanten Epochen.

Phänomen zur Sonne	Zeitpunkt UT	JD 2 450 000+	Abstand	Differenz
Untere Konjunktion	2004, Juni 08 09 ^h	3164,88		◄ ──
				8,29 Tage
1. Mond-Venus-Konjunktion	Juni 16 16 ^h	3173,17	13°	◄ —
2. –''–	Juli 13 22 ^h	3200,42	39°	
3. –''–	Aug 11 23 ^h	3229,46	45°	
4''-	Sep 10 19 ^h	3259.29	44°	
5. –''–	Okt 10 22 ^h	3289,42	39°	236,37 Tage
6. –''–	Nov 10 01 ^h	3319,54	34°	
7. –''–	Dez 10 04 ^h	3349,67	26°	
8. –''–	2005, Jan 09 03 ^h	3379,63	20°	
9. Mond-Venus-Konjunktion	Feb 08 01 ^h	3409,54	13°	◄ ——
(10. –''–	Mrz 10 00 ^h	3439,50	5°)	
Obere Konjunktion	Mrz 31 03 ^h	3460,63		90,17 Tage
(11. Mond-Venus-Konj.	Apr 09 01 ^h	3469,54	2°)	
12. Mond-Venus-Konjunktion	Mai 09 05 ^h	3499,71	10°	◄ ——
13. –''–	Juni 08 13 ^h	3530,04	18°	
14. –''–	Juli 08 21 ^h	3560,38	26°	
15. –''–	Aug 08 05 ^h	3590,71	34°	
16. –''–	Sep 07 09 ^h	3620,88	40°	249,79 Tage
17. –''–	Okt 07 06 ^h	3650,75	45°	
18. –''–	Nov 05 19 ^h	3680,29	47°	
19. –''–	Dez 04 19 ^h	3709,29	42°	
20. –''–	2006, Jan 01 13 ^h	3737,04	19°	
Untere Konjunktion	Jan 14 00 ^h	3749,50		■

Tabelle 10: Beispiel von Mond-Venus-Konjunktionen (Juni 2004 - Januar 2006)

Die Spanne von 8 Tagen zwischen unterer Konjunktion der Venus mit der Sonne und der ersten Konjunktion Venus-Mond ist streng an den Startwinkel des Mondes von $\approx 250^{\circ}$ gekoppelt (\rightarrow Tabelle 11). Die anderen Zeitspannen (90 bzw. 236 Tage) treten auch bei anderen

Mondwinkeln auf. Tabelle 11 zeigt diesen Sachverhalt für alle Startwinkel des Mondes zwischen 0° und 360° in Schrittweiten von 10°. Sie ist damit auch ein Beispiel für das Konzept der Ganzheitlichkeit einer methodischen Analyse: die korrekte Lösung ergibt sich aus der Betrachtung eines Spektrums aller möglichen Lösungen.

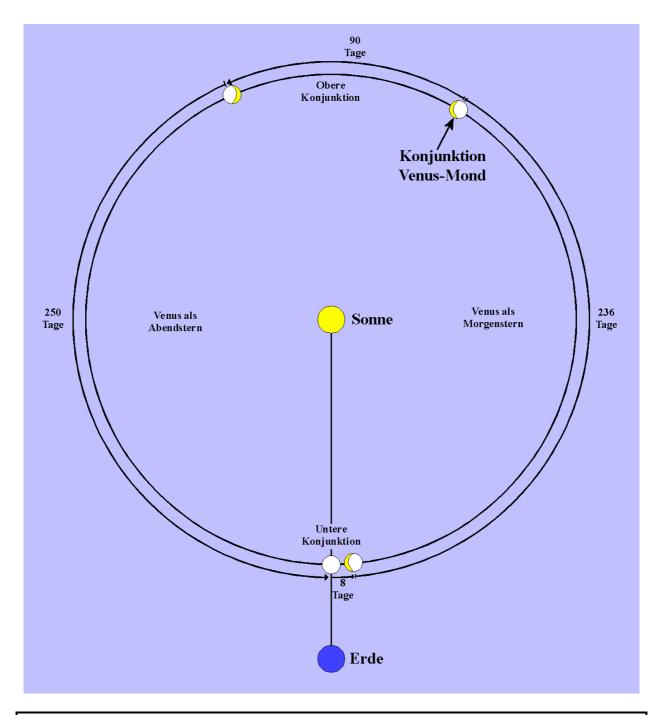


Abbildung 15: Konjunktionen Venus-Sonne und Venus-Mond (Entwurf: Prof. W. Schlosser)

Startw des Mond		Untere Konjunktion der Venus bis erste MVK	Erste MVK bis letzte MVK vor Oberer Konjunktion der Venus	Letzte MVK vor Oberer Konjunktion bis erste MVK nach Oberer Konjunktion der Venus	Erste MVK nach Oberer Konjunktion bis Untere Konjunktion der Venus
(°)		(Tage)	(Tage)	(Tage)	(Tage)
(1a)	(1b)	(2)	(3)	(4)	(5)
0		26,8	208,3	90,5	258,4
10	1.	26,0	208,2	90,5	259,2
20	V	25,2	208,1	90,5	260,0
30	i	24,5	208,1	90,5	260,9
40	e	23,7	208,0	120,7	231,5
50	r	22,9	207,9	120,7	232,4
60	t e	22,2	238,0	90,5	233,2
70	1	21,4	237,9	90,5	234,1
80		20,6	237,9	90,5	234,9
90		19,9	237,8	90,5	235,7
100		19,1	237,7	90,5	236,6
110	2.	18,4	237,6	90,5	237,4
120	V	17,6	237,5	90,5	238,2
130	i	16,9	237,4	90,5	239,1
140	e	16,1	237,3	90,5	239,9
150	r	15,4	237,3	90,5	240,8
160	t e	14,6	237,2	90,5	241,6
170	1	13,9	237,1	90,5	242,4
180		13,1	237,0	90,5	243,3
190		12,4	236,9	90,5	244,1
200	3.	11,7	236,8	90,5	244,9
210	V	10,9	236,7	90,5	245,8
220	i	10,2	236,6	90,5	246,6
230	e	9,5	236,5	90,5	247,5
240	r	8,7	236,4	90,5	248,3
250	t e	8,0	236,3	90,5	249,1
260	1	7,3	236,2	90,5	250,0
270		6,5	236,1	90,5	250,8
280	L	5,8	235,9	90,5	251,6
290	e	5,1	235,8	90,5	252,5
300	t z	31,4	208,7	90,5	253,3
310	t	30,6	208,6	90,5	254,2
320	e	29,9	208,5	90,5	255,0
330	S	29,1	208,5	90,5	255,8
340	V.	28,3	208,4	90,5	256,7
350		27,5	208,3	90,5	257,5

Tabelle 11: Mond-Venus-Konjunktionen (MVK) in Abhängigkeit vom Startwinkel des Mondes (0° = Neumond) zum Zeitpunkt der Unteren Konjunktion der Venus mit der Sonne (vgl. Bild 14)

Die hier dargestellte Interpretation unter zusätzlicher Berücksichtigung von Konjunktionen des Mondes mit Venus kann anhand von drei Kriterien bewertet und mit derjenigen ohne Berücksichtigung des Mondes verglichen werden:

- (1) Inwieweit erklärt sie die Zahlenwerte der Folge 8-236-90-250 ?
- (2) Inwieweit erklärt sie die fünfmalige Aufeinanderfolge der Zahlen 8-236-90-250 in den Seiten p.46-50 ? (→ Anhang 2.1)
- (3) Inwieweit erklärt sie die dreimalige Anwendbarkeit (der fünfmaligen Aufeinanderfolge der Zahlen 8-236-90-250) auf die drei Datumsangaben im Haab ?

Zur Frage (1) ist festzustellen: Die hier dargestellte Interpretation unter zusätzlicher Berücksichtigung von Konjunktionen des Mondes mit Venus erklärt die Zahlenwerte der Folge 8-236-90-250 exakt. Für die Interpretation ohne Berücksichtigung des Mondes gilt dieses nicht. Die Phasen der Unsichtbarkeit der Venus während der unteren Konjunktion variieren in aufeinanderfolgenden Zyklen für Yucatán zwischen ca. 7 und ca. 15 Tagen.

Zur Frage (2) ist festzustellen: Die fünfmalige Aufeinanderfolge der Zahlen 8-236-90-250 in den Seiten p.46-50 wird durch die Interpretation ohne Berücksichtigung des Mondes nicht befriedigend erklärt, denn aufeinanderfolgende Zyklen mit jeweils 8 Tagen der Unsichtbarkeit während der Unteren Konjunktion treten allenfalls in Ausnahmefällen ein. Dieser Mangel besteht jedoch auch für die hier dargestellte Interpretation unter zusätzlicher Berücksichtigung von Konjunktionen des Mondes mit Venus. Nach einem einmaligen Auftreten wie in 2004 tritt sie so mit Sicherheit nicht beim nächsten Zyklus auf. Die folgende untere Konjunktion der Venus am 14. Januar 2006 fand bei einem Mondwinkel von 175,4° statt (also Vollmond), was dann nicht zur Sequenz von 8-236-90-250, sondern zu 13,5 - 237,0 - 90,5 - 243,0 führt.

Zur Frage (3) ist festzustellen: Für die dreimalige Anwendbarkeit (der fünfmaligen Aufeinanderfolge der Zahlen 8-236-90-250) der drei Datumsangaben im Haab existieren im Rahmen der Interpretation ohne Berücksichtigung des Mondes komplexe Erklärungen, beispielsweise durch Teeple (1926, 1931) und Lounsbury (1982, 1983, 1992b). Diese machen zusätzliche Annahmen, beispielsweise indem sie einige Inkonsistenzen des Datenmaterials der Quelle in einer Weise deuten, für die auch alternative Interpretationen möglich sind.

Von diesen Schwierigkeiten ist auch die Interpretation mit Berücksichtigung des Mondes betroffen. Eine Erklärung der Verknüpfung der drei Datumsangaben im Haab im Rahmen dieser Interpretation erscheint dennoch (zunächst) einfacher zu sein. Der Startwinkel des Mondes verändert sich je Zyklus um ca. 75° (im obigen Beispiel für 2004-2006 um $251,7^{\circ}$ - $175,4^{\circ} = 76,3^{\circ}$). Der Wiedereintritt in das zweite (bzw. dritte) Datum im Haab nach je fünf Zyklen resultiert also in einer Rückläufigkeit des Startwinkels des Mondes von ca. $5 \cdot 76,3^{\circ}$.

Dies entspricht überschlägig gerechnet einer Rückläufigkeit von annähernd 360°, so dass der Ausgangszustand mit einem Startwinkel des Mondes von ca. 250° annähernd wieder erreicht wird. Eine Beantwortung der Frage (3) ist einer genauen himmelsmechanischen Rechnung und weiteren Analysen vorbehalten.

Zusammenfassend ist festzustellen, dass die Fragen (2) und (3) unter beiden Hypothesen – ohne und mit Berücksichtigung von Mond-Venus-Konjunktionen – nicht abschließend beantwortet sind. Aber nur die Hypothese mit Berücksichtigung von Mond-Venus-Konjunktionen erklärt die exakten Werte der Zahlenfolge 236-90-250-8.

6.2 Der Tzolkin

6.2.1 Die Deutungen des Tzolkin

Die 260-tägige Periode (Thompson 1960:66-103) steht in vielen Kulturen Mesoamerikas mit verschiedenen Lebensbereichen – Religion, Kult, Astronomie, Astrologie, Ritual – in Zusammenhang und findet in ihnen Anwendung. Auf sie wird im Folgenden mit der für die Kultur der Maya zwar nicht nachgewiesenen aber in moderner Literatur weit verbreiteten Bezeichnung *Tzolkin* Bezug genommen. Hypothesen für die – ggfls. annähernde – Übereinstimmung der Länge des Tzolkin mit der Dauer anderer Abläufe existieren in vielfältiger Form. In einigen von ihnen vermuten deren Autoren den alleinigen Grund oder eine von mehreren Möglichkeiten seiner Entstehung.

- (1) Eine *anthropologisch-arithmetisch-rituelle* Hypothese postuliert den Ursprung des Tzolkin als multiplikative Komposition ($260 = 20 \cdot 13$), wobei 20 durch das Vigesimalsystem oder den Menschen (20 Finger und Zehen) motiviert sei und 13 durch eine entsprechende Anzahl Götter bedingt ist (Bowditch 1910:266, Thompson 1931:349-53, 1950:98-99).
- (2) Eine *anthropologisch-biologische* Hypothese verweist darauf, dass der Tzolkin "... auch als annähernde Schwangerschaftsperiode benutzt [worden] sein [möge]" (Förstemann 1895:3). Bowditch (1910:274) zitiert einerseits diese Aussage Förstemanns und führt selbst aus "... that the number 260 approximates very closely to the length of nine lunar revolutions and to the period of human gestation" (Bowditch 1910:267). In Verbindung mit weiteren Diskursfeldern des Tzolkin wird diese Hypothese in ähnlichen Formen formuliert.

So fasst Schultze-Jena (1933:28-38) seine detailreichen Beobachtungen des Gebrauchs des Tzolkin bei den Quiché im 20. Jahrhundert im Hochland von Guatemala folgendermaßen

zusammen: "... Endgliedmaßen-Mondwechsel-Schwangerschaft-Götterdienst-Termine." (Schultze-Jena 1933:37). Hierauf verweisen auch Earle und Snow (1985) sowie Kremer (o.D.:27, 32, 34) und Paxton (2001:48).

Kelley (1973:180) betont "The fact that 260 days is a good approximation to a human pregnancy period meant that people could easily avoid coitus on particularly bad days with the result of a statistically significant decline in the number of births on such days."

Tedlock (1992b:190) und Milbrath (1999:2) sehen in ihr eine Verbindung zwischen der menschlichen Schwangerschaftsdauer und der Wachstumsperiode des wichtigen Grundnahrungsmittels Mesoamerikas, dem Mais: "... the intervall is very close to the length of the human gestation period, which biologists estimate to be between 255 and 266 days The 260-day period also approximates the length of the agricultural calendar in core areas of Mesoamerica Indeed, it is possible that the 260-day agricultural cycle and the cycle of human gestation were linked together at an earlier time ... " (Milbrath 1999:2).

(3) Diesen *ackerbaulichen* Kontext mit besonderem Bezug zur Anbauperiode des Mais betont Girard (1962:263-75, 332-50) in Verbindung mit mythologischen und rituellen Aspekten.

(4) Ferner bestehen verschiedene astronomische Hypothesen:

Das Intervall zwischen zwei Zenitpassagen der Sonne beträgt auf der geographischen Breite von 14° 30' N etwa 260 Tage; die andere Differenz zwischen den Zenitdurchgängen beträgt etwa 105 Tage. Auf diesen Zusammenhang verweisen Nuttall (1928) bezüglich der Stätte Copán (Honduras) und Malmström (1973) unter Hinweis auf die Stätte Izapa (Guatemala) im südlichen Hochland.

Ludendorff (1930a:6-10) und Teeple (1930:86-93) zeigen einen Zusammenhang des Tzolkin mit Mond- (und Sonnen-) Finsternissen über das so genannte Finsternishalbjahr auf:

3 Finsternishalbjahre $\approx 3 \cdot 173,33 = 520 = 2$ Tzolkin.

Ferrari d'Occhieppo sieht einen Zusammenhang zwischen dieser "natürlichen Ursache der Sonnenfinsternisse … [und der] … normalen Dauer der Schwangerschaft" (1958:200).

Burgess (1994:63, 69, Table 2) argumentiert astronomisch und zeigt, dass das Intervall zwischen einer 1. Mond-Venus-Konjunktion (MVK) nach oberer Konjunktion und der darauf folgenden 1. MVK nach unterer Konjunktion einem Intervall von annähernd 260 Tagen entspricht und schlussfolgert: "... the 260-day Tzolkin was a cycle (period) based upon moon/Venus relationships ..." (Burgess 1990:72).

Justeson und Kaufman (2001:123) fassen einige der genannten Hypothesen zusammen: "Speculative astronomical correlates, and a connection to fertility and reproduction based on the close approximation of 260 days to the time from missed menses to birth, are widely suggested as bases for the length of the divinatory calendar".

In den genannten Ausführungen dieser Hypothesen sowie in Thompson (1960:98-99) finden sich teilweise ausführliche Darstellungen ihres Für und Wider. Sie müssen hier nicht wiederholt werden, denn für das Folgende wesentlich ist nur der unbeantwortete Zustand der Fragen nach Ursprung und Bedeutung der Dauer des Tzolkin: "The fact that this span approximates the human gestation period may be an important clue. ... Astronomical bases for this count have been proposed, but there is no agreement as to the origin or meaning of the 260-day count." (Sharer und Traxler 2006:104)

6.2.2 Die Strukturen des Tzolkin und des Haab

Die 260-tägige Periode (Tzolkin) und die 365-tägige Periode (Haab) sind – neben der Langen Zählung (Long Count), die einen Tag in Form einer Vigesimalzahl beschreibt, – wichtige Elemente zur Aufzeichnung von Informationen bei den Maya. Im Folgenden werden zunächst Tzolkin und Haab in gleichartigen Formen dargestellt, um die Gemeinsamkeiten und Unterschiede zwischen beiden Systemen deutlich zu machen und zu interpretieren. In einem zweiten Schritt werden die Teiler des Tzolkin und Teilergebnisse der statistischen Analyse (\rightarrow 5.) im Hinblick auf ihren Beitrag zur Deutung des Tzolkin untersucht (\rightarrow 6.2.3).

Die Numerale des Haab haben die Werte 0, ..., 19 (oder: 1, ..., 20), die durch Kombination mit 18 Nominalen 360 verschiedene Bezeichnungen (von Tagen) ergeben, und die ergänzt um ein 19. Nominal (Uayeb), das mit den Ziffern 0, ..., 4 (oder: 1, ..., 5) verknüpft weitere 5 Tage bezeichnet, in insgesamt 365 verschiedenen Bezeichnungen (von Tagen) resultieren (→ Abbildung 16).

Die Numerale des Tzolkin haben die Werte 1, ..., 13, die durch Kombination mit 20 Nominalen 260 verschiedene Bezeichnungen (von Tagen) ergeben (→ Abbildung 17). Die Notationen der Perioden sowohl des Haab als auch des Tzolkin haben also gemeinsam, aus je einem Numeral (Zahlenwert) und je einem Nominal (Namenswert) zu bestehen.

Die beiden Zeitzählungssysteme Haab und Tzolkin sind also bezüglich der sie konstituierenden Komponenten – Numeral und Nominal – gleichartig konstruiert, sie unterscheiden sich nur in der für das folgende unmaßgeblichen Länge dieser Komponenten. Betrachtet man Numerale

und Nominale (jeweils für Haab und Tzolkin gleichartig) als zwei Dimensionen eines cartesischen Koordinatensystems, so kann in den Positionen dieser Tabellen die Reihenfolge der Tage durch Zählung von 1 bis 365 bzw. von 1 bis 260 eingetragen werden. Zwischen den beiden Systemen Haab und Tzolkin ist dann ein struktureller Unterschied erkennbar.

									Ha	ab										
Numeral	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nominal																				
POP	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
UO	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
ZIP	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
ZOTZ'	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
TZEC	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
XUL	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
YAXKIN	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
MOL	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
CH'EN	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
YAX	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
ZAC	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
CEH	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
MAC	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
KANKIN	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
MUAN	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
PAX	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
KAYAB	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
CUMKU	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
UAYEB	361	362	363	364	365															

Abbildung 16: Haab als cartesische Tabelle (eigene Darstellung) (zur Orthographie: → Anlage 2, einleitende Anmerkung (3))

Die Zählung der Tage des Haab (→ Abbildung 16) schreitet so voran, dass für ein Nominal (z.B. Pop) alle Numerale (von 0, ..., 19) durchlaufen werden, bevor ein Übergang zum nächsten Nominal erfolgt. D.h. Pop ist eine Teilperiode (der Gesamtperiode Haab), die aus 20 Tagen besteht.

Die Zählung der Tage des Tzolkin (→ Abbildung 17) schreitet demgegenüber anders voran. Auf den Tag 1 Imix folgen 2 Ik, 3 Akbal, ..., 13 Ben und weiter 1 Ix, 2 Men, ..., 7 Ahau (als 20. Tag), 8 Imix, 9 Ik, 10 Akbal, 11 Kan, ..., bis schießlich 13 Ahau (als 260. Tag) erreicht wird. Im System des Tzolkin wird also die Bezeichnung eines folgenden Tages erzeugt, indem beide konstituierenden Dimensionen (Nominal und Numeral) verändert werden. Das bedeutet, innerhalb des Tzolkin existiert keine Teilperiode wie beispielsweise Lounsbury formuliert: "The component lesser cycles will be called the "trecena" and the "veintena" ... " (1978:764). Der Tzolkin birgt keine Untergliederung, ausgenommen nur die Tage selbst. Die Tage des Tzolkin sind Individuen, die durch keine andere Gemeinsamkeit (etwa die Zugehörigkeit zu

einem Zeitraum, wie z.B. einem Monat) verbunden sind, außer der Gemeinsamkeit, die Einheit Tzolkin zu konstituieren. (Sharer und Traxler 2006:104)

					7	<i>Ezolkin</i>	ı						
Numeral	1	2	3	4	5	6	7	8	9	10	11	12	13
Nominal													
IMIX	1	41	81	121	161	201	241	21	61	101	141	181	221
IK	222	2	42	82	122	162	202	242	22	62	102	142	182
AKBAL	183	223	3	43	83	123	163	203	243	23	63	103	143
KAN	144	184	224	4	44	84	124	164	204	244	24	64	104
CHICCHAN	105	145	185	225	5	45	85	125	165	205	245	25	65
CIMI	66	106	146	186	226	6	46	86	126	166	206	246	26
MANIK	27	67	107	147	187	227	7	47	87	127	167	207	247
LAMAT	248	28	68	108	148	188	228	8	48	88	128	168	208
MULUC	209	249	29	69	109	149	189	229	9	49	89	129	169
OC	170	210	250	30	70	110	150	190	230	10	50	90	130
CHUEN	131	171	211	251	31	71	111	151	191	231	11	51	91
EB	92	132	172	212	252	32	72	112	152	192	232	12	52
BEN	53	93	133	173	213	253	33	73	113	153	193	233	13
IX	14	54	94	134	174	214	254	34	74	114	154	194	234
MEN	235	15	55	95	135	175	215	255	35	75	115	155	195
CIB	196	236	16	56	96	136	176	216	256	36	76	116	156
CABAN	157	197	237	17	57	97	137	177	217	257	37	77	117
ETZ'NAB	118	158	198	238	18	58	98	138	178	218	258	38	78
CAUAC	79	119	159	199	239	19	59	99	139	179	219	259	39
AHAU	40	80	120	160	200	240	20	60	100	140	180	220	260

Abbildung 17: Tzolkin als cartesische Tabelle (eigene Darstellung) (zur Orthographie: → Anlage 2, einleitende Anmerkung (3))

Der Haab wird in der Literatur nahezu ausnahmslos in einer Form dargestellt, die der Abbildung 16 entspricht. Der Tzolkin wird hingegen überwiegend in einer Form präsentiert, für die Abbildung 18 je ein Beispiel aus älterer und jüngerer wissenschaftlicher Literatur zeigt. Im Unterschied zu Abbildung 17 treten in diesen Darstellungen die Numerale nicht als Koordinate sondern als Elemente der Matrix auf. Die Stellung des Tages im 260-tägigen Zyklus zeigen sie nicht. Für einen Vergleich zweier Systeme (hier: Haab und Tzolkin) mit derart gleichartigen strukturierenden Konstituenten (Numeral und Nominal) sollten gleichartige Darstellungsformen gewählt werden, damit die tatsächlichen Unterschiede zwischen beiden Systeme als deren Eigenschaften erkennbar werden.

Der Unterschied zwischen diesen beiden Systemen der Maya kann also folgendermaßen zusammengefasst werden:

- im Tzolkin ändern sich Numeral **und** Nominal von jedem Tag zu jedem Tag, d.h. in allen 260 Fällen,

- im Haab ändern sich Numeral **und** Nominal nur in 19 von 365 Fällen von einem Tag zum nächsten, in den sonstigen 346 Fällen ändert sich nur das Numeral.

Der kultur-interne Vergleich der beiden Systeme der Maya ergibt – wie die strukturgleichen Darstellungen erkennen lassen – einen Unterschied bezüglich der Sicherheit der übermittelten Information. Eine fehlerhafte Übermittlung eines Numerals (oder Nominals) ist im System des Tzolkin durch das Nominal (oder das Numeral) in 100% aller Fälle erkennbar. Dies ist also deutlich besser als im Haab, wo dies nur in etwas mehr als 5% aller Fälle zutrifft.

				T	ABLE	OF 2	60 D	AYS																				
Ymix	1 2 3 4 5 6 7 8 9 10 11 12 13 1	2 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9	3 3 4 5 5 6 7 8 9 10 11 12 13 1 2 3	9 10 11 12 13 1 2 3 4 5 6 7 8 9	3 4 5 6 7 8 9 10 11 12 13 1 2 3 4	6 Io 11 12 13 1 1 2 3 4 4 5 5 6 7 3 9 10 11	7 4 5 6 7 8 9 16 11 12 13 1 2 3 4 5	8 11 12 13 1 2 3 4 5 6 7 8 9 10	9 5 6 7 8 9 10 11 12 13 12 2 3 4 5 6	10 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13	11 6 7 8 9 10 11 12 13 1 2 3 4 4 5 6 6 7	12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 12 13 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	13 7 8 9 10 11 12 13 1 1 2 3 3 4 4 5 5 6 7 8	14 2 3 4 4 5 5 6 7 8 9 10 11 12 13 1 1 2 2	Imix Ik Ak b'al K'un Chikehan Kimi Manik' Lamat Muluk Ok Chuwen Eb' B'en Ix Men Kib' Kab'an Et' nah' Kawak	1 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6	8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7	9 10 11 12 13 1 1 2 3 4 5 6 7 8 9 10 11 12 13 11 12 13 11 12 13 14 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8	10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	4 5 6 7 8 9 10 112 13 1 2 3 4 5 6 7 8 9	11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 12 13 1 12 13 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10	12 13 1 2 3 4 5 6 6 7 8 9 10 11 12 13 1 12 13 14 12 13 14 14 15 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 5 6 7 8 9 10	13 1 2 3 4 5 6 6 7 8 9 10 11 12 3 3 4 5 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	27 88 99 100 111 122 133 44 55 66 77 88 99 100
Cib Caban	3 4 5 6 7	10 11 12 13	5 6 7 8	11 12 13 1	5 6 7 8 9	12 13 1 2 3	6 7 8 9	13 1 2 3 4	7 8 9 10	1 2 3 4 5	8 9 10 11 12	3 4 5 6	10 11 12 13	3 4 5 6	Ajaw	7	1	8 ble VII	2	¥	3	10	i Tzolk'i	11	5	iż	6	13

Abbildung 18: Häufige Darstellungsformen des Tzolkin a) Bowditch (1910:24) (links); b) Kettunen und Helmke (2008:40) (rechts)

Dieser Unterschied zwischen beiden Systemen kann selbstverständlich zufälliger Natur sein. Wenn man jedoch bereit ist, Konzepte wie Sicherheit oder Fehler als allgemeine Denkformen aller Menschen anzunehmen, dann kann dieser strukturelle Unterschied auch als ein bewusst gewähltes Merkmal – eben zur Unterscheidung vom häufig parallel aufgezeichneten System des Haab – entwickelt worden sein.

Diese Eigenschaft – Sicherheit oder Fehlervermeidung – sei im Folgenden anhand eines Beispiels veranschaulicht. Dazu dient je ein Datum des Haab, z.B. 3 Pop, und ein Datum des Tzolkin, z.B. 3 Kan. Nehmen wir an, dem Schreiber oder Kopist sei bei der Niederschrift ein gleichartiger Fehler unterlaufen, nämlich in beiden Fällen jeweils die Ziffer 4 schreiben zu wollen.

Der Fehler im Haab beträgt <u>einen</u> Tag (denn 4 Pop ist der auf 3 Pop folgende Tag). Ein Rezipient dieser Information wird diesen Fehler in aller Regel nicht bemerken, es sei denn, er verfügt in irgendeiner Form über einen Zugang zu der ursprünglichen Information, die ihm

einen Vergleich und damit eine Korrektur ermöglicht. Eine Korrektur der fehlerhaften Information ist aber meistens auch nicht erforderlich, denn ein Unterschied von einem Tag ist für nahezu alle Ereignisse im bürgerlichen Leben belanglos. Der Fehler im Tzolkin beträgt demgegenüber aber nicht einen Tag, denn 4 Kan ist nicht der auf 3 Kan folgende Tag, sondern folgt 40 Tage später oder lag zuletzt vor 220 Tagen in der Vergangenheit (→ Abbildung 17). Ein im Gebrauch des Tzolkin kundiger Rezipient dieser Information wird diesen Fehler in aller Regel bemerken, jedenfalls dann, wenn er mit dem Kontext vertraut ist. Dies entspricht dem allgemeinen Verständnis, dass ein großer Fehler leichter zu entdecken ist als ein kleiner.

Wenn man als Erklärung für diese Eigenschaft des Tzolkin Zufall oder Willkür auszuschließen bereit ist, dann besteht eine nahe liegende Möglichkeit einer Erklärung darin, dass dieser Effekt der Fehlerabsicherung bei der Erfindung des Tzolkin intendiert war. Aber selbst dann, wenn man diese Annahme nicht teilt, bleibt die Tatsache bestehen, dass dem Tzolkin diese Eigenschaft der "Fehlertoleranz" – im Unterschied zum Haab – immanent ist.

Der kultur-interne Vergleich der Strukturen des Tzolkin und des Haab weist auf unterschiedliche Anwendungszwecke hin. Die zur Analyse dieser Verschiedenheit angewendeten Denkformen werden im Sinne des Strukturalismus als allgemeine Denkstrukturen aller Menschen aufgefasst (\rightarrow 3.1).

Diese Eigenschaft steht mit einem wichtigen Ergebnis der statistischen Analyse (\rightarrow 5.) in Einklang, nämlich dem, dass der Tzolkin ein wesentliches Werkzeug zum Zwecke der Zeit messenden Beobachtung und Berechnung astronomischer Vorgänge darstellt. Insoweit deuten die probabilistischen und die deterministischen Analysen auf dasselbe Ergebnis hin.

6.2.3 Die Teiler des Tzolkin

Für die untersuchten Abschnitte des Codex Dresden (\rightarrow 4.) wurden mit hoher Wahrscheinlichkeit astronomische Inhalte festgestellt (\rightarrow 5.). Die Dauer des Tzolkin (260 Tage) ist die einzige Periode, die in allen diesen Abschnitten enthalten ist, d.h. er ist – neben der Gemeinsamkeit ihres astronomischen Inhalts – die zweite festgestellte Gemeinsamkeit aller dieser Abschnitte. Damit liegt die Vermutung nahe, dass der Tzolkin von den Maya als ein Hilfsmittel zur Erleichterung ihrer astronomischen Berechnungen nicht nur genutzt, sondern geradezu entworfen wurde.

Die Babylonier haben ihr Zahlsystem auf der Grundlage der Zahl 60 errichtet, weil deren nichttriviale Teiler 2, 3, 4, 5, 6, 10, 12, 15, 20 und 30 arithmetische Berechnungen erheblich erleichterten.

Somit kann folgende Analogie gesehen werden: Haben die nicht-trivialen Teiler (der Länge) des Tzolkin (260): 2, 4, 5, 10, 13, 20, 26, 52, 65 und 130 astronomische Berechnungen der Maya erleichtert? Kann mit diesen Faktoren effizient Astronomie betrieben werden?

B. Riese (persönliche Kommunikation 2009) riet zur Vertiefung dieser Vermutung und W. Schlosser (persönliche Kommunikation 2009) empfahl in Analogie zu der in Kapitel 5 durchgeführten statistischen Analyse der multiplikativen Zerlegung von Zahlen, eine statistische Analyse der additiven Zusammensetzbarkeit der ermittelten astronomisch deutbaren Zahlen (115, 117, 364, 365, 390, 584, 585 und 780) (\rightarrow 5.3, Tabelle 2) und der 'nicht erklärten Teiler' (35, 36, 40, 46, 54, 56, 104, 120, 135 und 455) (\rightarrow 5.3.7, Tabelle 5) anhand aller Teiler des Tzolkin, d.h. unter Einbeziehung der trivialen Teiler 1 und 260. Mit anderen Worten: Bildet die Menge $T_{260} = \{1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260\}$ aller Teiler des Tzolkin ein effizientes Zahlensystem bezüglich der additiven Darstellbarkeit der Menge aller ermittelten hypothetisch astronomischen Zahlen $T_{h.a.} = \{115, 117, 260, 364, 365, 390, 584, 585, 780\}$ und der Menge aller 'nicht erklärten Teiler' $T_{n.e.} = \{35, 36, 40, 46, 54, 56, 104, 120, 135, 455\}$ der statistischen Analyse (\rightarrow 5.)?

Zur Beantwortung dieser Fragestellung soll im Folgenden die Effizienz der additiven Darstellung der Zahlen der Mengen $T_{h.a.}$ und $T_{n.e.}$ mit der Effizienz der additiven Darstellung aller Zahlen zwischen 1 und 780 verglichen werden. Die Effizienz der additiven Darstellung einer Zahl wird durch die minimale Anzahl der zu ihrer Darstellung erforderlichen Summanden definiert.

Mit $S_{min}(z)$ sei die minimale Anzahl der Summanden bezeichnet, die zur (additiven) Darstellung einer Zahl z erforderlich ist.

Mit $\bar{S}_{min}(z)$ sei der Mittelwert aus den 21 Werten $S_{min}(m)$ mit m=z-10, ..., z+10 bezeichnet; das ist der Mittelwert der minimalen Anzahl der Summanden, die jeweils zur Darstellung der Zahl z und ihrer je 10 kleineren und größeren Nachbarn erforderlich sind.

Die Ergebnisse sind für die Zahlen $z=1,\ldots,200$ in Abbildung 19 und für die Zahlen $z=301,\ldots,600$ in Abbildung 20 dargestellt. Die Mittelwerte $\overline{S}_{min}(z)$ (blau) sowie ihre Streuung $\overline{S}_{min}(z)$ - 1σ (gelb) und $\overline{S}_{min}(z)$ + 1σ (hellblau) sind als Linien dargestellt. Die minimale Anzahl der

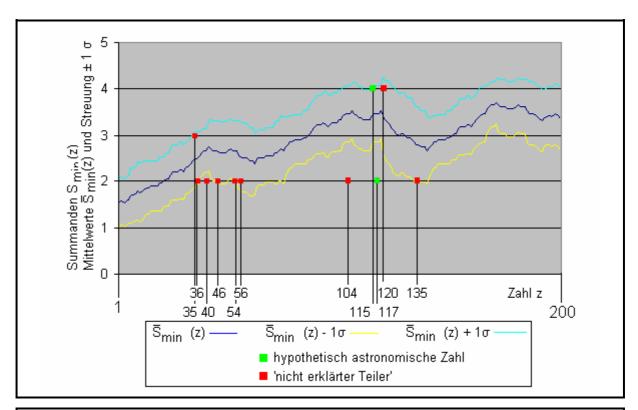
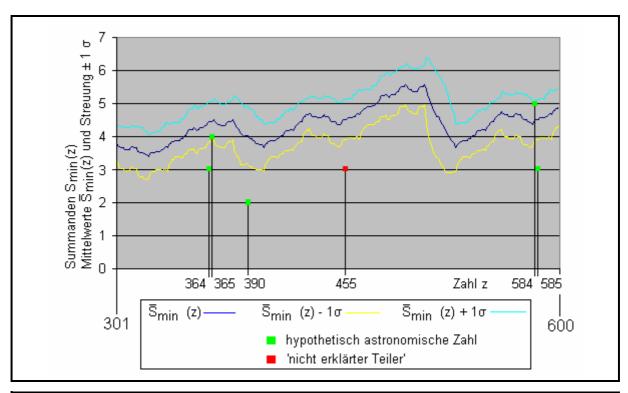



Abbildung 19: Summanden, Mittelwerte und deren Streuung (\pm 1 σ) für die Zahlen (z) 1 bis 200

Abbildung 20: Summanden, Mittelwerte und deren Streuung ($\pm 1\sigma$) für die Zahlen (z) 301 bis 600

Summanden $S_{min}(z)$ jeder astronomisch deutbaren Zahl ist grün markiert, die minimale Anzahl der Summanden $S_{min}(z)$ jedes 'nicht erklärten Teilers' ist rot gekennzeichnet. Die (minimale) Anzahl der Summanden der in den Abbildungen 19 und 20 nicht enthaltenen Zahlen 260 $(S_{min}(260) = 1 \text{ Summand}, \ \overline{S}_{min}(z) = 3,48) \text{ und } 780 \ (S_{min}(780) = 3 \text{ Summanden}, \ \overline{S}_{min}(z) = 5,48)$ liegen ebenso wie die der 13 dargestellten Zahlen unterhalb von $\overline{S}_{min}(z)$ - 1σ bzw. in unmittelbarer Nähe dieser Linie. Somit zeigen 15 aller 19 Zahlen von $T_{h.a.}$ und $T_{n.e.}$ Effizienz im Sinne des definierten Kriteriums der minimalen Anzahl der zu ihrer additiven Darstellung erforderlichen Summanden. Vier weitere Werte liegen geringfügig unterhalb von $\overline{S}_{min}(z)$ + 1σ , nämlich z_1 =35 und z_2 =120 aus der Menge $T_{n.e.}$ der 'nicht erklärten Teiler', sowie z_3 =115 und z_4 =584 aus der Menge $T_{h.a.}$ der hypothetisch astronomischen Zahlen.

6.2.4 Ergebnis

Es ergeben sich zunächst folgende Schlussfolgerungen:

- (1) Sowohl die hypothetisch astronomischen Zahlen $T_{h.a.} = \{115, 117, 260, 364, 365, 390, 584, 585, 780\}$ als auch die 'nicht erklärten Teiler' $T_{n.e.} = \{35, 36, 40, 46, 54, 56, 104, 120, 135, 455\}$ sind bezüglich des Kriteriums der additiven Zusammensetzbarkeit aus den Teilern des Tzolkin deutlich effizienter darstellbar als alle übrigen Zahlen zwischen 1 und 780.
- (2) Die Zahlen beider Mengen $T_{h.a.}$ und $T_{n.e.}$ sind gleichermaßen intendiert, und zwar unabhängig vom astronomischen oder nicht-astronomischen Anwendungsbereich dieser Zahlen.
- (3) Die Menge aller Teiler des Tzolkin $T_{260} = \{1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260\}$ bildet ein effizientes Zahlensystem.

Darüber hinaus kann vermutet werden, dass der Tzolkin zur effizienten Behandlung mindestens eines bestimmten und prinzipiell identifizierbaren Diskursgegenstandes erfunden wurde. Die Teiler des Tzolkin können also dazu benutzt werden, die bestehenden Hypothesen bezüglich des Ursprungs der 260-tägigen Periode zu überprüfen.

Die anthropologisch-arithmetisch-rituelle Hypothese postuliert die Zahlen 20 und 13 als Erzeugende des Tzolkin. Dessen Teiler sind dann das zwangsläufige Ergebnis des Produkts 260. Diese Hypothese kann somit durch die Analyse der hypothetisch astronomischen Zahlen und der 'nicht erklärten Teiler' nicht evaluiert werden.

Die menschliche Schwangerschaft ist in keine allgemein erkennbaren Teilperioden gegliedert. Die Analyse der hypothetisch astronomischen Zahlen und der 'nicht erklärten Teiler' liefert somit ein falsifizierendes, jedoch insgesamt schwaches, Indiz gegen diese Hypothese.

Im Bezug auf den Ackerbau sind vielfältige Zeitabschnitte für und zwischen Aussaat und Ernte, Regenperioden und vieles andere denkbar, so dass ihre Evaluation allein anhand der ermittelten Ergebnisse nicht möglich ist.

Die astronomischen Hypothesen können grundsätzlich in verschiedener Weise mit den Teilern des Tzolkin in Verbindung stehen. Beispielsweise könnten die Intervalle zwischen den Zenitdurchgängen und den Äquinoktien oder Teilabschnitte der planetarischen Umlaufzeiten relevant sein.

Die Teiler des Tzolkin und die "nicht-erklärten" Teiler der statistischen Analyse bilden ein Kriterium, das grundsätzlich für die Evaluation des Ursprungs und der Dauer des Tzolkin verwendet werden kann. Jedoch für sich allein genommen ist es zu schwach, um eine Entscheidung über eine der genannten Hypothesen zu treffen. Weitere Hinweise zu ihrer Überprüfung ergeben sich möglicherweise aus der Analyse der sonstigen Almanache des C.D., in denen überwiegend Zahlen in der Größenordnung dieser Teiler relevant sind (\rightarrow 8.3 (1)).

6.3 Das Vigesimalsystem

Die Frage nach der Bedeutung der Teile und Teiler des Tzolkin steht in engem Zusammenhang mit der Frage nach dem Wesen von Teilen und Teilern im vigesimalen Stellenwertsystem. Jedes Stellenwertsystem – auch das Vigesimalsystem der Maya – stellt Zahlen durch Ziffern in geordneten Positionen dar. Die Ziffern sind die explizit geschriebenen Koeffizienten der ihnen zugeordneten Potenzen, die nicht explizit geschrieben, sondern implizit verstanden werden, beispielsweise $23 = 2 \cdot 10^1 + 3 \cdot 10^0$. Die Maya schrieben Zahlen im Vigesimalsystem ebenso in expliziten Koeffizienten der implizit (durch ihre Positionen) verstandenen Potenzen. Allein aus der Existenz eines Stellenwertsystems kann somit abgeleitet werden, dass die Maya nicht nur Addition und Multiplikation angewendet haben, sondern auch Kenntnis des dualen Konzepts der expliziten und impliziten Darstellung, nämlich innerhalb ihrer Zahlendarstellung, hatten. Die grundlegenden Operationen, die in einem Stellenwertsystem möglich sind, wie die Addition und die Multiplikation, sind im C.D. vielfältig dokumentiert. Beispielsweise zeigen die Seiten p.2-23 Additionen modulo 13 von schwarzen Zahlen mit einem Ergebnis, das als rote Zahl geschrieben ist, zu dem wiederum eine schwarze Zahl modulo 13 addiert wird. Die Farbe

"schwarz" kann als explizites Zeichen für die Addition verstanden werden. Für die Multiplikation existiert kein explizites Operationszeichen.

Die Kenntnis eines Stellenwertsystems, der Addition und der Multiplikation legen nahe, dass den Anwendern auch deren inverse Operationen, Subtraktion und Division, bekannt waren. Beispiele für die Subtraktion liefert einerseits das obige Beispiel durch Umkehrung der Lese-und Berechnungsrichtung. Die in der Literatur gängige Interpretation der Schleifenzahlen als negative Zahlen stellt ein zweites Beispiel dar. Dieses soll hier anhand der Zahl 2.200 (24A21) allerdings relativiert werden. Sie kann mit den ihr benachbarten Zahlen 1.366.560 (24B18) und 1.364.360 (24C18) auf vielfältige Weise verknüpft werden. So kann die Schleifenzahl beispielsweise in:

```
(1) 1.366.560 - 1.364.360 = 2.200  und
```

$$(2) 1.366.560 - (+2.200) = 1.364.360$$
 als positive Zahl sowie in

(3)
$$1.364.360 - 1.366.560 = -2.200$$
 und

(4) 1.366.560 + (-2.200) = 1.364.360 als negative Zahl interpretiert werden.

Wichtig ist, dass in jeder arithmetisch korrekten Verknüpfung dieser drei Zahlen entweder eine Subtraktion oder eine negative Zahl erforderlich ist. Die Maya kannten also das Konzept der Negation oder der Subtraktion.

In ähnlicher Weise kann der Nachweis der Kenntnis der Division bei den Maya geführt werden. Zur Illustration möge aus den vielfältig vorhandenen Beispielen für multiplikative Zusammenhänge von Perioden, wie sie in Kapitel 5 analysiert wurden, wiederum ein Beispiel der Seiten p.24, 46-50 dienen. Die Zahl 2920 (50D19) gilt seit Förstemann (1901:106) als Produkt aus Näherungswerten sowohl für das tropische Jahr als auch die synodische Umlaufperiode der Venus, nämlich: $8 \cdot 365 = 5 \cdot 584$. In der Forschung besteht weitgehend Konsens, dass die Maya die Kommensurabilität der Umlaufzeiten von Erde und Venus durch eine einzige Zahl ausgedrückt haben. Eine Vielzahl anderer Kommensurabilitäten von Umlaufzeiten weiterer Himmelskörper hat die Analyse in Kapitel 5 ergeben. Die o.a. algebraische Form ist aber nur eine von mehreren möglichen Darstellungen, ihr äquivalent ist beispielsweise: $365 = \frac{5}{8} \cdot 584$. Jedes Stellenwertsystem birgt ferner die Möglichkeit, Teile als Ganzes zu denken, indem "das Komma verschoben" und entsprechend eine andere Einheit gedacht wird.

Im Schriftkorpus der Maya sind weder explizite Zeichen für die o.a. Rechenoperationen noch für Bruchteile – wie "Bruchstriche" oder ein "(Vigesimal-)Komma" – vorhanden, ungeachtet der o.a. Beispiele schwarzer Zahlen und der Schleifenzahlen. Ferner fehlt ein explizites Zeichen für den Vergleich oder die Gleichheit zweier (oder mehrerer) Entitäten. Dennoch wird durch die angeführten Beispiele nahe gelegt, dass die Maya die Kenntnis und Fähigkeit zur Durchführung dieser arithmetischen Operationen besaßen. Diese können sehr wohl ohne derartige als Hilfsmittel dienende Zeichen ausgeführt werden, denn sie sind intrinsischer Bestandteil eines jeden Stellenwertsystems. Dabei ist die Form der Darstellung in einer einzigen Zahl (wie 2920) oder in einer algebraischen Gleichung (wie in: $8 \cdot 365 = 5 \cdot 584$) oder mit einer gebrochenen Zahl (wie in: $365 = \frac{5}{8} \cdot 584$) von geringer Bedeutung. Wichtig ist der Inhalt, der selbstverständlich nicht nur explizit zu Tage tritt. Jedenfalls darf aus der Abwesenheit einer uns gewohnten – hier algebraischen – Schreibweise oder dem Fehlen expliziter Operationszeichen nicht die Abwesenheit arithmetischer oder algebraischer Zusammenhänge zwischen Gruppen von Zahlen gefolgert werden. Sie können von den Maya sehr wohl implizit verstanden und gelesen worden sein.

Schon Förstemann hat sich zur Frage nach diesen Kenntnissen der Maya ergebnisoffen geäußert: "... das wären 29 ½ Tag, also nahezu der wahre Mondmonat. ... Das Ganze wäre danach = $2 \cdot 29 \frac{1}{2} = 59$." (Förstemann 1901:54) und "Das würde nach der Art der Inschriften 9 + $3 \cdot 20 = 69$ bedeuten, übrigens drei Fünftel des Merkurumlaufs." (Förstemann 1901:155) Er beschreibt sie aber auch als "... eine Bruchrechnung, von der die Maya entweder nichts wussten oder der sie mit Scheu aus dem Wege gingen ..." (Förstemann 1901:121).

Diese Ausführungen zeigen, dass sich das rekonstruierende Verständnis der mathematischen Fähigkeiten der Maya weder auf die Bestimmung und Analyse der von ihnen verwendeten Zeichen beschränken noch durch eigenweltliche Darstellungsformen mathematischer Operationen und Begriffe, wie beispielsweise "Brüche", eingeschränkt werden darf. Eine vollständige Analyse sollte immer auch die impliziten Formen und Inhalte suchen und angemessen berücksichtigen.

6.4 Die Genauigkeit der Astronomie der Maya

Astronomische Beobachtungen sind Messungen in Raum und Zeit. Somit sind sie grundsätzlich fehlerbehaftet und ihre Ergebnisse bergen ein gewisses Maß an (Un-)Genauigkeit. Die Beobachtung eines Himmelsobjekts ist zunächst eine Bestimmung seiner Position in Bezug auf den Horizont und als solche nicht völlig exakt. Diese Ortsinformation ist durch das Erscheinen desselben Objekts am (annähernd) selben Ort mit einer Zeitinformation korreliert, zu deren

Messung frühen Kulturen zunächst nur die Einheit eines ganzen Tages zu Gebote stand, und die insoweit keine höhere Genauigkeit besitzen kann. Derartige Ungenauigkeiten in der Orts- und Zeitbestimmung bestehen im Prinzip gleichartig auch dann, wenn ein Himmelsobjekt nicht in Bezug auf den Horizont sondern einen zweiten Himmelskörper beobachtet wird.

Die Ergebnisse der statistischen Analysen (→ Kapitel 5) zeigen für drei astronomische Sachverhalte je zwei ganzzahlige Werte (→ Tabellen 2 und 3), die den tatsächlichen astronomischen Verhältnissen nahe kommen. Das sind:

- die synodische Umlaufzeit des Merkur U_{syn} (Merkur)=115,88d, die durch die Werte 115 (p.51-58) und 117 (p.24,46-59 und p.69-73 (9 Ix) sowie schwache Hinweise in p.43-44) näherungsweise bestimmt sein kann;
- die synodische Umlaufzeit der Venus $U_{syn}(Venus)=583,92d$, die durch die Werte 584 (p.24,46-50) und 585 (p.58-59 und p.69-73 (9 Ix)) näherungsweise bestimmt sein kann;
- das tropische Jahr ($a_{trop} = 365,24219d$), das durch die Werte 364 (p.69-73 (4 Eb), p.31-32, p.63-64) und 365 (p.24, 46-50) näherungsweise bestimmt sein kann (\rightarrow 6.5).

Aus Gründen der Vollständigkeit sei erwähnt, dass auch die ermittelte Periode 390 einen Nährungswert darstellen kann, nämlich für die synodische Umlaufzeit des äußeren Planeten Saturn ($U_{syn}(Saturn)=378,09d$) oder für die synodische Umlaufzeit des äußeren Planeten Jupiter ($U_{syn}(Jupiter)=398,88d$) ($\rightarrow 5.3.5$).

Die ermittelten Zahlenwerte der Maya können sowohl als Ungenauigkeiten ihrer Beobachtungen oder Berechnungen verstanden werden, aber auch als Ausgangspunkt(e) für ergänzende Interpolationen, Extrapolationen, Iterationen oder Intervallschachtelungen. Für diese liegen in den nicht untersuchten Abschnitten des C.D. möglicherweise Hinweise vor.

Für derartige Berechnungen könnte die Vigesimalzahl 9.9.16.0.0 (24B18) eine besondere Rolle gespielt haben. Ihr entspricht die Dezimalzahl 1.366.560 mit folgenden Eigenschaften (→ Anhang 6.1):

(1)
$$1.366.560 = 5.256,00 \cdot 260 = 5.256 \cdot \text{Tzolkin}$$

(2a) =
$$2.340,00 \cdot 584$$
 = $2.340 \cdot U_{hyp,1}(Venus)$

(2b) =
$$2.336,00 \cdot 585$$
 = $2.336 \cdot U_{hyp,2}(Venus)$

$$(3a) \hspace{1.5cm} = 11.883, 13 \cdot 115 \hspace{1.5cm} \approx 11.883 \cdot U_{hyp,1}(Merkur)$$

(3b) =
$$11.680,00 \cdot 117$$
 = $11.680 \cdot U_{hyp,2}(Merkur)$

(4a)	=	3.504,00 · 390	=	$3.504 \cdot U_{hyp}(Jupiter?)$
(4b)	=	3.504,00 · 390	=	$3.504 \cdot U_{hyp}(Saturn~?)$
(5)	=	1.752,00 · 780	=	$1.752 \cdot U_{hyp}(Mars)$
(6a)	=	3.754,29 · 364	\approx	$3.754,29 \cdot a_{trop}$?
(6b)	=	3.744,00 · 365	\approx	$3.744,00 \cdot a_{trop}$?
(6c)	=	3.742,00 · 365,19508	\approx	$3.742,00 \cdot a_{trop}$?

Die Vigesimalzahl 9.9.16.0.0 enthält alle Perioden, die durch die statistische Analyse ermittelt wurden [(1), (2a), (2b), (3b), (4a), (4b), (5), (6b)], als ganzzahlige Vielfache. Nur die ermittelten Perioden 115 (3a) und 364 (6a) sind nicht ganzzahlige Teiler von 1.366.560.

Sie stellt ferner in der Form $3.425,99278 \cdot 398,88 = 3.426,00 \cdot U_{syn}$ (Jupiter) eine hervorragende Näherung an den astronomisch korrekten Wert für die synodische Umlaufzeit des Jupiter dar.

Diese Darstellung bedeutet eine Erweiterung der multiplikativen Zerlegungen Förstemanns (1901:50) um die ganzzahligen Werte 585 (2b), 390 (4a, 4b) und die Interpretation der durch die statistische Analyse ermittelten Werte 115 (3a) und 364 (6a) als nicht-ganzzahlige Näherungen.

Falls die Zahl 1.366.560 tatsächlich die Kommensurabilität aller Umlaufzeiten der durch die Maya beobachteten Himmelskörper ausdrücken soll, dann liegt es nahe, dass sie diese auch auf das tropische Jahr, d.h. die astronomisch relevante Jahreslänge, ausgedehnt haben. Der bestmögliche Näherungswert dafür, der durch den ganzzahligen Teiler von 3.742 erzeugt werden kann, ist 365,19508 Tage (6c).

6.5 Das Sonnenjahr (das tropische Jahr)

Die Zeitzählung der Maya beruht auf einer absoluten Zählung der Tage in Form der Langen Zählung sowie einem Kalendersystem mit den konstituierenden Elementen Tzolkin und Haab mit den Längen 260 und 365. Wie jedes andere Kalendersystem, das auf einer ganzzahligen Anzahl von Tagen beruht, sind weder Tzolkin noch Haab noch ihre Verknüpfung zur Kalenderrunde (erst nach 18980 Tagen wiederholt sich eine aus beiden Bestandteilen zusammengesetzte kalendarische Angabe) in der Lage, die genaue Länge des tropischen Jahres (365,24219d) darzustellen.

Ein frühes Zeugnis für die Kenntnis sowie die Art und Weise des Umganges mit der Differenz zwischen dem tropischen Jahr und dem 365-tägigen Haab – und damit auch allen anderen mit ihm in Verbindung stehenden Bestandteilen des Zeitzählung der Maya – enthält eine wichtige ethnohistorische Quelle des 16. Jahrhunderts, die *Relación de las cosas de Yucatán* des Diego

de Landa. Darin heißt es: "Tienen su año perfecto como nuestro de ccc, y Lxv días y vi horas" und weiter "De estas seis horas se hazian se qada quatro años un día, y así tenian de quatro en quatro años el ano ccc Lxvi días." (Manuskript der Biblioteca Real Academía de la Historia) Landas Beschreibung bezieht sich auf die Maya. Sie könnte aber zum einen schon durch europäisches Gedankengut geprägt sein. Darüber hinaus entstammt sie der frühen Kontaktzeit. Ein Rückschluss auf die Kenntnisse der Maya in der Postklassik – dem Entstehungszeitpunkt des Codex Dresden – oder in der Klassik, sollte nur mit gebührender Vorsicht vorgenommen werden.

Der Codex Florentino des Bernardino de Sahagún enthält einen weiteren Hinweis auf die Kenntnis des tropischen Jahres in Mesoamerika: "Otra fiesta hazian, de quatro en quatro años, a honrra del fuego, …, y la llamauan pillauanaliztli. Y en esta fiesta es verisimjle, y ay conjeturas que haziã su bisexto, contando seis de nemontemj." (Anderson und Dibble 1979:144). Diese Aussage bezieht sich primär auf das zentralmexikanische Hochland und kann nicht direkt auf die Maya bezogen werden.

Förstemann (1891:142) hielt für möglich, dass "17 Tage eingeschaltet" wurden. Bowditch (1910:198-210) betont die Bedeutung der exakten Kenntnis des tropischen Jahres für eine Ackerbau betreibende Gesellschaft. Bowditch fasst seine Ausführungen zusammen in der Aussage: "I am therefore of the opinion that this calculation was made and that no actual intercalation occurred." (Bowditch 1910:202) Beispiele für die in diesem Satz angesprochene Berechnung zeigt Bowditch (1910:203-9) für Monumente verschiedener Stätten. Diese besteht einerseits aus der Bildung einer Differenz zwischen zwei auf einem Monument aufgezeichneten kalendarischen Daten, die um mehrere Jahre auseinanderliegen. In einem zweiten Schritt interpretiert Bowditch andere kalendarische Angaben innerhalb desselben Monuments als den für diesen Zeitraum relevanten Betrag der akkumulierten Abweichungen zwischen einem 365-tägigen und einem tropischen Jahr.

Teeple (1930:70-85) hat diese Hypothese zu der Theorie der Determinanten erweitert. Eine Determinante bezeichnet den Betrag, um den ein tropisches Jahr 365 Tage überschreitet, sowie dessen Vielfache. Teeple interpretiert Bestandteile kalendarischer Daten der Monumente der klassischen Zeit als solche Beträge, die sich seit dem Ursprungsdatum 13.0.0.0.0 4 Ahau 8 Cumku bis zu dem auf den Monumenten genannten Datum akkumuliert haben. Thompson (1960:317-20) fügte Teeples Beispielen einige hinzu. Diese Hypothese gilt aber "seit spätestens 1975 als gescheitert" (B. Riese, persönliche Kommunikation 2009).

Der Zahlenwert $364 = 4 \cdot 91$ gilt als eine Näherung der Jahreslänge (Förstemann 1893:30) und werden auch als "computing year" (Thompson 1941) bezeichnet.

Beide Zahlenwerte (364 und 365) treten in den Ergebnissen der statistischen Analyse (→ 5.) auf und wurden dort ebenso gedeutet. Sie sind aber auch in den Daten von Monumenten archäologisch erschlossener Orte nachgewiesen. "Der kleine Ruinenort Machaquilá … [dessen] … Skulpturen in Graham (1967) vorbildlich veröffentlicht sind …" (Riese 1984:149), trägt auf seinen Stelen Kalenderdaten, die als "Zyklen von 364tägigen … [und von] 365tägigen Jahren" (Riese 1984:154) zu interpretieren sind (Riese 1984). Ähnliche Ergebnisse dokumentiert Tate (1988) für Yaxchilan (Justeson 1989:113-15).

Nach einer mehr als einhundertjährigen Forschungsgeschichte sind weder die Frage, ob die Maya (einen Näherungswert für) die Länge des tropischen Jahres kannten, noch die Frage, wie sie den 365 Tage überschreitenden Betrag der Dauer des tropischen Jahres in Verbindung mit den Bestandteilen ihrer Zeitzählung handhabten, abschließend beantwortet, auch wenn Aveni (1980:172) feststellt: "... now generally accepted that the Maya employed tropical year calculations ...".

Die geschilderten Indizien (→ 6.3, 6.4) für die mathematischen Kenntnisse der Maya – vier Grundrechenarten, Stellenwertsystem, Kenntnis der Null, Rechnen mit Teilen eines Ganzen (allerdings ohne explizite Kennzeichen wie Bruchstriche oder Dezimalkommata) - sind in Verbindung mit grundlegenden Randbedingungen horizont-astronomischer Beobachtung zu sehen. Jede von einer ganzzahligen Anzahl von 365 Tagen für die Länge eines Jahres ausgehende Zeitzählung ergibt z.B. nach 100 Jahren eine Verschiebung der Jahreszeiten im kalendarischen System von mehr als 24 Tagen. Eine derartige Fehlweisung ist auch in tropischen Breiten anhand der zeitlichen Verschiebung von Regen- und Trockenperioden erkennbar. Auch astronomische Beobachtungen, wie sie im Codex Dresden als gesichert gelten (Abschnitte p.24, 46-50 und p.51-58) und durch die Ergebnisse der statistischen Analyse für vier weitere Abschnitte (p.58-59, p.43-44, p.69-73 (9 Ix), p.69-73 (4 Eb)) nachgewiesen wurden, erfordern nicht nur eine genaue Kenntnis astronomischer Perioden, sondern die Beobachtungen erzeugen diese Kenntnis. Denn die Annahme einer ganzzahligen Anzahl von Tagen für die Länge eines Jahres wird durch die Beobachtung falsifiziert, dass die Sonne nach 365 Tagen eben nicht an die Position zurückgekehrt ist (entsprechendes gilt auch für die Positionen der Planeten), an der sie 365 Tage zuvor beobachtet werden konnte. Dieser Effekt beträgt zwar weniger als 6 Stunden pro Jahr. Er entspricht aber auf der geografischen Breite des Maya-Tieflands (und unter der Annahme einer Beobachtungshöhe von 200m über dem Meeresspiegel) bei Sonnenauf- oder -untergang etwa 0,1°. Dies wiederum entspricht einem

Fünftel des Sonnendurchmessers und ist bei hinreichend strukturiertem Horizont auch für ein menschliches Auge schon erkennbar (Schlosser 2008: persönliche Kommunikation). Praktisch unübersehbar wird dieser Effekt durch Akkumulation über mehrere Jahre und insbesondere bei Beobachtung der Sonnenauf- und -untergänge zu den Äquinoktien.

Lehmann (1912:162) nennt unter Bezugnahme auf einen bestimmten Tag ein weiteres, jedoch für alle Tage gültiges Motiv für eine Anpassung der Zeitzählung an die tatsächliche Länge des tropischen Jahres: "Den indianischen Priestergelehrten musste viel daran gelegen sein, diesen Tag, der wie kein anderer zu einem Nullpunkt geeignet ist, nicht verrücken zu lassen, da sonst die Jahresfeste in große Unordnung geraten sein würden."

Im Folgenden ist die Suche innerhalb der untersuchten acht Abschnitte (\rightarrow 4., 5.) nach Indizien für Zahlenwerte, die mit der Länge des tropischen Jahres in Verbindung gebracht werden können – sowie deren Ergebnisse – dargestellt. Dazu wurde die Methode der statistischen Analyse so modifiziert, dass sie auch nicht-ganzzahlige Perioden in einem Datenbestand sichtbar machen kann, der selbst nur aus ganzzahligen Werten besteht.

In dieser modifizierten statistischen Analyse wurde nach Zahlen in den acht ausgewählten Abschnitten des numerischen Korpus gesucht, die ganzzahlige Vielfache von Näherungswerten an den modernen Wert der Länge des tropischen Jahres (a_{trop}= 365,24219d) oder an die Differenz zwischen diesem und dem Haab (a_{trop} – 365 = 0,2422 (d/a)) sind. Die moderne Anpassung von kalendarischen Systemen an das tropische Jahr in Form des Schaltjahres arbeitet mit dem Wert 0,2425d/a. Eine Arbeitshypothese besteht also darin, Zahlen im C.D. zu identifizieren, die ganzzahlige Vielfache von 2422, 2423, 2424 oder 2425 sind. Diese Hypothese kann um eine weitere Zahl ergänzt werden, die sich aus dem Kalendersystem ergibt. Ein vollständiges Datum der Maya, bestehend aus einem Tag im Tzolkin und im Haab, wiederholt sich erst nach 18980 Tagen (Kalenderrunde). Ihr Neubeginn hatte in weiten Teilen Mesoamerikas eine hohe rituelle Bedeutung und wurde bis in die Zeit der frühen Kontakte zwischen Europäern und Azteken im Hochtal von Mexico als "Zeremonie des neuen Feuers" feierlich begangen. Für die Maya könnte also von Interesse gewesen sein, diejenige Abweichung vom exakten tropischen Jahr zu berechnen, die sich nach 18980 = 52 · 365 Tagen ergibt. Diese Differenz beträgt:

$$\Delta_1 = 52 \cdot (365,24219 - 365) = 12,59388.$$

Mit dem modernen Wert von 0,2425d/a zur Anpassung des europäischen Kalenders an das tropische Jahr ergibt sich für die Zeitspanne von 52 Jahren eine mittlere Differenz von $\Delta_2 = 52 \cdot (365,2425 - 365) = 12,6100$.

Daher erscheint es sinnvoll, hypothetisch auch nach dem Vorhandensein von ganzzahligen Vielfachen der Zahlen $\Delta_1 = 1259$, $\Delta_2 = 1261$ sowie dem Wert zwischen diesen, $\Delta_3 = 1260$, zu suchen.

Darüber hinaus kann nach Werten gesucht werden, die annähernd ganzzahlige Vielfache des tropischen Jahres oder seines 52-fachen Wertes (≈ 18.992,6) sind.

Tatsächlich treten mehrere annähernd ganzzahlige Vielfache einiger dieser Zahlenwerte auf:

Beispiel 1: 43 D 11 enthält die Zahl 151.320 = 624.000 · 0,2425 = 12.000 · 12,61. Die nichtganzzahlige Differenz von 12,61 zwischen der Kalenderrunde und 52 tropischen Jahren kann innerhalb der Zahl 151.320 ganzzahlig gedacht werden, denn 151.320 = 120 · 1261.

Förstemann (1901:92) und Thompson (1972:107) lesen diese Zahl und interpretieren sie korrekt und dem Kontext des Abschnitts entsprechend als 194 · 780.

<u>Beispiel 2:</u> 70 D 17: 101.852, die möglicherweise aber auch als 101.850 zu lesen ist. Förstemann (1901:166) modifiziert sie zu 101.812. Auch eine intensive Nachforschung in Thompson (1972) kann diese Zahl in seiner Arbeit nicht nachweisen.

```
101.850 = 420.000 \cdot 0,2425, aber auch mit 101.852 = 420.000 \cdot 0,2425047 wird eine gute Näherung erzielt.
```

Beispiel 3: 62 F 08: 1.272.544 = 67,00206 · 18.992,61 = 67 · 18.993,194

<u>Beispiel 4:</u> 63 C 13: 1.538.342 = 80,99687 · 18.992,61 = 81 · 18.991,876

<u>Beispiel 5:</u> 69 E 11: 12.381.728 = 33.900,0198 · 365,2425 = 33.900 · 365,24271.

Hiermit sei auf die Möglichkeit hingewiesen, dass diese Zahlen den Maya zur Approximation der Länge des tropischen Jahres gedient haben können. Diese Annahme wird durch diese Fälle nicht belegt. Sie begründen, dass die vorgestellte Methode der statistischen Analyse auf eine Suche nach weiteren Inhalten ausgedehnt werden kann und sollte. Diese Beispiele bedeuten, dass die Maya mit demselben mittleren Wert für die jährliche kalendarische Korrektur operiert hätten wie es im modernen europäischen Kalender geschieht.

7. Analyse der Richtungsinformationen

7.1 Aufgabenstellung

Im Folgenden wird der Codex Dresden in seiner Gesamtheit im Hinblick auf die in ihm enthaltene Strukturinformation Richtung untersucht.

Zunächst werden die Leserichtungen sowohl des hieroglyphischen Korpus als auch die Richtungen, in denen die arithmetischen Operationen innerhalb des numerischen Korpus verlaufen, sowie die Darstellungskonventionen in den tabellenartigen Teilen des numerischen Korpus betrachtet (\rightarrow 7.2). Danach erfolgt eine Bestandsaufnahme der Richtungsinformationen in den Darstellungen des piktoralen Korpus (\rightarrow 7.3). Anschließend werden diese beiden Teilergebnisse der Ermittlung der Richtungsinformationen in Beziehung zueinander gesetzt. Zur Erklärung dieser Beziehung werden drei Hypothesen präsentiert und bezüglich ihrer Verträglichkeit mit den wissenschaftlich akzeptierten Inhalten des C.D. geprüft (\rightarrow 7.4). Das Bildmaterial der übrigen drei erhaltenen Codices der Maya wird zum Vergleich und zur Evaluierung herangezogen (\rightarrow 7.5).

Für den Schriftträger C.D. liegen Darstellungen der Leserichtung von Teilabschnitten, z.B. der Venus- und der Finsternis-Tafeln, vor. Die Arbeiten Förstemanns (1901), Thompsons (1972) enthalten Angaben zur Leserichtung verschiedener einzelner Abschnitte des C.D. Eine vollständige Untersuchung, die die Leserichtungen des gesamten C.D., seiner Teile und seiner Darstellungsformen – hieroglyphisches, numerisches und piktorales Korpus – explizit macht, liegt nicht vor.

7.2 Die Richtungsinformationen im hieroglyphischen und numerischen Korpus

Das Schriftkorpus der Maya besteht mehrheitlich aus Texten, die in Doppel-Kolumnen von links oben nach rechts unten zu lesen sind, wobei mehrere Doppelkolumnen nebeneinander angeordnet sein können.

Die Leserichtung des hieroglyphischen Korpus des C.D. entspricht bis auf geringfügige Variationen diesem Grundprinzip. Neben dem Fall der zweispaltigen (Standard-)Leserichtung von links oben nach rechts unten (p.24: Spalten A und B) existieren auch Passagen, die einspaltig von oben nach unten (p.24: Spalte C) (Davoust 1997:174-75) oder einzeilig von links nach rechts (p.25-28) zu lesen sind.

Die Leserichtung des numerischen Korpus im C.D. zeigt ebenfalls mehrere Varianten: Die Abschnitte p.24,46-50 und p.51-58, in denen die aufsteigende Folge der in ihnen enthaltenen Zahlen astronomische Tatsachen beschreibt, sind eindeutig von links nach rechts zu lesen, sowie das obere vor dem unteren Register. In einer Vielzahl von weiteren Fällen ist die horizontale Leserichtung von links nach rechts durch die schrittweise Addition schwarzer Zahlen zu rot dargestellten (Zwischen-)Ergebnissen (→ Anhang 2.6: p.31A27 über 31F27 nach 32A30 zu 32F30) ebenso eindeutig.

Je ein Beispiel für eine vertikale Leserichtung, und zwar von unten nach oben, enthalten die Seiten p.31 bis p.34: die Daten des Tzolkin von 10 Ben (31E23) bis 4 Cauac (31D14) sind durch sieben Summanden miteinander verbunden. Von hier führt die Addition der Zahl 19 im Bild der Seite p.32 (32A20) weiter zu 10 Etz'nab (32E26) und weiteren sieben Additionen bis 32D17 (→ Anhang 2.6). Sie wird fortgeführt über 33E15 nach 33D6 (4 Muluk) und führt über 34E15 zum Ergebnis in 34D6 (4 Ix) und zurück zum Ausgangspunkt 31E23.

Die Seiten p.8 und p.9 enthalten je ein Beispiel für eine zweispaltige Lesung innerhalb des numerischen Korpus, die der Standard-Leserichtung des hieroglyphischen Korpus ähnelt, demgegenüber jedoch zwei Besonderheiten aufweist (→ Anhang 8):

Erstens befindet sich zwischen den beiden Spalten (8B13-18 und 8F13-18), die arithmetisch miteinander verbunden sind, ein dreispaltiger Hieroglyphentext (8C-E13-14) sowie eine bildliche Darstellung (8C-E15-18). Zweitens bewirkt die zwischen den Elementen auszuführende Addition (der schwarzen Zahlen) eine schleifenförmige Leserichtung der Additionsergebnisse (rote Zahlen) der Spalten B und F von oben nach unten, nämlich von der ersten Addition in 8B14 über fünf weitere zum Ergebnis in 8F17. Entsprechendes gilt für sechs Additionen der Seiten p.9, die in 9A12 und 9B12 beginnend über 9C13 zum Ergebnis in 9F18 führen.

Daneben existieren Abschnitte, die ausschließlich Zahlenwerte und Daten im Tzolkin enthalten (z.B. p.58-59), für die die Leserichtung prinzipiell ambivalent erscheint, nämlich von den hohen zu den niedrigen oder von den niedrigen zu den hohen Werten. Dabei steigen die Zahlenwerte im Prinzip von rechts unten nach links oben an. Darüber hinaus treten in diesen tabellenartigen Teilen des numerischen Korpus Abweichungen von der Regelmäßigkeit des monotonen Fallens bzw. Steigens der in ihnen enthaltenen Zahlenwerte auf. Derartige Abweichungen von einer Regelhaftigkeit können zufällig, irrtümlich oder intendiert sein. In letzterem Fall könnten sie das Ergebnis einer Berechnung darstellen, das entweder aus den hohen oder den niedrigen Werten bestimmt worden sein kann. Somit kann die Bestimmung der Bedeutung dieser

Zahlenwerte helfen, die Leserichtung dieser numerischen Teile zu bestimmen, und umgekehrt kann die Klärung dieser Leserichtung einen Beitrag zur Ermittlung der Berechnungsmethode, ihres Ergebnisses oder ihrer inhaltlichen Bedeutung leisten.

Zusammenfassend kann festgestellt werden:

Die Leserichtungen des hieroglyphische Korpus im C.D. zeigen etwa dieselbe Varianz wie die Schreib-/Leserichtungen der sonstigen Schriftträger der Maya, in denen neben der häufigen Doppelkolumne auch einspaltige, einzeilige oder zirkuläre dokumentiert sind.

Das Zahlenmaterial des numerischen Korpus des C.D. zeigt überwiegend die horizontale (Schreib-, Lese- und Rechen-)Richtung von links nach rechts in Parallelität zur Leserichtung der Hieroglyphen. Darüber hinaus gibt es Beispiele für beide vertikale Richtungen sowie die Ambivalenz, von kleinen Zahlen in Richtung großer oder umgekehrt fortschreiten zu können.

Im hieroglyphischen und numerischen Korpus überwiegt also die Leserichtung von links oben nach rechts unten in Übereinstimmung mit dem Grundprinzip der Lesung auch anderer Schriftträger.

7.3 Richtungsindikatoren im piktoralen Korpus

Erkennungsmerkmale zur Bestimmung der Leserichtung in einer Vielzahl insbesondere vorkontaktzeitlicher Handschriften verschiedener Kulturen Mesoamerikas sind die Blickrichtung dargestellter anthropomorpher und zoomorpher Figuren sowie einzelne Fußabdrücke.

Derartige Fußabdrücke finden sich auch im C.D. verso, nämlich den Seiten:

- p.65(45): 3 Abdrücke nach links,
- p.25(55): 1 Abdruck nach unten,
- p.26(56)-28(58): 2, 4 und 2 Abdrücke nach rechts unten,
- p.29(62): 2 Abdrücke nach links,
- p.35(68): 7 Abdrücke in 4 Richtungen und
- p.41(74): 2 Abdrücke nach links sowie 3 Abdrücke nach rechts.

Diese Fußabdrücke zeigen keine Vorzugsrichtung. Sie bilden ferner einen äußerst geringfügigen Beitrag zur Gesamtzahl aller anderen Richtungsinformationen wie den Tabellen 12 und 13 zu entnehmen ist. Sie sind daher aus Gründen der Darstellungsökonomie in diesen nicht enthalten und werden im Folgenden nicht weiter betrachtet.

Das piktorale Korpus enthält eine weitere Richtungsinformation. Den Gegenstand der nachfolgenden Untersuchung bilden die Richtungsinformationen, die aus den in ihm dargestellten anthropomorphen und zoomorphen Figuren abgeleitet werden können. Sowohl innerhalb der Gruppe der anthropomorphen als auch der zoomorphen Figuren erscheinen diese in zwei Formen, einer größeren und einer kleineren. Dabei befinden sich die kleineren Figuren nahezu ausnahmslos auf dem Schoß einer größeren oder werden von diesen auf dem Rücken getragen. Sämtliche Figuren sind jedoch gleichermaßen anhand folgender Kriterien identifizierbar:

- ein Schädel, an dem wichtige Elemente wie Auge(n), Nase, Mund oder Ohr(en) erkannt werden können, auch wenn diese durch Schmuck oder Masken bedeckt sind, sowie
- Extremitäten, die einem anthropomorphen oder zoomorphen Körper zugehören.

Die Figuren befinden sich in der überwiegenden Zahl aller Darstellungen in einer stehenden oder sitzenden Haltung. In seltenen Fällen sind die Figuren liegend, was durch eine etwa gleiche Höhe von Händen und Füßen definiert sei, oder fallend, was durch eine Position der Hände und insbesondere des Kopfes unterhalb der Füße definiert sei, dargestellt.

Diese Merkmale definieren für alle Figuren eine Richtung, in die sie blicken, zeigen, schreiten oder allgemein agieren. Die Agensrichtung bildet das Kriterium der Analyse von 444 im C.D. dargestellten anthropomorphen und zoomorphen Figuren.

Die Richtungen von links nach rechts oder vice versa bilden die beiden Hauptkategorien $L \to R$ und $R \to L$ der Agensrichtung (\to Tabellen 12 bis 14, jeweils Spalten (2) bis (6) sowie (7) bis (11)). Die Tabellen zeigen für jede Seite des C.D. (Spalte (1)) die Anzahl der Fälle in diesen beiden Agensrichtungen differenziert nach den Registern (a bis d) der Seiten. Die Anzahl der Figuren, die auf dem Schoß oder dem Rücken (abgekürzt: a. S. o. R.) anderer dargestellt sind, ist in den Zahlen der Spalten (6) und (11) (\to Tabellen 12 bis 14) ausgewiesen; sie sind nicht in den Zahlen der Spalten (2) bis (5) bzw. (7) bis (10) enthalten.

Nur in wenigen Fällen ist die Agensrichtung von den beiden Hauptkategorien abweichend. Liegende und fallende Figuren sowie en-face-Darstellungen, aufgerichtete Schlangenkörper und ambivalente Positionen, in denen Blick- und Fußrichtung unterschiedlich sind, sind in der Kategorie sonstige Richtungen (→ Tabellen 12 bis 14, jeweils Spalten (12)) zusammengefasst. Die Summenwerte des C.D. recto (Tabelle 12) und des C.D. verso (Tabelle 13) sind in Tabelle 14 zu Zahlen für den gesamten C.D. summiert.

	Agensrichtung der Figuren Be												sonderheiten			
			\rightarrow F					L ← F	₹		z	zgl. (2) - (11)			
C.D. p.	а	b	С	d	a. S. o. R.	а	b	С	d	a. S. o. R.	sonstige Richtungen	Himmels- band	Finsternis- glyphen			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)			
1 (1)	0	خ	1	-	-	0	خ	1	-	•	a: 1	-	-			
2 (2)	0	1	0	0	•	2	2	2	2	•	-	-	-			
3 (3)	0	2	j	j	-	3	1	j	j	-	b: 1	-	-			
4 (4)	0	0	0	-	-	3	2	3	-	-	-	-	-			
5 (5)	0	0	0	-	-	3	2	3	-	-	-	-	-			
6 (6)	0	0	0	-	-	3	3	3	-	-	-	-	-			
7 (7)	0	0	0	-	-	3	3	3	-	-	b: 1	-	-			
8 (8)	0	1	2	-	-	3	1	0	-	1	-	-	-			
9 (9)	0	1	0	-	-	3	1	2	-	-	-	-	-			
10 (10)	0	0	0	-	-	3	2	3	-	-	-	-	-			
11 (11)	0	0	0	-	-	3	2	3	-	-	-	-	-			
12 (12)	0	0	0	-	-	2	3	3	-	-	-	-	-			
13 (13)	0	0	2	-	-	2	3	2	-	-	-	-	-			
14 (14)	0	0	0	-	-	3	3	2	-	2	-	-	-			
15 (15)	0	0	0	-	-	1	1	2	-	-	a: 2 b: 2	-	-			
16 (16)	0	0	0	-	-	3	3	3	-	5	-	-	-			
17 (17)	0	0	0	-	-	3	1	1	-	2	-	-	-			
18 (18)	0	0	0	-	-	3	3	3	-	3	-	-	-			
19 (19)	1	2	0	-	-	3	2	3	-	1	-	-	-			
20 (20)	0	0	0	-	-	3	2	3	-	7	-	-	-			
21 (21)	0	1	3	-	-	2	1	3	-	1	-	-	-			
22 (22)	0	0	1	-	-	0	3	1	-	2	-	-	-			
23 (23)	0	0	2	-	-	0	1	3	-	2	a: 1	-	-			
24 (24)	0	-	-	-	-	0	-	-	-	-	-	-	-			
46 (25)	0	0	0	-	-	1	1	0	-	-	c: 1	a: 1	-			
47 (26)	0	0	0	-	-	1	1	0	-	-	c: 1	a: 1	-			
48 (27)	0	0	0	-	-	1	1	0	-	-	c: 1		-			
49 (28)	0	0	0	-	-	1	1	0	-	-	c: 1	a: 1	-			
50 (29)	1	0	0	-	-	1	1	0	-	-	c: 1	a: 1	-			
51 (30)	0	0	-	-	-	0	0	-	-	-	-	b: 1	- 0: 1: b: 1			
52 (31)	0	0	-	-	-	0	0	-	-	-	-	b: 1	a: 1; b: 1 a: 2; b: 1			
53 (32)	0	0	-	-	-	1	1	-	-	-	-	b. 1 b: 1	b: 2			
54 (33)	0	0	-	-	-	0	0	-	-	-	-	a: 1	a: 3			
55 (34)	0	0	-	-	-	1	0	-	-	-	b: 1	a: 1; b: 1	a: 3; b: 1			
56 (35)	0	0	-	-	-	1	0	-	-	-	b: 1	a: 1; b: 1	a: 2; b: 1			
57 (36)	0	0	-	-	-	0	0	-	-	-	b: 1	b: 1	b: 4			
58 (37)	0	0	-	-	-	0	0	-	-	-						
59 (38)	0	-	-	-	-	0	-	-	-	-	-	-	-			
60 (39)	2	2	0	2	-	0	2	0	2	-	- 16	40	- 21			
V ***		10	11	2	0	62	53	52	4	26	16	13	21			
∑ recto			25					197			3	34				
						23	გ									

 Tabelle 12: Agensrichtung anthropomorpher und zoomorpher Figuren (C.D. recto)

Legende: (→ Tabelle 14)
¿: Interpretation auf Grund des Erhaltungszustands nicht eindeutig
Zahlen im Fettdruck: Szenische Darstellung im Sinne einer Interaktion der dargestellten Figuren

	0 0												onderheiten			
			$_{-} \rightarrow F$					L ← F	₹		Z	zgl. (2) - (11)			
C.D. p.	а	b	С	d	a. S. o. R.	а	b	С	d	a. S. o. R.	sonstige Richtungen	Himmels- band	Finsternis- glyphen			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)			
(40)	•	-	-	-	-	-	-	-	-		-	-	-			
61 (41)	0	-	-	-	-	2	-	-	-	-	a: 2	-	-			
62 (42)	0	-	-	-	-	2	-	-	-	-	a: 2	-	-			
63 (43)	0	-	-	-	-	0	-	-	-	-	-	-	-			
64 (44)	0	-	-	•	-	0	-	-	-	-	-	-	-			
65 (45)	0	0	-	•	-	3	4	-	-	-	-	-	-			
66 (46)	0	0	-	-	-	2	3	-	-	-	a: 1	a: 1; b: 1	a: 4			
67 (47)	0	0	-	-	-	3	3	-	-	1	b: 1	a: 1	-			
68 (48)	1	0	-	-	1	4	3	-	-	-	-	a: 3	a: 2			
69 (49)	0	0	-	-	-	2	2	-	-	-	b: 1	-	-			
70 (50)	0	-	-	-	-	0	-	-	-	-	-	-	-			
71 (51)	0	-	-	-	-	0	-	-	-	-	-	-	-			
72 (52)	0	0	0	-	-	0	0	0	-	-	-	-	-			
73 (53)	0	0	0	-	-	0	0	0	-	-	-	-	-			
74 (54)	0	0	-	-	-	0	5	-	-	-	-	b: 1	b: 2			
25 (55)	0	0	1	-	1	1	1	1	-	-	-	-	-			
26 (56)	0	0	1	-	1	1	1	2	-	-	-	-	-			
27 (57)	0	0	1	-	1	1	1	1	-	-	-	-	-			
28 (58)	0	0	1	-	1	1	1	1	-	-	-	-	-			
(59)	-	-	-	-	-	-	-	-	-	-	-	-	-			
(60)	-	-	-	-	-	-	-	-	-	-	-	-	-			
(61)	-	-	-	-	-	-	-	-	-	-	-	-	-			
29 (62)	0	0	0	-	-	3	3	3	-	-	-	-	-			
30 (63)	0	0	0	-	-	3	1	2	-	-	-	-	-			
31 (64)	0	0	0	-	-	1	1	3	-	-	-	-	-			
32 (65)	0	0	0	-	-	0	2	3	-	-	a: 1	-	-			
33 (66)	1	0	0	-	-	2	2	3	-	-	b: 1 c: 2	-	-			
34 (67)	2	0	0	-	-	2	2	2	-	-	a: 1	-	-			
35 (68)	0	0	0	-	-	2	2	3	-	-	c: 1	a: 1	-			
36 (69)	0	0	0	-	-	3	5	2	-	-		a: 1; c: 2	c: 1			
37 (70)	0	1	0	-	-	3	3	3	-	-	-	a: 1; b: 1	b: 2			
38 (71) 39 (72)	0	0	0	-	1 -	3	3	3	-	-	-	a: 1; b: 1	c: 2			
				-					_		_	c: 1	0. 2			
40 (73)	0	0	0	-	-	3	1	3	-	-	b: 2	b: 3; c: 1	-			
41 (74)	0	0	0	-	-	3	3	2	-	-	c: 1	-	b: 1			
42 (75)	0	1	1	-	-	3	3	1	-	-	-	-	-			
43 (76)	0	0	0	-	-	3	1	1	-	-	-	- b. 1	-			
44 (77)	0	0	1	-	-	3	1	1	-	-	-	b: 1	- h: 2			
45 (78)	0	0	0	-	-	0	3	2	-	-	-	b: 3	b: 2			
_	5	2	6	-	6	62	63	45	-	1	16	24	16			
∑ verso			19					171					10			
						20	6									

Tabelle 13: Agensrichtung anthropomorpher und zoomorpher Figuren (C.D. verso) **Legende:** (→ Tabelle 14)

Zahlen im Fettdruck: Szenische Darstellung im Sinne einer Interaktion der dargestellten Figuren

Ebenfalls aus Gründen der Darstellungsökonomie sind in den Tabellen 12, 13 und 14 Zusatzinformationen enthalten, die in der Diskussion der Hypothesen von Belang sind. Diese zeigen die Häufigkeit des Vorkommens des Himmelsbandes (jeweils Spalte (13)) (H.M. Bricker und V.R. Bricker 1992, Milbrath 1999) und der Finsternisglyphen (jeweils Spalte (14)).

C.D. recto enthält insgesamt die Darstellung von 238 Figuren (\rightarrow Tabelle 12, Summe der Spalten (2) bis (12)). Davon agieren 25 – das entspricht ~10,5% – von links nach rechts sowie 197 – entsprechend ~82,8% – von rechts nach links. Nur 16 Figuren (Spalte (12)) – entsprechend ~6,7% – sind in einer Form dargestellt, die eine Zuordnung ihrer Agensrichtung zu den Hauptkategorien nicht ermöglicht.

C.D. verso enthält insgesamt die Darstellung von 206 Figuren (→ Tabelle 13, Summe der Spalten (2) bis (12)). Davon agieren 19 – das entspricht ~9,2% – von links nach rechts sowie 171 – entsprechend 83,0% – von rechts nach links. Nur 16 Figuren (Spalte (12)) – entsprechend ~7,8% – sind in einer Form dargestellt, die eine Zuordnung ihrer Agensrichtung zu den Hauptkategorien nicht ermöglicht.

			Αg	jensri	chtun	g der	Figu	ren			Bes	sonderheiten			
		Ĺ	_ → F	₹				L ← F	₹		Z	zzgl. (2) - (11)			
C.D. p.	а	b	С	d	a. S. o. R.	а	b	С	d	a. S. o. R.	sonstige Richtungen	Himmels- band	Finsternis- glyphen		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)		
	2	10	11	2	0	62	53	52	4	26	16	13	21		
∑ recto			25					197			3	34			
						23	8								
	5	2	6	•	6	62	63	45	•	1	16	24	16		
∑ verso			19					171				4	10		
	7	12	17	2	6	124	116	97	4	27	32	37	37		
∑ gesamt			44					368				7	' 4		
	444														

Tabelle 14: Agensrichtung anthropomorpher und zoomorpher Figuren (C.D. insgesamt)

Legende:

(2)-(5), (7)-(10) a, b, c, d: Register des C.D.

(6), (11) a. S. o. R.: <u>auf dem Schoß oder dem Rücken anderer - normalgroßer - Figuren dargestellte Figuren</u>,

die in (2) bis (5) bzw. (7) bis (10) nicht enthalten sind

(12) sonstige Richtungen: Figuren sind frontal, fallend, aufgerichtet, ohne Kopf oder in einer Haltung dargestellt,

in der die Blickrichtung von der Richtung der Stellung der Füße abweicht

(13) Himmelsband: ein oder mehrere Elemente des Himmelsbandes im piktoralen Korpus

(14) Finsternisglyphen: Zeichen einer Sonnen- oder Mondfinsternis im hieroglyphischen und piktoralen Korpus

Die Gesamtzahl aller im piktoralen Korpus präsentierten anthropmorphen und zoomorphen Figuren, einschließlich der kleiner dargebotenen, beträgt 444 (\rightarrow Tabelle 14, \sum gesamt, Summe der Spalten (2) bis (12)). Von diesen agieren 44 (\rightarrow Tabelle 14, \sum gesamt, Summe der Spalten (2) bis (6)) von links nach rechts – das entspricht ~9,9% – und 368 (\rightarrow Tabelle 14, \sum gesamt, Summe der Spalten (7) bis (11)) agieren von rechts nach links – das entspricht ~82,9%. Ferner agieren 32 Figuren (\rightarrow Tabelle 14, \sum gesamt, Spalte (12)) in sonstige Richtungen, das entspricht ~7,2%.

Die verkleinert dargebotenen Figuren stellen mit 33 (\rightarrow Tabelle 14, Summe der Spalten (6) und (11)) einen geringen Anteil an der Gesamtzahl von 444. Schließt man diese aus der Betrachtung aus und bilanziert ausschließlich die in normaler Größe dargebotenen Figuren, dann beträgt der Gesamtzahl 411 (\rightarrow Tabelle 14, \sum gesamt, Summe der Spalten (2) bis (5), (7) bis (10) und (12)). Von diesen agieren 38 – das entspricht ~9,25% – von links nach rechts sowie 341 der 411 – das entspricht ~82,9% – von rechts nach links; ferner bilden Figuren, die in sonstige Richtungen agieren (\rightarrow Tabelle 14, \sum gesamt, Spalte (12)) einen Anteil von ~7,8%.

Somit liegt sowohl unter Einbeziehung der kleineren Figuren als auch bei ihrem Ausschluss aus der Analyse ein Verhältnis von annähernd 8 zu 1 zugunsten der Agensrichtung von rechts nach links vor. Schließt man die Figuren, die nicht in den Hauptagensrichtungen (L→R und L←R) dargestellt sind, also in sonstige Richtungen (→ Tabelle 14, ∑ gesamt, Spalte (12)) agieren, aus einer Gesamtbilanz aus, dann beträgt das Verhältnis der Hauptagensrichtungen 368 zu 44 einschließlich und 341 zu 38 ausschließlich der kleiner dargebotenen Figuren, also in beiden Betrachtungsweisen etwa im Verhältnis 9 zu 1. Die Zahlenverhältnisse der beiden Hauptagensrichtungen unterscheiden sich also nur geringfügig bezüglich der Berücksichtigung oder Nichtberücksichtigung der kleiner dargestellten Figuren.

Die Szenen, in denen mehrere anthropomorphe und zoomorphe Figuren miteinander interagieren (in den Tabellen 12 und 13 durch Fettdruck hervorgehoben), bilden nur einen relativ geringen Anteil an der Gesamtheit aller Darstellungen. Und in keiner dieser Szenen besteht ein Verhältnis der Agensrichtungen ihrer Protagonisten, das dem Verhältnis von 8 zu 1 nahe kommt. Die überwiegende Agensrichtung (von rechts nach links) der Figuren ist im gesamten piktoralen Korpus gleichmäßig vertreten. Diese Richtungsinformation liegt somit unabhängig von verschiedenen Betrachtungsweisen vor. Als Beispiel sollen die bildlichen Darstellungen des Almanachs 57 (Thompson 1972:97-98) dienen. Die Abbildungen der Figuren

(→ Anhang 2.4, Bilder 43A5, 43D5, 43G5, 44A5, 44D5, 44G5) können einerseits als Folge einzelner Szenen verstanden werden. Sie können mit einiger Berechtigung auch als zusammengehörige Einheit, als sequentielle Szene, interpretiert werden. Die in ihnen überwiegende Richtungsinformation und deren Gegenläufigkeit zur Leserichtung bleiben davon unberührt. Das Ergebnis der Richtungsbestimmung von 8 zu 1 zugunsten der Agensrichtung von rechts nach links (unter Einbeziehung der sonstigen Richtungen) beziehungsweise von 9 zu 1 (bei ausschließlicher Berücksichtigung und Gegenüberstellung der beiden Hauptagensrichtungen) resultiert somit nicht aus verschiedenen Fokussierungen des Betrachters auf einzelne Figuren oder ihren Zusammenhang als Figurengruppe, sondern aus der großen Zahl der in der bevorzugten Richtung dargestellten Figuren.

Diese deutliche Abweichung von einer zu erwartenden – natürlichen oder zufälligen – Verteilung von ungefähr 50 zu 50, motiviert die Suche nach einer Deutung.

7.4 Interpretation der Richtungsinformation der Figuren des piktoralen Korpus

Aus den Bestandsaufnahmen der Richtungsinformationen des hieroglyphischen und numerischen Korpus (\rightarrow 7.2) sowie der Agensrichtungen der anthropomorphen und zoomorphen Figuren im piktoralen Korpus (\rightarrow 7.3) und deren Vergleich resultieren zwei Eigenschaften:

- 1. Innerhalb des piktoralen Korpus besteht eine starke Abweichung von einer Gleichverteilung beider Hauptrichtungen (von links nach rechts gegenüber von rechts nach links) zugunsten der im Verhältnis von etwa 9 zu 1 deutlich bevorzugten Richtung von rechts nach links.
- 2. Diese bevorzugte Richtung innerhalb des piktoralen Korpus (von rechts nach links) steht im Gegensatz zu der im hieroglyphischen und numerischen Korpus vorherrschenden Leserichtung (von links nach rechts).

Im Folgenden werden drei Hypothesen vorgestellt, die diese beiden Eigenschaften erklären könnten: eine soziopolitische, eine kunstgeschichtliche und eine astronomische Hypothese. Diese werden zunächst anhand ihrer Beziehungen innerhalb des Codex Dresden und in einem zweiten Schritt im Vergleich mit den entsprechenden Beziehungen zwischen hieroglyphischem und piktoralem Korpus in den anderen drei erhaltenen Codices der Maya evaluiert.

7.4.1 Die soziopolitische Hypothese

In einer stratifizierten Gesellschaft, wie sie für die der Maya wissenschaftlich akzeptiert ist, können Darstellungen, in denen sich Personen bzw. Personengruppen in einem Verhältnis einander gegenüberstehen, das deutlich von einem Gleichgewicht abweicht, Ausdruck einer Hierarchie sein. Derartige Darstellungen verweisen auf den Aspekt der Hierarchie aber auch durch eine – häufig deutlich – kleinere Repräsentation der Rangniederen. Das trifft für einige anthropomorphe Figuren im Codex Dresden auch zu, beispielsweise durch verkleinert dargestellte Figuren auf dem Schoß oder dem Rücken einer anderen.

Aus dem geringen Anteil der kleiner dargestellten Figuren an der Gesamtzahl aller dargebotenen Figuren sowie dem annähernd gleichen Zahlenverhältnis zwischen den beiden Hauptagensrichtungen sowohl unter Berücksichtigung als auch unter Vernachlässigung der kleiner dargestellten Figuren (jeweils etwa 8 zu 1) kann gefolgert werden, dass diese kleineren Figuren kein Indiz für einen hierarchischen Inhalt darstellen.

Diejenigen Szenen, in denen sich Figuren oder Figurengruppen einander gegenüberstehen, bilden einen geringfügigen Anteil aller Darstellungen. Die in ihnen bestehenden Zahlenverhältnisse kommen dem ermittelten Gesamtverhältnis von 8 zu 1 (bzw. 9 zu 1) (\rightarrow 7.3) nicht nahe. Ein hierarchischer Inhalt ist in diesen Szenen daher wenig wahrscheinlich.

Teile des C.D. behandeln verschiedene Themen, die für ein Individuum sowie die Gesellschaft von Bedeutung sind – Ackerbau und Ernährung, Schwangerschaft und Krankheit, Rituale aus jahreszeitlichen oder anderen Anlässen –, sie liefern jedoch keinen Erklärungsansatz für die Gegenläufigkeit der bevorzugten Agensrichtung im piktoralen Korpus gegenüber der Leserichtung des hieroglyphischen Korpus.

Die Betrachtung der Agensrichtung der Figuren des piktoralen Korpus legt also eine soziopolitische Interpretation des Inhalts der Darstellungen nicht nahe, dieser kann allerdings nicht völlig ausgeschlossen werden.

7.4.2 Die astronomische Hypothese

Eine alternative Möglichkeit, diese deutliche Präferenz einer Richtung (von rechts nach links) in der Aktion der Figuren des piktoralen Korpus zu erklären, wird durch die Astronomie nahe gelegt. Astronomische Objekte bewegen sich vor dem Hintergrund ganz überwiegend in eine Richtung. Die Rotationsrichtung der Erde von West nach Ost bewirkt eine scheinbare

Bewegung der ganz überwiegenden Zahl der Himmelskörper in die entgegengesetzte Richtung von Ost nach West. Die Richtung von Ost nach West ist dann einer Bewegungsrichtung von rechts nach links äquivalent, wenn der beobachtende Mensch nach Norden blickt. Beobachter auf der Nordhalbkugel der Erde nehmen am Nachthimmel einen ruhenden Ort in der Nähe des Polarsterns wahr, den Himmelsnordpol. Dies ist der einzige Fixpunkt und eine Orientierung des beobachtenden Menschen in diese Richtung ist zumindest naheliegend. Bei dieser Ausrichtung entspricht die Agensrichtung der Mehrheit der Figuren der Bewegungsrichtung der Mehrheit der Himmelsobjekte. Ausnahmen von der Hauptbewegungsrichtung der Planeten treten während der Phase ihrer Rückläufigkeit (retrograde Bewegung) auf. Dem entsprechen möglicherweise einige der anthropomorphen oder zoomorphen Figuren, die in der geringer repräsentierten Richtung (von links nach rechts) agieren. Als Alternative für die Lesung von Glyphen für Nord bzw. für Süd (Closs 1988) hat V.R. Bricker (1988) die Lesung Zenit bzw. Nadir vorgeschlagen. Die Lesung Zenit erscheint als Beschreibung der Position des Himmels(nord)pols ebenfalls angemessen. In der Unterschiedlichkeit dieser epigraphischen Lesungen äußert sich somit möglicherweise nur der Deutungsspielraum für denselben Tatbestand.

Die Agensrichtung der anthropomorphen und zoomorphen Figuren legt also eine Interpretation nahe, die auf den gestirnten Himmel verweist. Die Figuren des piktoralen Korpus würden unter dieser Hypothese also Objekte am Himmel und/oder Subjekte (Götter) im Himmel darstellen (Kelley 1980).

Beide Aspekte dieser Deutung finden zusätzliche Bestätigung durch weitere ikonografische Merkmale, nämlich die im piktoralen Korpus vorhandenen Zeichen für Finsternisse und die Himmelsbänder (→ Tabellen 12, 13, 14) sowie die Finsternisglyphen im hieroglyphischen und die den Finsternisglyphen ähnelnden Zeichen im piktoralen Korpus. Diese Interpretation ist mit einer großen Zahl der beschriebenen Inhalte des C.D. verträglich, mögen sie astronomischer oder astrologischer, mythologischer oder ritueller Natur sein.

7.4.3 Die kunstgeschichtliche Hypothese

Die Maya haben aus ästhetischen Gründen die Figuren so dargestellt, dass ihre Agensrichtungen überwiegend gegen die Leserichtung der Hieroglyphen verlaufen.

Diese kunstgeschichtliche Hypothese ist innerhalb des C.D. weder verifizierbar noch falsifizierbar. Die ästhetischen Kriterien des Schreibers und des Malers sind unabhängig von

der Beantwortung der Frage, ob es sich dabei um eine oder mehrere Personen gehandelt hat, nicht ermittelbar. Darüber hinaus können die ästhetischen Kriterien der bildlichen Darstellungen verschiedener Epochen in Mischformen vorliegen, ähnlich den von Zimmermann (1956) identifizierten verschiedenen Schreibstilen innerhalb des C.D.. Die ästhetischen Kategorien der Schreiber sind daher sowohl unter synchroner als auch unter diachroner Betrachtung nicht präzisierbar.

7.5 Die Agensrichtung der Figuren im piktoralen Korpus der Codices der Maya

Zur Evaluation der Hypothesen stehen die anderen drei lesbar erhaltenen Handschriften der Maya aus der Vorkontaktzeit zur Verfügung (Whiting 1999). Auch diese Handschriften enthalten hieroglyphische Texte, bildliche Darstellungen und numerisches Material.

Der Codex Madrid besteht aus 56 beidseitig bemalten Blättern mit einer Gesamtlänge von 6,82m. Sein Inhalt umfasst nach heutigem Forschungsstand verschiedene Themen (Thompson 1958), (Knorozov 1982), (Jüngel 1992), (Milbrath 1999), (Paxton 2001), (Vail und Aveni 2004): profane Tätigkeiten wie Bienenhaltung, Ackerbau, Jagd und Handel; daneben Verehrung verschiedener Gottheiten sowie Darstellungen ihrer Handlungen; kalendarische Zyklen und mit ihnen verbundene Jahresfeste; astronomische Themen (Milbrath 1979) in Bezug zum Planet Mars sowie Darstellungen des Himmelsbandes (Hatch 1975).

Der Codex Paris (Love 1994) besteht aus 11 Blättern mit einer Gesamtlänge von 1,45m. Von deren 22 Seiten sind 20 bemalt, jedoch sind die Randzonen der Seiten soweit beschädigt, dass nur ein zentraler ovaler Bereich lesbar ist.

"... die Seiten 1 bis 12 der Handschrift [enthalten] eine Katunserie. ... [deren] Ahau-Zahlen ... weisen außerdem auf die Existenz einer Tunserie hin. ... Das mittlere Register [der Seiten 15 bis 18] erinnert deutlich an das untere (c) der Seiten 65 bis 68 des Dresdner Codex, ... der Akteur ist ... Gott C. Im unteren Register scheint es sich um eine Regenthematik zu handeln, ... Die Seiten 19 und 20 ... zeigen ... einen Ablauf von 52 Solarjahren" (Treiber 1987:46-47). Die Seiten 23 und 24 enthalten Himmelsbänder, Zeichen für die Sonne und für Finsternisse sowie eine Verbindung zwischen Tzolkin und der 364-tägigen Periode (7 · 260 = 5 · 364) (Love 1994:89-102). Severin (1981:23-37) interpretiert das numerische Material dieser Seiten als Grundlage zur Berechnung des siderischen Jahres.

Der Codex Grolier besteht aus 11 Seiten, von denen keine vollständig erhalten ist. Die Seiten 1 bis 10 tragen am linken Rand eine vertikale Reihe von Daten des Tzolkin. Von Seite 11 ist nur ein Fragment erhalten. Es zeigt eine anthropomorphe Figur, die den auf den Seiten 1 bis 10 abgebildeten ähnelt. Der Codex Grolier enthält die Zahlenfolge 236-90-250-8 und sein Inhalt kann mit einem Teil der Venus-Tafeln des C.D. (→ p.24, 46-50) parallelisiert werden (Coe 1973:160, Table 3), (Carlson 1983:51, Table 1).

Die überwiegende Leserichtung der Hieroglyphen dieser Codices entspricht dem Standard des Schriftkorpus von links nach rechts und von oben nach unten. Im Codex Paris bestehen Indizien für Passagen, die von rechts nach links zu lesen sind, nämlich in den Seiten 21 und 22 (Treiber 1987:47) und den Seiten 23 und 24 (Love 1994:89).

Im Codex Madrid bilden die Seiten 75 und 76 eine Darstellungseinheit. In ihr sind die Figuren, Zahlen und Hieroglyphen kreisförmig angeordnet. Die im Codex Madrid dargestellten Folgen roter und schwarzer Zahlen verlaufen überwiegend von links nach rechts, in wenigen Fällen sind sie vertikal zu lesen. Darüber hinaus gibt es vertikale Darstellungen von Vigesimalzahlen und Tabellen von Tagesangaben im Tzolkin. Zusammenfassend kann festgestellt werden, dass das hieroglyphische und das numerische Korpus überwiegend der Standardleserichtung entsprechen.

Abbildungen dieser Codices stehen unter *www.famsi.org* zur Verfügung. Anhand dieser Abbildungen der Seiten wurde die Agensrichtung der anthropomorphen und zoomorphen Figuren ermittelt (→ Anhang 9).

Im Codex Madrid sind im abgebildeten Erhaltungszustand insgesamt 894 Figuren auf seinen 112 Seiten identifizierbar (→ Anhang 9.1). Davon agieren 78 – entsprechend ~8,7% – von links nach rechts, 685 – entsprechend ~76,6% – von rechts nach links sowie 131 – entsprechend ~14,7% – in anderen oder nicht eindeutig bestimmbaren Richtungen. Betrachtet man die letzteren nicht, so stehen die beiden Hauptagensrichtungen im Verhältnis von 685 zu 78, also etwa im Verhältnis von 9 zu 1 zugunsten der bevorzugten Richtung der Figuren von rechts nach links. Daneben gibt es 26 weitere Hinweise auf astronomische Kontexte, nämlich Himmelsbänder und Finsternisglyphen.

Im Codex Paris sind im abgebildeten Erhaltungszustand insgesamt 90 Figuren auf seinen 22 Seiten identifizierbar (→ Anhang 9.2). Davon agieren 21 – entsprechend ~23,3% – von links

nach rechts, 52 – entsprechend ~57,8% – von rechts nach links sowie weitere 17 – entsprechend ~18,9% – in anderen oder nicht eindeutig bestimmbaren Richtungen. Betrachtet man die letzteren nicht, so stehen die beiden Hauptagensrichtungen im Verhältnis von 52 zu 21 also etwa im Verhältnis von 5 zu 2 zugunsten der bevorzugten Richtung der Figuren von rechts nach links. Daneben gibt es 19 weitere Hinweise auf astronomische Kontexte, nämlich Himmelsbänder und Finsternisglyphen.

Im Codex Grolier sind im abgebildeten Erhaltungszustand insgesamt 14 Figuren auf seinen 11 Seiten identifizierbar (→ Anhang 9.3). Sämtliche Figuren agieren von rechts nach links. Himmelsband und Finsternisglyphen existieren hierin nicht.

7.6 Ergebnis

Die Analyse der Richtungsinformationen der Codices Madrid, Paris und Grolier bestätigt die beiden für den Codex Dresden ermittelten Eigenschaften:

- (1) die stark von einer gleichmäßigen Verteilung abweichende Darstellung der anthropomorphen und der zoomorphen Figuren zugunsten der Agensrichtung von rechts nach links, und zwar in Zahlenverhältnissen, die den für den C.D. ermittelten (von etwa 9 zu 1) vergleichbar sind: von etwa 9 zu 1 im Codex Madrid, von etwa 5 zu 2 im Codex Paris, im Codex Grolier agieren sämtliche abgebildeten Figuren in dieser Richtung.
- (2) die Gegenläufigkeit dieser bevorzugten Agensrichtung zur Haupt- und Standardleserichtung des hieroglyphischen Korpus.

Die kunstgeschichtliche Hypothese ist auch durch den Vergleich mit den anderen Codices weder zu verifizieren noch zu falsifizieren. Dies liegt zum einen an den grundsätzlichen Schwierigkeiten, ästhetische Motive von anderen Gründen einer künstlerischen Darstellung zu differenzieren. Und zum anderen bildet die äußerst geringe Zahl an zu Vergleichzwecken zur Verfügung stehenden Büchern der Maya ein weiteres objektives Hindernis.

Die bevorzugte Agensrichtung der anthropomorphen und zoomorphen Figuren ihres jeweiligen piktoralen Korpus stellt jedoch kein Indiz für eine Interpretation der Darstellungen als Szenen innerhalb einer hierarchischen Gesellschaft dar (\rightarrow 7.4.1). Die soziopolitische Hypothese kann

insbesondere die Gegenläufigkeit der Leserichtung der Hieroglyphen zur Agensrichtungen der Figuren nicht erklären. Soziopolitische Themen bilden Teile des Inhalts der Codices Dresden, Madrid und Paris und sie werden durch die Ergebnisse der Analyse der Richtungsinformationen auch nicht falsifiziert.

Diese Analyse der Richtungsinformationen liefert aber ein bestätigendes Indiz für die astronomischen Inhalte der Codices. Die astronomische Hypothese erklärt die Bevorzugung einer Agensrichtung (Eigenschaft (1)) und steht nicht im Widerspruch zur Gegenläufigkeit der Leserichtung (Eigenschaft (2)). Sie steht darüber hinaus auch in Einklang mit den Interpretationen der astrologischen, mythologischen, religiösen und gesellschaftlichen Inhalte, die für viele Abschnitte der Codices beschrieben sind.

Jeder einzelne Inhalt sowie jede Strukturinformation ist von Wichtigkeit und möglichst viele Methoden verschiedener Disziplinen sollten angewendet werden, um das Verständnis dieses Buches zu vertiefen. Die für die vorliegende Untersuchung gewählte Annahme einer – annähernd – gleichwertigen Bedeutung des hieroglyphischen, piktoralen und numerischen Korpus wird durch dieses Ergebnis unterstützt.

8. Zusammenfassung und Ausblick

8.1 Zusammenfassung der Ergebnisse

- (1) Drei wissenschaftstheoretische Ansätze werden zu einem strukturwissenschaftlichen Paradigma der Morphologischen Strukturanalyse verbunden. Es bildet die Grundlage für die darauf aufbauenden Untersuchungen der Mayahandschrift Codex Dresdensis als Informationsträger. Die Informationen dieses Buches liegen in den drei Darstellungsformen des hieroglyphischen, numerischen und piktoralen Korpus vor. Dabei wird Information in ihren Aspekten Struktur, Inhalt und Bedeutung unterschieden und ihr sowohl expliziter wie auch impliziter Charakter betont.
- (2) Die aus dem Paradigma abgeleitete Mathematisierung dient der formalen Erhaltung der Struktur des Untersuchungsgegenstandes als Ganzes und der Bewahrung der Kontexte analysierter Teile. Das eingeführte Notationssystem bildet die statische Komponente der Formalisierung. Die Struktur als Informationsträger (*Signifikant*) wird dadurch betont. Die Strukturerhaltung orientiert sich ferner am eingeführten Standard der Epigraphik der Schriftträger der Maya. Sie wird am Beispiel etwa eines Drittels aller Seiten des Codex Dresden vorgestellt. Sie zeigen den Transformationsprozess, die dynamische Komponente der Formalisierung, einer Originalseite von der Transkription über die Transliteration und Translation in die Ebene der Interpretation. Dieses allgemeine Modell zur Bearbeitung des Codex Dresden bildet die Grundlage für folgende Untersuchungen.
- (3) Ausgewählte Abschnitte des numerischen Korpus werden im Hinblick auf die Gesamtheit der in ihnen enthaltenen Faktoren analysiert. Für die informationstechnische Durchführung dieser Untersuchung hat sich die Formalisierung als notwendig und zweckmäßig erwiesen.

Die Analyse aller Zahlen der Abschnitte im Hinblick auf alle in ihnen potentiell enthaltenen Faktoren macht die wesentlichen Inhalte quantifizierbar. In allen untersuchten Abschnitten wird die Periode 260 identifiziert. Darüber hinaus bilden in einzelnen Abschnitten jeweils eine oder mehrere der sonstigen identifizierten Perioden (115, 117, 364, 365, 390, 584, 585, 780) den statistisch ermittelten Inhalt (*Signifikant*).

Die auf Vollständigkeit der Betrachtung der Ursprungsdaten und die Gesamtheit aller Lösungsvarianten abzielende Analyse schließt auch die Existenz weiterer Perioden innerhalb dieses numerischen Materials weitgehend aus. Dies wird durch die zweifache Anwendung des statistischen Auswahlkriteriums anschaulich. Unter dem schwächeren Kriterium der

Signifikanz werden grundsätzlich mehr Perioden ermittelt als unter dem stärkeren der Hochsignifikanz. Diese zusätzlich ermittelten Perioden sind jedoch innerhalb jedes sinnvollerweise erwägbaren Diskursrahmens zunehmend schwieriger erklärbar.

- (4) Die besondere Bedeutung des Tzolkin in Mesoamerika wird durch die Ergebnisse bestätigt. Alle übrigen Perioden können als Näherungswerte der Jahreslänge oder der synodischen Umlaufperioden von Planeten gedeutet werden (*Signifikat*). Eine Anwendung dieser Zahlen und ihrer Bedeutungen in anderen Kontexten Mythologie, Religion, Ritual oder weitere wird durch diese Ergebnisse weder falsifiziert noch negiert. Weitere statistisch signifikante Perioden sind zwar nachweisbar, können aber mit hoher Wahrscheinlichkeit weder astronomisch noch unter Bezugnahme auf Mythologie, Religion oder die Ritualwelt der Maya erklärt werden.
- (5) Die statistische Analyse wurde auch angewendet, um zu überprüfen, ob und inwieweit Modifikationen von einzelnen im Codex Dresden enthaltenen Zahlenwerten sinnvoll sind. Anhand der Gesamtheit derartiger Korrekturen in den analysierten Abschnitten des C.D., die Förstemann (1901) und Thompson (1972) in ihren Untersuchungen vornehmen, konnte nachgewiesen werden, dass sie zu keinen anderen deutbaren Inhalten als den oben genannten Perioden führen. Allerdings erzeugen sie in einem Fall, nämlich im Abschnitt p.51-58, eine von ihnen nicht erklärte hochsignifikante Periode der Länge 299, die im Originaldatenbestand statistisch nur signifikant ist. Dies stellt ein Indiz dafür dar, dass grundsätzlich das originale Zahlenmaterial analysiert werden sollte. Eine statistische Analyse auf der Basis einer weiteren alternativen Lesung dieses numerischen Materials wird mit hoher Wahrscheinlichkeit ähnliche Ergebnisse generieren. Auf eine solche ist deshalb im Rahmen dieser Arbeit verzichtet worden.
- (6) Die deterministische Interpretation der Venus-Tafeln p.24,46-50 unter Berücksichtigung von Konjunktionen von Mond und Venus erklärt die in den Tafeln prominent erscheinenden Zahlen 236, 90, 250, 8 exakt und somit diesbezüglich besser als bisherige Interpretationen ohne diese Konjunktionen.
- (7) Im Licht der astronomischen Interpretation der Ergebnisse der statistischen Analysen werden die Strukturen des Tzolkin und des Haab miteinander verglichen und seine immanente Fehlertoleranz als bedeutsam für exakte Beobachtungen und Aufzeichnungen hervorgehoben. Eine Analyse der Teiler des Tzolkin liefert weitere Hinweise auf seine Bedeutung als

effizientes Mittel der Arithmetik. Diese Indizien reichen allerdings nicht aus, um die Frage nach einem ursprünglich intendierten Anwendungszweck zu entscheiden.

- (8) Die Teiler des Tzolkin, das vigesimale Stellenwertsystem und die Genauigkeit der Astronomie der Maya wurden im Zusammenhang mit den Teilen und den Teilern der ermittelten Perioden im Hinblick auf implizit und explizit dargestellte Zeichen untersucht. An Beispielen wird erklärt, dass die Abwesenheit eigenweltlich vertrauter Zeichen (Bruchstriche, Dezimalkomma oder ähnliches) keinen hinreichenden Beleg für eine Unkenntnis der durch sie bezeichneten Operationen darstellt, wie es in der Vergangenheit geschehen ist.
- (9) Diese Aspekte zu Teilen und Teilungen im arithmetischen Sinne werden vervollständigt durch Überlegungen zur Genauigkeit astronomischer Beobachtungen und Berechnungen. Sie bergen das grundsätzliche Charakteristikum der Ungenauigkeit oder positiv formuliert der Näherung an Werte. Diese sind in frühen Kulturen zunächst ganzzahlige Anzahlen von Tagen. Genaue Beobachtungen führen jedoch nach einiger Zeit zu Abweichungen von der Ganzzahligkeit, die nach einem Ausgleich verlangen. Die Kenntnis derartiger Operationen Näherungsrechnung, Ausgleichsrechnung, Approximation, Interpolation, Extrapolation kann jedenfalls für die Maya nicht völlig ausgeschlossen werden. Auch dafür liefern die statistischen Analysen Indizien. Sie weisen sowohl für die potentielle Umlaufzeiten des Merkur und der Venus als auch für die Länge des Sonnenjahres jeweils zwei Werte aus, die als Ausgangspunkte derartiger Berechnungen gedient haben können.
- (10) Der ganzheitliche Ansatz der Strukturanalyse wird auf die Richtungsinformationen des hieroglyphischen, numerischen und piktoralen Korpus des Codex Dresden angewendet. Sie zeigt eine deutlich Abweichung von einer zufälligen Verteilung der Agensrichtungen der anthropomorphen und zoomorphen Figuren des piktoralen Korpus. Die bevorzugte Agensrichtung ist der Leserichtung des hieroglyphischen und numerischen Korpus sowie der Standardleserichtung der Schriftträger der Maya entgegengerichtet. Dieser Befund wird durch einen Vergleich mit den anderen Codices der Maya bestätigt. Eine soziopolitische Interpretation dieser Ergebnisse erscheint wenig wahrscheinlich. Eine kunstgeschichtliche Deutung kann weder bestätigt noch falsifiziert werden. Die in den Agensrichtungen der Figuren des piktoralen Korpus enthaltenen Informationen sind am besten verträglich mit einer Deutung als Darstellung einer astronomisch oder astrologisch motivierten Himmelsbeobachtung. Die Analyse dieser

Agensrichtungen ergibt einen bestätigenden Hinweis auf eine Interpretation der Figuren als Objekte des gestirnten Himmels oder von Wesen im Himmel.

8.2 Denkformen der Maya

", "Er ist und bleibt doch das hervorragendste bis jetzt bekannte Geisteswerk der westlichen Halbkugel' schreibt Förstemann in seinem den Dresdner Codex betreffenden Briefwechsel mit Paul Schellhas." (Anders in Codex Dresden 1975:47)

John Eric Sidney Thompson charakterisiert die Kenntnisse der Maya einerseits durch die Feststellung: "... these Venus and lunar tables ... most certainly are ... outstanding testimonies to the intellectual abilities of the Maya ..." (1972:77) und stellt andererseits fest "... Maya astronomy is astrology." (Thompson 1972:77)

Diese Aussagen betonen verschiedene Aspekte eines Sachverhaltes. Denn " ... bei den alten Kulturvölkern [ist] deren frühe Astronomie ... eng verwoben ... mit magischen, mythologischen, religiösen und philosophischen Vorstellungen." (Unsöld und Baschek 1999:6) Die in der vorliegenden Arbeit astronomisch und mathematisch gedeuteten Inhalte des C.D. mögen daher als Ergebnisse eines Filtrationsprozesses aus diesen miteinander 'verwobenen Vorstellungen' verstanden werden, der ermittelt hat, welche dieser Inhalte mit astronomischen Objekten und Abläufen am Himmel – näherungsweise – identifiziert werden können. Sie stellen jedenfalls keinen Versuch dar, sonstige Kontexte, wie beispielsweise Astrologie, Mythologie, Magie, Religion und Philosophie, in diesem Zeugnis des Denkens der Maya für nicht existent oder auch nur für weniger bedeutsam zu erachten.

Ein verbindendes Gedankengut verschiedener Disziplinen stellt der Tzolkin dar. Er konnte als universeller Berechnungsmaßstab in allen astronomisch deutbaren Ergebnissen der statistischen Analyse des Codex Dresden bestätigt werden. Diese Präsenz ergänzt unser Wissen über ihn als Ritualkalender.

Das allgemein verbreitete Verständnis von einem Kalender besteht darin, alle relevanten Ereignisse an einem Datum festzumachen, das an der Sonne orientiert ist, die ein Jahr definiert, und durch ein zweites Himmelsobjekt, den Mond, in Form von Monaten gegliedert ist.

Im Unterschied dazu ist der Tzolkin ein abstraktes Maß, das nicht an einen Himmelskörper gebunden ist, sondern an alle Himmelsobjekte, die für die Maya von Interesse waren.

Seine Länge stimmt mit keiner Periode irgendeines astronomischen Phänomens einfach überein. Der Tzolkin ist die Abstraktion, die aus der Zusammenfassung allen Wissens der Maya über die für sie beobachtbaren Himmelskörper entsteht. Und diese waren neben der Sonne und

dem Mond nicht nur der innere Planet Venus, sondern – als Quintessenz der vorliegenden Untersuchung – mit an Sicherheit grenzender Wahrscheinlichkeit auch der der Sonne nächste Nachbar Merkur und mit ebenso großer Gewissheit der der Erde nächste äußere Nachbar Mars sowie mit etwas geringerer Sicherheit auch die weiteren äußeren Planeten Jupiter und Saturn. Für letztere sind die nachgewiesenen Indizien erstens nicht so deutlich wie für die anderen genannten Himmelskörper und zweitens kann auf Grund ihrer ähnlichen synodischen Umlaufperioden von angenähert 380 Tagen für Saturn und 400 Tagen für Jupiter nicht mit völliger Sicherheit ausgeschlossen werden, dass nur einer dieser beiden Planeten in den Zahlen des Codex Dresden verzeichnet ist.

Die Abstraktionsleistung der Maya bestand also darin, alle (für sie beobachtbaren) Himmelsobjekte dessen, was wir gewohnt sind, Sonnensystem zu nennen, in einer einzigen Zahl nicht nur zusammenzufassen, sondern kommensurabel zu machen. Das bedeutet auch, dass für die Maya keines der Himmelsobjekte einen Primat hatte. Diese Sicht auf astronomische Objekte ist verständlich vor dem Hintergrund, dass die Maya – wie ja bis in das 15. Jahrhundert hinein die Europäer und wahrscheinlich alle Menschen – die Erde als Zentrum betrachteten, um das herum sich alle Objekte am Tag- und/oder Nachthimmel bewegten.

Die Gesetzmäßigkeit dieser Bewegungen mit Aufmerksamkeit beobachtet und mit Präzision aufgezeichnet zu haben, ist anhand des Codex Dresden und für die Maya seit langem bekannt und stellt überdies eine Universalie der Menschheit dar: Astronomie ist die älteste Wissenschaft der Menschen.

Und als Werkzeug dazu diente ihnen ein eigenes Zahlensystem, eine Arithmetik, ja eine Mathematik:

Sie bestand in einem Stellenwertsystem zur Basis Zwanzig und Kenntnis der dafür unabdingbaren Null, das Vigesimalsystem genannt wird.

Die Erfindung eines Stellenwertsystems in der Alten Welt wird üblicherweise den Indern zugeschrieben, die die Basis für das heute überwiegend verwendete Dezimalsystem etwa im 7. Jahrhundert unserer Zeitrechnung gelegt haben sollen. Auch unter Zugrundelegung einer späten Chronologie (Korrelationsfrage) können demnach die Maya hierfür den Primat beanspruchen.

Dieses Stellenwertsystem benutzten die Maya zur Definition einer absoluten Zeitzählung in Form der Langen Zählung (Long Count), die einen Tag in der Vergangenheit zum Ausgangspunkt (Tag Null oder Tag Eins) dieser Zählung machte.

Ein äquivalentes System absoluter Zeitzählung ist von J. J. Scaliger in seinem Werk "Opus novum de emendatione temporum" 1581 ein zweites Mal erschaffen worden, das die Tage, die

seit dem 1. Januar des astronomischen Jahres – 4712 (= 4713 v. Chr.) 12 Uhr Weltzeit verstrichen sind, zählt. Es wird Julianisches Datum oder Julianische Tageszahl genannt. Seit 1957 wird das Modifizierte Julianische Datum, das vom 17. November 1858 ausgeht, insbesondere für astronomische Zwecke verwendet.

Auch hier können die Maya also den Primat beanspruchen.

Mit der vorliegenden Arbeit konnte gezeigt werden, dass die Maya mit dem Tzolkin einen universellen Maßstab geschaffen haben, der ihnen zur Beschreibung aller für sie ohne Instrumente beobachtbaren Objekte in der auch sie überwölbenden Sphäre diente. Wann ihnen dies gelungen ist, kann nicht mit hinreichender Gewissheit gesagt werden und Quantität und Qualität ihres Wissens kann und soll hier nicht mit den Leistungen anderer Kulturen, die auf diesem Gebiet ebenfalls Hervorragendes geleistet haben, verglichen werden. Dennoch möge dem Verfasser am Ende seiner Arbeit eine Zuspitzung der Sicht gestattet sein, die eine Vermutung ist: die Maya haben mit dem Tzolkin ein Maß von 260 Tagen gefunden, mit dem für sie die Bewegungen der Himmelsobjekte einheitlich beschreibbar waren. War es ihr Anspruch, die Beschreibung ihres komplexen Kosmos in einer einzigen Zahl, die den Universalschlüssel aller Bewegungen der ihnen unerreichbaren Körper darstellt, zu vereinen – oder in der Sprache der modernen Physik ausgedrückt: zu vereinheitlichen? Dann müssten wir auch anerkennen, dass sie wiederum den Primat beanspruchen dürfen. Denn die moderne Menschheit unternimmt zur Zeit mit dem größten je von Menschen entworfenen Instrument – dem in diesen Tagen in Genf in Betrieb zu nehmenden Large Hadron Collider – den Versuch, einem einheitlichen Verständnis aller Phänomene unseres Kosmos mittels einer "Vereinheitlichten Theorie" einen Schritt näher zu kommen.

Hatten die Maya diesen Anspruch? Glaubten sie, ihn durch die Ermittlung der Zahl 260 und die Erfindung des Tzolkin erreicht zu haben? Haben die Maya in ihr auch die Dauer der menschlichen Schwangerschaft erkannt?

Der Autor vermutet, dass diese Fragen unbeantwortet bleiben werden. Aber wenn es so gewesen sein sollte, dann hätten Menschen über die Jahrhunderte und die Kulturen hinweg ein gemeinsames Mittel für ein gemeinsames Ziel: eine Brücke zu bauen zwischen den Naturwissenschaften und den Kulturwissenschaften, um in Harmonie und Frieden mit sich und dem Kosmos zu leben.

8.3 Desiderata

Die Morphologische Strukturanalyse kann auf verschiedene weitere Themenkreise angewendet werden:

- (1) Eine komparatistische Analyse, die alle 76 Almanache (Thompson 1972) auf Gemeinsamkeiten und Unterschiede in ihren Strukturen und Inhalten untersucht, kann in Anlehnung an das strukturalistische Konzept (→ 3.) durchgeführt werden. Eine derartige Untersuchung kann diejenigen Studien ergänzen, die einzelne Almanache in Verbindung mit anderen Abschnitten des C.D. analysieren. Hofling und O'Neil (1992) weisen Zusammenhänge zwischen dem Almanach der Mondgöttin (C.D. p.16-23) und den Finsternistafeln (p.51-58) nach. V.R. Bricker und H.M. Bricker (1992) zeigen in einer derartigen Studie am Beispiel des Almanachs der Seiten p.17c-18c auch, dass die Struktur dieser Almanache alternativ zu der Interpretation Thompsons (1972:28) verstanden werden kann (V.R. Bricker und H.M. Bricker 1992:47ff). Aveni (2004) vergleicht die Strukturen einiger Almanache in den Codices Dresden und Madrid. Eine alle Almanache des C.D. umfassende Untersuchung kann deren Verständnis ebenso vertiefen wie das der Teiler und Teilabschnitte des Tzolkin (→ 6.2).
- (2) Die Ermittlung von Perioden durch die statistische Analyse (→ 4., 5.) kann auf die Daten der Langen Zählung der Monumente angewendet werden. Dazu sollten möglichst viele zweifelsfrei lesbare Daten herangezogen werden, die vollständig sind, also nicht rekonstruiert werden müssen, und die nicht modifiziert werden sollten. Für alle möglichen Paare dieser Daten sollten ihre Differenzen ermittelt werden und diese in Analogie zur durchgeführten statistischen Analyse auf in ihnen enthaltene Perioden untersucht werden. Eine derartige Untersuchung knüpft an zahlreiche Beispiele (Kelley und Kerr 1973, Kelley 1975 und 1977a) an, die anhand weniger Daten auf astronomische Inhalte hinweisen. Sie können mit den dargestellten Ergebnissen des Codex Dresden und denen der anderen Handschriften ebenso verglichen werden wie mit anderen, beispielsweise historischen Perioden und Inhalten und so zu einer wechselseitigen Evaluation beitragen.
- (3) Die strukturierte und methodische Bearbeitung in Anlehnung an die in der Mayaforschung für die Epigraphik anderer Schriftträger übliche Formalisierung hat sich in der dargestellten Weise als zweckdienlich erwiesen. Sie ermöglicht komparatistische Analysen. Diese können auch das Verständnis des hieroglyphischen Korpus durch Mittel der Lexikostatistik und der

Kontextanalyse erweitern helfen. Für eine informationstechnische Bearbeitung ist die Formalisierung zwingend erforderlich. Ihre Anwendung auf den gesamten Codex Dresden erscheint daher wünschenswert. Ihre darüber hinaus gehende Anwendung auf weitere Codices ist – mit möglicherweise geringen Modifikationen – ebenfalls zu erwägen. Eine derartige Untersuchung überschreitet aber mit hoher Wahrscheinlichkeit den Rahmen einer einzelnen Arbeit, wenn sie Sprache im Sinne Philosophen Ludwig Wittgensteins versteht.

"Wittgenstein wies darauf hin, dass das, was wir als Gegenstände in der Welt bezeichnen, nicht unabhängig von der Sprache gegeben ist, sondern dass mit unseren Unterscheidungen festgelegt wird, was als ein Gegenstand gilt. Ferner zeigte er auf, dass das Unterscheiden wie das Sprechen überhaupt eine sozial bestimmte, regelhafte Tätigkeit ist und dass eine von mehreren Menschen geteilte Regelhaftigkeit das ist, was die Verständigung ermöglicht (»Die B. [Bedeutung] eines Wortes ist sein Gebrauch in der Sprache«, Philos. Unters. §43). Diese Regeln eignen wir uns durch exemplarisches Lernen, durch verstehende Teilnahme an Sprachverwendungshandlungen … an. … Dabei konstituiert die sozial verbindliche Seite der Gebrauchsregeln die lexikalische B. eines Ausdrucks einschließlich der sich aus dem Verhältnis zu anderen Ausdrücken der Sprache ergebenden Konnotationen, während die Umstände einer besonderen Verwendung (z.B. Situation, Kontext, persönliche Kenntnisse und Erinnerungen von Sprecher und Hörer) die reichere aktuelle B. des Ausdrucks ausmachen …" (Mittelstraß 2004, Bd. 1:259-60).

- (4) Das Ergebnis der Ermittlung der Agensrichtung in den Büchern der Maya kann anhand von komparatistischen Untersuchungen evaluiert werden. Sowohl die Schriftträger gut dokumentierter Stätten (Teufel 2004) oder Regionen (Grana-Behrens 2002) als auch Objekte der Kleinkunst (Riese 1988a, 1990c) können herangezogen werden, um anhand statistisch aussagekräftiger Stichproben das Verhältnis von Text und Bild zu vertiefen.
- (5) Eine explizite und vollständige Darstellung der Leserichtung des Codex Dresden ist erforderlich, weil Struktur und Inhalt nur als Einheit verstanden werden können.

In hoher Achtung vor dem intellektuellen Potential der Schöpfer dieses Buches sollte der Raum der Möglichkeiten seiner Erforschung weit aufgespannt sein. Dann kann das Andere im Codex Dresden entdeckt werden.

Literaturverzeichnis

Anders, Ferdinand

1963 Das Pantheon der Maya. Akademische Druck- und Verlagsanstalt, Graz

Anderson, Arthur J. O. und Charles E. Dibble (Hg.)

1979 Fray Bernardino de Sahagún: Florentine Codex – General History of the things of New Spain, Monographs of the School of American Research, Part V, VI: Book 4, und 5 Santa Fe, 144

Andrews, E. Wyllys IV

- 1940 Chronology and Astronomy in the Maya Area. In: Clarence L. Hay und Ralph L. Linton (Hg.), The Maya and their Neighbors, Dover, New York
- 1951 The Maya Supplementary Series. In: Sol Tax (Hg.), Proceedings and selected papers of the 29th International Congress of Americanists, held in New York City, September 5-12, 1949, 123-41

Andrews, E. Wyllys IV und E. Wyllys Andrews V

1980 Excavations at Dzibilchaltún, Yucatán, México. Middle American Research Institute, Publication 48, New Orleans, Tulane University

Austin, Alfredo López

2001 Cosmovision. In: Davíd Carrasco (Ed.), The Oxford Encyclopedia of Mesoamerican Cultures, 3 Volumes, Oxford University Press, Oxford, Vol. 1, 68-74,

Aveni, Anthony F.

- 1972 Astronomical Tables intended for use in Astro-archaeological Studies. *American Antiquity* 37(4):531-40
- 1979 Venus and the Maya. *American Scientist* 67(3):274-86
- 1980 Skywatchers of Ancient Mexico. University of Texas Press, Austin, London,
- 1996 Astronomy in the Americas. In: Christopher Walker (ed.), Astronomy before the Telescope, British Museum Press, London, 269-303
- 2001 Archaeoastronomy. In: Davíd Carrasco (Ed.), The Oxford Encyclopedia of Mesoamerican Cultures, 3 Volumes, Oxford University Press, Oxford, Vol. 1, 268-74,
- 2001 Astronomy. In: Davíd Carrasco (Ed.), The Oxford Encyclopedia of Mesoamerican Cultures, 3 Volumes, Oxford University Press, Oxford, Vol. 1, 59-60
- 2004 Intervallic Structure and Cognate Almanacs in the Dresden and Madrid Codices. In: Gabrielle Vail und Anthony F. Aveni (Ed.), The Madrid Codex - New Approaches to Understanding an Ancient Maya Manuscript, University Press of Colorado

Aveni, Anthony F. (ed.)

- 1980 The Mathematical and Astronomical Content of the Mesoamerican Inscriptions. In: Anthony F. Aveni (Ed.), Skywatchers of Ancient Mexico, 133-217
- World Archaeoastronomy. Selected Papers from the 2nd Oxford International Conference on Archaeoastronomy held in Mérida, Yucatán, México 1986, Cambridge University Press, Cambridge

- 1992a Introduction: Making Time. In: Anthony F. Aveni (Ed.), The Sky in Mayan Literature, Oxford University Press, Oxford, 3-17
- 1992b The Moon and the Venus Table: An Example of Commensuration in the Maya Calendar. In: Anthony F. Aveni (Ed.), The Sky in Mayan Literature, Oxford University Press, Oxford, 87-101

Ayala Falcón, Maricela

- 1998 Maya Writing. In: Peter Schmidt und Mercedes de la Garza, Enrique Nalda (Hg.), Maya. Bompiani, 179-91
- 2004 Escritura Maya. *Arqueología Mexicana* XII(70):36-329

Barrera Vásquez, Alfredo

1941 Sobre la Significación de algunos Nombres de Signos del Calendario Maya. In: Los Mayas Antiguos. Monografías de Arqueología, Etnografía y Lingüística Mayas. México D. F., Fondo de Cultura Maya, 79-85

Barthel, Thomas S.

- 1951 Maya-Astronomie. Lunare Inschriften aus dem Südreich. *Zeitschrift für Ethnologie* 76:216-38
- 1952a Studien zur Entzifferung astronomischer, augurischer und kalendarischer Kapitel in der Dresdner Maya-Handschrift. Phil. Diss.
- 1952b Der Morgensternkult in den Darstellungen der Dresdner Maya-Handschrift. *Ethnos* 17:73-112
- 1953 Die Regionen des Regengottes. (Zur Deutung der unteren Teile der Seiten 65-69 in der Dresdner Maya-Handschrift. *Ethnos* 18:86-105
- 1959 Die Inschriftenanalyse als Hilfsmittel zur Rekonstruktion der Klassischen Maya-Geschichte. *El México Antiguo* 9:173-81

Belmont, G. E.

1935 The Secondary Series as a Lunar Eclipse Count. In: Franz Blom (Ed.), Maya Research, Vol. II. 144-54

Benavides Castillo, Antonio und Leticia Staines Cicero, Mercedes de la Garza, Eduardo Matos Moctezuma, Enrique Nalda

1998 Maya. Die nachklassische Periode. Hirmer, München

Berger, Rainer

1968 Recent Investigations toward the Maya Calendar Correlation Problem. Proceedings of the 38th International Congress of Americanists, Vol. 2, 209-12

Berlin, Heinrich

1951 The Calendar of the Tzotzil Indians. In: Sol Tax (Hg.), Proceedings and selected papers of the 29th International Congress of Americanists, held in New York City, September 5-12, 1949, 155-61

Berlo, Janet Catherine

1983 Conceptual Categories for the Study of Texts and Images in Mesoamerica. In: Norman Hammond (Gen. ed.) und J. C. Berlo (Vol. ed.), Text and Image in Precolumbian Art. Proceedings 44 International Congress of Americanists, Manchester, 1982, Oxford, 1-39

Beyer, Hermann

1933a Zur Konkordanzfrage der Mayadaten mit denen der christlichen Zeitrechnung. Zeitschrift für Ethnologie 65:75-80

- 1933b Emendations of the »Serpent Numbers« of the Dresden Maya Codex. *Anthropos* 28:1-7
- 1933c The Relation of the Synodical Month and Eclipses to the Maya Correlation Problem. Middle American Research Series 5(6):301-19
- 1935a Zur Konkordanzfrage der Mayadaten mit denen der christlichen Zeitrechnung II. Zeitschrift für Ethnologie 67:43-48
- 1935b On the correlation between Maya and Christian chronology. In: Franz Blom (Ed.), Maya Research, Vol. II(1), 64-72
- 1936a Two High Period Series at Palenque. El México Antiguo IV:145-54
- 1936b Das Zeichen für Zwanzig in den Maya-Inschriften. El México Antiguo IV:155-61
- 1941 The Variants of Glyph D of the Supplementary Series. In: Los Mayas Antiguos. Monografías de Arqueología, Etnografía y Lingüística Mayas. México D.F., Fondo de Cultura Maya, 61-71
- 1943 The Long Count Position of the Serpent Number Dates. Proceedings of the 27th International Congress of Americanists, 401-5

Böhm, Bohumil und Vladimir Böhm

1991 Calculation of the Correlation of the Mayan and Christian System of Dating. In: Actes du XIIe Congrès International des Sciences Prehistoriques et Protohistoriques. Bratislava, 1.-7. September 1991, 123-27

Bolles, David

1998 Colonial Maya Literature sheds Light on the Maya calendar, the Solar Agricultural Year, and Correlational Questions. *Latin American Indian Literatures Journal* 14 (1):26-53

Bowditch, Charles Pickering

- 1901a Memoranda on the Maya Calendars used in the Books of Chilam Balam. *American Anthropologist* 3:129-38
- 1901b A Method which may have been used by the Mayas in calculating time. Cambridge University Press, Cambridge, Mass.
- 1906 Mayan Nomenclature. Cambridge University Press, Cambridge, Mass.
- 1909 The Dates and Numbers of pages 24 and 46 to 50 of the Dresden Codex. Putnam Anniversary Volume, 268-98
- 1910 The Numeration, Calendar Systems and Astronomical Knowledge of the Mayas. The University Press, Cambridge

Bricker, Harvey M. und Victoria R. Bricker

- 1983 Classic Maya Prediction of Solar Eclipses. Current Anthropology 24(1):1-23
- 1992 Zodiacal References in the Maya Codices. In: Anthony F. Aveni, The Sky in Mayan Literature, 148-83
- 1997 More on the Mars Table in the Dresden Codex, Latin American Antiquity 8(4):384-97
- 2001 Correlation of Calendars. In: Davíd Carrasco (Ed.), The Oxford Encyclopedia of Mesoamerican Cultures, 3 Volumes, Oxford University Press, Oxford, Vol. 1, 126-28

Bricker, Victoria R.

1988a The Relationship between the Venus Table and an Almanac in the Dresden Codex. In: Anthony F. Aveni, New Directions in American Archaeoastronomy, Proceedings of the 46th International Congress of Americanists. BAR Series 454, 81-104

- 1988b A Phonetic Glyph for Zenith: Reply to Closs. American Antiquity 53(2):394-400
- Faunal Offerings in the Dresden Codex. In: M.G. Robertson und V.M. Fields (Ed.), 6th Palenque Round Table 1986 (The Palenque Round Table Series 8), Norman und London, University of Oklahoma Press, 285-92

Bricker, Victoria R. und Harvey M. Bricker

- 1986a The Mars Table in the Dresden Codex. In: E.W. Andrews V. (Ed.), Research and Reflections in Archaeology and History: Essays in Honor of Doris Stone. Middle American Research Institute, Publication 57. New Orleans, Tulane University, 51-80
- 1986b Archaeoastronomical Implications of an Agricultural Almanac in the Dresden Codex, *Mexicon* 8(3):29-35
- The Seasonal Table in the Dresden Codex and Related Almanacs. *Archaeoastronomy* 12 (= *Journal for the History of Astronomy*, Supplement to Vol. 19), 1-62
- 1989 Astronomical References in the table on pages 61-69 of the Dresden Codex. In: Anthony F. Aveni (Ed.), *World Archaeoastronomy*, Cambridge University Press, Cambridge, 232-45
- 1992 A Method for Cross-Dating Almanacs with Tables in the Dresden Codex. In: Anthony F. Aveni, The Sky in Mayan Literature, Oxford University Press, Oxford, 43-86
- 1998 Calendrical Cycles and Astronomy. In: Peter Schmidt und Mercedes de la Garza, Enrique Nalda (Hg.), Maya. Bompiani, 192-205

Brotherston, Gordon

The Year 3113 BC and the Fifth Sun of Mesoamerica: an orthodox reading of the Tepexic Annals (Codex Vindobonensis obverse). In: Anthony F. Aveni und Gordon Brotherston (Ed.), Calendars in Mesoamerica and Peru, Native American Computations of Time, Bar International Series 174, 167-220

Bunge, O. D. Edouard

- 1940 Contribution a l'Astronomie Maya. *Journal de la Societé des Américanistes de Paris* 32:69-92
- 1947 L'année solaire des anciens Maya. 28^e Congrès International des Americanistes, 363-70

Burland, Cottie A.

1957 Maya Correlations. New World Antiquity 4(1):3-4

Burgess, John W.

- 1990 Possible Use of the Mesoamerican Calendar System to Determine Sun-Moon-Venus Relationships. In: Selected Papers from the VII International Symposium on Latin American Indian Literatures, Labyrinthos, Culver City
- 1994 A possible astronomical genesis of the tzolkin. In: Stanislaw Iwaniszewski und Arnold Lebeuf, Andrezej Wiecínski, Mariusz S. Ziolkowski (ed.): Time and Astronomy at the Meeting of two Worlds. Proceedings of the International Symposium, April 27 May 2, 1992 in Frombork, Poland

Calvin, Inga E.

2004 Hieroglyphic Study Guide. Revised Edition (www.famsi.org)

Carlson, John B.

Numerology and the Astronomy of the Maya. In: Ray A. Williamson (ed.)
Archaeoastronomy in the Americas, Ballena Press Anthropological Papers No. 22.
Santa Fe, New Mexico, 205-13

- 1983 The Grolier Codex: A Preliminary Report on the Content and Authenticity of a Thirteenth-Century Maya Venus Almanac. In: Anthony F. Aveni und Gordon Brotherston (Hg.), Proceedings 44th International Congress of Americanists, Manchester 1982, BAR International Series, Oxford, 27-57
- 1993 Venus-regulated Warfare and Ritual Sacrifice in Mesoamerica. In: C. Ruggles and N. Saunders (Ed.), Astronomies and Cultures, Niwot, University Press of Colorado, 202-52
- Astronomy, Archaeoastronomy, and Astrology. In: Susan Toby Evans and David L.
 Webster (Ed.), Archaeology of Ancient Mexico and Central America An
 Encyclopedia, Garland Publishing, New York und London, 448-51

Carrasco, Davíd (Ed.)

2001 The Oxford Encyclopedia of Mesoamerican Cultures. The Civilizations of México and Central America, Vol. 1, Oxford University Press, 121-30

Caso, Alfonso

1967 Los Calendarios Prehispánicos. Instituto de Investigaciones Históricas. Serie Cultura Náhuatl. Monografías No. 6, México D.F., Universidad Nacional Autónoma de México

Chase, Arlen F.

1986 Time Depth or Vacuum: The 11.3.0.0.0. Correlation and the Lowland Maya Postclassic. In: Jeremy A. Sabloff und E. Wyllys Andrews V, Late Lowland Maya Civilization – Classic to Postclassic, University of New Mexico Press, Albuquerque, 99-140

Chase, Diane Z. und Arlen F. Chase

1982 Yucatec influence in Terminal classic Northern Belize. *American Antiquity* 47:596-614

Closs, Michael P.

- 1976 New Information on the European Discovery of Yucatan and the Correlation of the Maya and Christian calendars. *American Antiquity* 41(2):192-95
- 1977 The Date-Reaching Mechanism in the Venus Table of the Dresden Codex. In: Anthony F. Aveni, (Ed.), Native American Astronomy, University of Texas Press, Austin, 89-99
- 1986a Native American Mathematics, University of Texas Press, Austin
- 1986a The Mathematical Notation of the Ancient Maya. In: Michael P. Closs (Ed.), Native American Mathematics, University of Texas Press, Austin, 291-369
- 1988b A Phonetic Version of the Maya Glyph for North. American Antiquity 53(2):386-393
- 1989 Cognitive Aspects of ancient Maya eclipse theory. In: Anthony F. Aveni (Ed.), *World Archaeoastronomy*, Cambridge University Press, Cambridge, New York, 389-415
- 1992 Some Parallels in the Astronomical Events Recorded in the Maya Codices. In: Anthony F. Aveni (Ed.), The Sky in Mayan Literature, Oxford University Press, Oxford, 133-147
- A Glyph for Venus as Evening Star. In: M.G. Robertson und V.M. Fields (Ed.), 7th Palenque Round Table 1989 (The Palenque Round Table Series 9), Pre-Columbian Art Research Institute, San Francisco, 229-36

Codex Dresden

- 1831-48 Kingsborough, Edward King (Ed.): Antiquities of Mexico, 9 Bände. (Band 3: Codex Dresden). London
 - 1880 Förstemann, Ernst Wilhelm (Hg.): Die Maya-Handschrift der Königlichen öffentlichen Bibliothek zu Dresden, 74 Tafeln in Chromo-Lichtdruck. Verlag der Naumann'schen Lichtdruckerei, Leipzig

- Förstemann, Ernst Wilhelm (Hg.): Die Maya-Handschrift der Königlichen öffentlichen Bibliothek zu Dresden, 74 Tafeln in Chromo-Lichtdruck. 2. Auflage, Bertling, Dresden
- 1930 Códices mayas. Reproducidos y desarrollados por Juan Antonio Villacorta Calderón und Carlos A. Villacorta. Tipografía Nacional, Guatemala
- 1932 The Dresden Maya Codex. Prepared by William Edmond Gates. Maya Society Publ. 2, Baltimore
- Die Maya-Handschrift in der sächsischen Landesbibliothek Dresden, Codex Dresdensis. Vorwort von E. Lips. Hauptwerk 18 S., 74 Taf., Berlin: Akademie-Verlag, Beilage: Deckert, Helmut: Geschichte und Bibliographie. 86 S.
- 1963 Knorosov, Jurij Valentinovič: Pismennost' indejzew Maja. Akademija Nauk SSSR, Institut etnografii, Izd. AN SSSR, Moskau, Leningrad
- 1975 Codex Dresdensis: Sächsische Landesbibliothek Dresden; vollständige Faksimile-Ausgabe des Codex im Originalformat. Mit Kommentaren von Helmut Deckert und Ferdinand Anders. Graz: Akademische Druck- und Verlagsanstalt (Adeva), Codices selecti 54,1: Serie C: Mittelamerikanische Handschriften, Bd.1: Vollständige Faksimile-Ausgabe des Codex im Originalformat. 2 Leporellos; Bd.2: Deckert, Helmut und Ferdinand Anders: Zur Geschichte der Dresdner Maya-Handschrift (Helmut Deckert); Die Dresdner Maya-Handschrift: kodikologische Beschreibung (Ferdinand Anders)
- 1982 Knorosov, Jurij Valentinovič (Ed.): Maya Hieroglyphic Codices. Translated by S. D. Coe. Institute for Mesoamerican Studies, Publ. 8, State University of New York, Albany
- 1983 Lee, Thomas E. (Ed.): Los codices mayas. Universidad Autónoma de Chiapas, Tuxtla Guttierrez
- 2001 Kumatzim Wuj Jun, Códice de Dresde. Reproducción Facsimilar del Códice de Dresde, mit einem Vorwort von Nikolai Grube. Editorial Cholsamaj, Guatemala.

Coe, Michael D.

- 1973 The Maya Scribe and his World. The Grolier Club, New York
- 1992 Breaking the Maya Code. Thames and Hudson, London

Coe, Michael D. und Justin Kerr

1997 The Art of the Maya Scribe. Thames and Hudson. London

Coggins, Clemency Chase

1989 A new Sun at Chichén Itzá. In: Anthony F. Aveni (Ed.), World Archaeoastronomy, Cambridge University Press, Cambridge, 260-75

Cook de Leonard, Carmen und Ramon P. C. Schulz

1946 El Codice Maya de Dresde frente a la Astronomía y la Mitología, *El México Antiguo* 6:242-73

Collea, Beth A.

1979 The Celestial Bands in Maya Hieroglyphic Writing. In: Ray A. Williamson (ed.), Archaeoastronomy in the Americas, Ballena Press Anthropological Papers No. 22. Santa Fe, New Mexico, 215-31

Curtis, Jason H. und David A. Hodell, Mark Brenner

1996 Climate Variability on the Yucatan Peninsula (Mexico) during the Past 3500 Years, and Implications for Maya Cultural Evolution. *Quarternary Research* 46:37-47

Davoust, Michel

1994 The Great Venus Cycle and Solar and Lunar Eclipses with their Incidence on

- Postclassic Maya Society, Mayab, Sociedad Espanola de Estudios Mayas, No. 9, 66-80
- 1995 The Ochcan Serpent in the Table of and Solar and Lunar Eclipses of the Dresden Codex, *Trace*, CENCA, México
- 1997 Un nouveau Commentaire du Codex de Dresde.Codex hiéroglyphic maya du XIV^e siecle. CNRS Editions, Paris

Deckert, Helmut $(\rightarrow Codex Dresden)$

Maya Handschrift der Sächsischen Landesbibliothek Dresden, Codex Dresdensis, Geschichte und Bibliographie. Akademie Verlag, Berlin

Demarest, Arthur A.

2004 Ancient Maya. The Rise and Fall of a Rainforest Civilization. Cambridge University Press, Cambridge

Demarest, Arthur A. und Prudence M. Rice, Don S. Rice (eds.)

The Terminal Classic in the Maya Lowlands. Collapse, Transition and Transformation. University Press of Colorado, Boulder

Dieseldorff, Erwin Paul

1939 Cronología del calendario Maya. In: 27. Congreso Internacional de Americanistas, Actas de la 1. sesión México, T.1, México, 305-21,

Dittrich, Arnošt

- 1936 Die Korrelation der Maya-Chronologie. Abhandlungen der Preußischen Akademie der Wissenschaften, Nr. 3, Berlin
- 1937 Der Planet Venus und seine Behandlung im Dresner Maya-Kodex. In:
 Sitzungsberichte der Preußischen Akademie der Wissenschaften, Berlin, 326-55
- 1939 Die Finsternistafel des Dresdener Maya-Kodex. Abhandlungen der Preußischen Akademie der Wissenschaften, Nr. 2, Berlin

Earle, Duncan McLean und Dean R. Snow

1985 The Origin of the 260-day Calendar. The Gestation Hypothesis Reconsidered in Light of its Use Among the Quiché-Maya. In: Merle Greene Robertson and Virginia M. Fields (eds.), Fifth Palenque Round Table, 1983 (The Palenque Round Table Series 7), Pre-Columbian Art Research Institute, San Francisco, 241-44

Edmonson, Munro S.

- 1976 The Mayan Calendar Reform of 11.16.0.0.0. Current Anthropology 17(4):713-17
- 1988 The Book of the Year Middle American Calendrical Systems. University of Utah, Salt Lake City
- 1992 The Middle American Calendar Round. In: Supplement to the Handbook of Middle American Indians, Vol. 5, 154-67
- 1995 Sistemas calendáricos mesoamericanos: el libro del año solar. Translated by P. García Cisneros. Mexico City, Universidad Nacional Autónoma de México
- 2000 Los calendarios de la Conquista. *Arqueología Mexicana* VII(41):40-45

Edwards, R. E.

1979 Fourier Series, A Modern Introduction, Vol. I, II, Springer, New York

Eggebrecht, Eva und Arne Eggebrecht, Nikolai Grube (Hg.)

1992 Die Welt der Maya. Philipp von Zabern, Mainz

Ehrenberg, Andrew S.C.

1986 Statistik oder der Umgang mit Daten, VCH Verlagsgesellschaft, Weinheim

Escalante, R.

1971 Analisis de Estructuras en el Codice de Dresde. Cuarderno 4, UNAM, México

Escalona Ramos, Alberto

- 1940 Una Nueva Correlación entre el Calendario Cristiano y el Maya. *El México Antiguo* V: 125-32
- 1943a Cronología y Astronomía Maya Méxica un nuevo systema de correlación calendárica. Proceedings of the 27th International Congress of Americanists, 623-30
- 1943b La Tercera Correlación Calendárica Maya y la Estratigrafía de las Culturas de la América Media y Norte. Sociedad Mexicana de Antropología, Tercera Mesa Redonda, 320-24

Evans, Susan Toby und David L. Webster (Ed.)

2001 Archaeology of Ancient Mexico and Central America – An Encyclopedia, Garland Publishing Inc., New York and London

Fash, William L.

2001 Maya. In: Davíd Carrasco (Ed.), The Oxford Encyclopedia of Mesoamerican Cultures, 3 Volumes. Oxford University Press, Oxford, Vol 2, 181-89

Ferrari D'Occhieppo, Konradin L.

1958 Das Tzolkin der Maya im Lichte des Saros-Problems. *Anthropos* 53:192-202

Flores G., J. Daniel

1989 Comentarios. In: David Humiston Kelley, Mesoamerican Astronomy and the Maya Calendar Correlation Problem, 109-111

Förstemann, Ernst Wilhelm (Hg.) (\rightarrow Codex Dresden)

- Die Maya-Handschrift der Königlichen öffentlichen Bibliothek zu Dresden, 74 Tafeln in Chromo-Lichtdruck. Verlag der Naumann'schen Lichtdruckerei, Leipzig
- 1892 Die Maya-Handschrift der Königlichen öffentlichen Bibliothek zu Dresden, 74 Tafeln in Chromo-Lichtdruck. 2. Auflage, Bertling, Dresden

Förstemann, Ernst Wilhelm

- 1886 Erläuterungen zur Mayahandschrift der Königlichen öffentlichen Bibliothek. Warnatz und Lehmann, Dresden
- 1887-8 Zur Entzifferung der Mayahandschriften. 1-7. Bertling, Dresden
- 1891 Zur Maya-Chronologie. Zeitschrift für Ethnologie 23:141-55
- 1893 Die Zeitperioden der Mayas. Globus 63:30-32
- 1894a Die Mayahieroglyphen. Globus 66(5):78-80
- 1894b Die Plejaden bei den Mayas. Globus 65(15):246
- 1895 Das mittelamerikanische Tonalamatl. Globus 67:283-85
- 1897 Die Mayahieroglyphen. Globus 71(5):78-81
- 1898 Die Tagegötter der Mayas, 1, 2. *Globus* 73(9):137-40 und 73(10):162-64
- 1900 Drei Maya-Hieroglyphen. Zeitschrift für Ethnologie 32(5):215-21
- 1901a Der Merkur bei den Mayas. Globus 79(19):298-99

- 1901b Der Nordpol bei Azteken und Mayas. Verhandlungen der Berliner Anthropologischen Gesellschaft, 274-77
- 1901c Commentar zur Mayahandschrift der Königlichen öffentlichen Bibliothek zu Dresden. Bertling, Dresden
- 1902 Der zehnte Cyklus der Mayas. Globus 82(9):140-43
- 1903a Zur Madrider Mayahandschrift. Zeitschrift für Ethnologie 5:771-90
- 1903b Zwei Mayahieroglyphen. Globus 83(6):95-98
- 1904a Die Astronomie der Maya. Das Weltall: 353-61, 380-85
- 1904b Die Lage der Ahaus bei den Mayas. Zeitschrift für Ethnologie 1:138-41
- 1904c Liegen die Tonalamatl der Mayahandschriften in bestimmten Jahren? Zeitschrift für Ethnologie 5:659-67
- 1904d Vergleichung der Dresdner Mayahandschrift mit der Madrider. Globus 86(23):369-70
- 1905a Mayahieroglyphen als Bezeichnung der Zeiträume. Das Weltall 6(2):13-23
- 1905b Die Schlangenzahlen der Dresdner Mayahandschrift. Das Weltall 5(11):199-203
- 1905c Zwei Hieroglyphenreihen der Dresdner Mayahandschrift. *Zeitschrift für Ethnologie* 5(2/3): 265-74
- 1905d Die Millionenzahlen des Dresdensis. Globus 88(8):126-28
- 1906a Blatt sechzig der Dresdner Mayahandschrift. Das Weltall: 251-57
- 1906b Commentary on the Maya Manuscript in the Royal Public Library of Dresden.
 Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University, Vol. IV(2), Cambridge, Mass.

Frake, Charles O.

1992 Lessons of the Mayan Sky: A Perspective from Medieval Europe. In: Anthony F. Aveni, (Ed.), The Sky in Mayan Literature, Oxford University Press, Oxford, 274-91

Freidel, David und Linda Schele, Joy Parker

1993 Maya Cosmos: Three Thousand Years on the Shaman Path. New York. Reprint Perennial 2001

Fuls, Andreas

- 2000 Maya Astronomy and the Correlation Search Method. Berlin
- 2004 Das Rätsel des Mayakalenders. Spektrum der Wissenschaft, Heft 1:52-59
- 2007 Die astronomische Datierung der klassischen Mayakultur (500 1100 n. Chr.). Implikationen einer um 208 Jahre verschobenen Mayaachronologie. Books on Demand, Norderstedt

Fuls, Andreas und Bryan Wells

- 1999 The Astronomy of the 660208 Correlation. 4th European Maya Conference
- 2000 Chronologische Daten von Copan/Honduras. III. Mesoamerikanisches Symposion, Hamburg

Furst, Peter T.

Human Biology and the Origin of the 260-Day Sacred Almanac: The Contribution of L. Schultze-Jena (1872-1955). In: Gary G. Gossen (ed.), Symbol and Meaning beyond the closed Community: Essays in Mesoamerican Ideas, Institute for Mesoamerican Studies, State University of New York, Albany, 69-76.

Garza, Mercedes de la

Maya Gods. In: Peter Schmidt und Mercedes de la Garza, Enrique Nalda (Hg.), Maya. Bompiani, 235-47

Gates, William Edmond (Ed.) \rightarrow Codex Dresden

1932 The Dresden Maya Codex. Prepared by W. E. Gates. Maya Society Publ. 2, Baltimore

Gibbs, Sharon L.

1977 Mesoamerican Calendrics as Evidence of Astronomical Activity. In: Anthony F. Aveni (ed.) Native American Astronomy, University of Texas Press, Austin, 21-35

Gill, Richard Benedict

2000 The Great Maya Droughts. University of New Mexico Press, Albuquerque

Girard, Rafael

1969 Die ewigen Mayas. Zivilisation und Geschichte. Emil Vollmer, Wiesbaden

Goodman, Joseph Thomas

1905 Maya Dates. American Anthropologist 7(4):642-47

Goetze, Johann Christian

1744 Ein Mexicanisches Buch mit unbekannten Charaktern und Hieroglyphischen Figuren ..., in Goetze (Hg.): Die Merckwürdigkeiten der Königl. Bibliothek zu Dreßden. Dresden, Sammlung 1:1-5

Graham, Ian

1967 Archaeological Explorations in El Petén, Guatemala. Middle American Research Institute, Tulane University, New Orleans

Graham, Ian et al.

1975-2006 Corpus of Maya Hieroglyphic Inscriptions, Vol. 1-9, Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, Mass.

Grana-Behrens, Daniel

2002 Die Maya-Inschriften aus Nordwestyukatan, Mexiko. Dissertation, Rheinische-Friedrich-Wilhelms-Universität Bonn, http://hss.ulb.uni-bonn.de/2002/0102/0102.htm; URN: urn:nbn:de:hbz:5-01027

Grube, Nikolai

- 1981 Die Mayahieroglyphen für "Vollendung" und "Halbe Periode". Mexicon 2(6):93-95
- 1990 Die Entwicklung der Mayaschrift. Grundlagen zur Erforschung des Wandels der Mayaschrift von der Protoklassik bis zur spanischen Eroberung. Acta Mesoamericana, Band 3. Verlag von Fleming, Berlin
- Die Entzifferung der Maya-Handschriften. In: Carmen Arellano Hoffmann und Peer Schmidt (Ed.), Die Bücher der Maya, Mixteken und Azteken, Frankfurt/Main: 67-101
- 2001 Dresden, Codex. In: Davíd Carrasco (Ed.), The Oxford Encyclopedia of Mesoamerican Cultures, 3 Volumes, Oxford University Press, Oxford, Vol. 1, 337-39

Grube, Nikolai (Hg.)

2000 Maya. Gottkönige im Regenwald. Könemann, Köln

Grube, Nikolai und Maria Gaida

2006 Die Maya. Schrift und Kunst. In: Claus Pelling und Marie Luise Zarnitz (Hg.), Veröffentlichung des Ethnologischen Museums Berlin, Neue Folge 77, SMB-DuMont, Berlin, Köln

Guthe, Carl E.

- 1921 A possible Solution of the Number Series on Pages 51 to 58 of the Dresden Codex. Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University, Vol. 6(2)
- 1932a The Maya Lunar Count. Science 75(1941):271-77
- 1932b Notes on the Eclipse table in the Dresden Codex. *Science* 76:572

Harber, Hubert E.

1969 Five Mayan Eclipses in Thirteen Years. Sky and Telescope 37 (2):72-74

Hatch, Marion Popenoe

1975 An Astronomical Calendar in a Portion of the Madrid Codex. In: Anthony F. Aveni (Ed.), Archaeoastronomy in Pre-Columbian America, University of Texas Press, Austin und London, 2. Auflage 1977, 283-340

Haug, Gerald H. und K. A. Hughen, D. M. Sigman, L. C. Peterson, U. Röhl

2001 Southward Migration of the Intertropical Convergence Zone Through the Holocene. *Science* 293:1304-07

Haug, Gerald H. und D. Günther, L. C. Peterson, D. M. Sigman, K. A. Hughen, B. Aeschlimann

2003 Climate and the Collapse of Maya Civilization. *Science* 299:1731-35

Henseling, Robert

- 1932a Die Bedeutung des Tzolkin in der Zeitrechnung der Maya. A. Wesen und Aufbau des Tzolkin. *Sterne* 12(1/2):14-30
- 1932b Die Bedeutung des Tzolkin in der Zeitrechnung der Maya. B. Der astrologische Charakter des Tzolkin und die Finsternisse. *Sterne* 12(7/8):159-79
- 1933 Zur Astronomie der Maya. Sterne 13(4/5):105-6

Hochleitner, Franz Joseph

- 1968 Versuch einer chronologisch-astronomischen Deutung der Zahlen und Tageszeichen der Seiten 3-24 der Dresdner Mayahandschrift. Proceedings of the 38th International Congress of Americanists 2, 213-17
- 1970 Eine neue Ahaugleichung. Institut für Geschichte und Geografie von Juiz de Fora, Brasilien
- 1972 The Correlation between the Mayan and the Julian Calendar. Proceedings of the 40th International Congress of Americanists, 413-17
- 1972 A Inscrição Hieroglífica Maia de Dos Pilas. Proceedings of the 40th International Congress of Americanists, 427-29

Hodell, David A. und Jason H. Curtis, Mark Brenner

Possible Role of Climate in the Collapse of Classic Maya Civilization. *Nature* 375: 391-94

Hodell, David A. und Mark Brenner, Jason H. Curtis, Thomas Guilderson

2001 Solar Forcing of Drought Frequency in the Maya Lowlands. *Science* 292:1367-70

Hofling, Charles A.

1989 The Morphosyntactic Basis of Discourse Structure in Glyphic Text in the Dresden Codex. In: William F. Hanks und Don S. Rice (eds.), Word and Image in Ancient Maya

Culture. Explorations in Language, Writing, and Representation. University of Utah Press, Salt Lake City, 51-70

Hofling, Charles H. und Thomas O'Neil

1992 Eclipse Cycles in the Moon Goddess Almanacs in the Dresden Codex. In: Anthony F. Aveni, The Sky in Mayan Literature, Oxford University Press, Oxford, 102-32

Humboldt, Alexander von

1813 Vues des Cordillères et monuments des peuples indigènes de l'Amérique. Schoell, Paris

Iwaniszewski, Stanislaw

1989 La correlación entre las cuentas de días Maya y Juliana: El comentario a los dilemas de David Humiston Kelley. In: D. H. Kelley, Mesoamerican Astronomy and the Maya Calendar Correlation Problem, 97-102

Jäschke, P. Paul

1953 Zum Correlationsproblem der Maya-Zeitrechnung. Zeitschrift für Ethnologie 78:231-38

Jüngel, Peter

1992 Ein yukatekisches Buch des Rates. Stand, Probleme und Perspektiven der Erforschung der Mayahandschrift Codex Madrid. Ms. Dissertation, Tübingen

Justeson, John S.

Ancient Maya Ethnoastronomy: an Overview of Hieroglyphic Sources. In: Anthony F. Aveni (Ed.), World Archaeoastronomy, Selected Papers from the 2nd Oxford International Conference on Archaeoastronomy held at Mérida, Yucatán, México, 13-17 January 1986, Cambridge, Cambridge University Press, 76-129

Justeson, John S. und Terence Kaufman

2001 Calendars and Calendrical Systems. In: Davíd Carrasco (Ed.), The Oxford Encyclopedia of Mesoamerican Cultures, 3 Volumes. Oxford University Press, Oxford, Vol. 1, 121-24

Kähler, Wolf-Michael

2008 Statistische Datenanalyse, 5. Auflage, Friedr. Vieweg & Sohn/GWV Fachverlage, Wiesbaden

Kaiser, Rudolf E. und Günter Gottschalk

1972 Elementare Tests zur Beurteilung von Meßdaten. B.I. Hochschultaschenbücher, Band 774, Bibliographisches Institut, B.I.-Wissenschaftsverlag Mannheim, Wien, Zürich

Kelley, David Humiston

- Eurasian evidence and the Mayan calendar correlation Problem. In: Norman Hammond, Mesoamerican Archaeology New Approaches, Duckworth, London, 135-143
- 1975 Planetary Data on Caracol Stela 3. In: Anthony F. Aveni (Ed.), Archaeoastronomy in Pre-Columbian America, University of Texas Press, Austin und London, 2. Ed. 1977, 257-62
- 1976 Deciphering the Maya Script. University of Texas Press, Austin and London, 3-52
- 1977a Maya Astronomical Tables and Inscriptions. In: Anthony F. Aveni (Ed.), Native American Astronomy, University of Texas Press, Austin, 57-73
- 1977b A Possible Maya Eclipse Record. In: Norman Hammond (ed.), Social Process in Maya Prehistory Studies in the honour of Sir Eric Thompson, Academic Press, San Francisco, 405-8

- 1980 Astronomical Identities of Mesoamerican Gods. *Journal for the History of Astronomy* 9 (Suppl. 2):1-54
- 1983 The Maya Calendar Correlation Problem. In: Richard Leventhal und Alan Kolata (Ed.), Civilization in the Ancient Americas, University of New Mexico, Albuquerque, 157-208
- 1989 Mesoamerican Astronomy and the Maya Calendar Correlation Problem, 2nd Lehrburger Colloquium, 65-96

Kelley, David Humiston und K. Ann Kerr

1973 Mayan Astronomy and Astronomical Glyphs. In: Elizabeth P. Benson (Ed.), Mesoamerican Writing Systems, Dumbarton Oaks Research Library and Collections, Washington, 179-215

Keoke, Emory Dean und Kay Marie Porterfield

2002 Encyclopedia of American Indian Contributions to the World. 15,000 Years of Invention and Innovation. Facts on File Library of American History, New York

Kettunen, Harri und Christophe Helmke

2008 Introduction to Maya Hieroglyphs, Workshop Handbook, 13th European Maya Conference. Paris, December 1st – 6th, 2008

Kidder, Alfred V. und John Eric Sidney Thompson

1938 The Correlation of Maya and Christian Chronologies. Carnegie Institution of Washington, Publication 501, Washington D.C., 493-510

Kingsborough, Edward King $(\rightarrow Codex Dresden)$

1831-48 Antiquities of Mexico, 9 Bände. (Band 3: Codex Dresden). London

Knorozov, Jurij Valentinovič

- 1955 Sistema pi'sma drevnich Majja, La escritura de los antiguos Mayas. Akademija Nauk SSSR, Institut etnografii NN, SSSR, Miklujo-Maklai
- 1963 Pismennost' indejzew Maja. Akademija Nauk SSSR, Institut etnografii, Izd. AN SSSR, Moskau, Leningrad (→ *Codex Dresden*)
- 1967 Selected Chapters from the Writing of the maya Indians. Laguna Hills, Ca, Aegean Park
- 1975 Ieroglificeskie rukopisi Majja. Akademija Nauk, SSSR, Leningrad
- Maya Hieroglyphic Codices. Translated by S. D. Coe. Publication 8. State University of New York at Albany, Institute for Mesoamerican Studies

Kreichgauer, Damian

- 1914 Über die Sonnen- und Mondfinsternisse in der Dresdner Maya-Handschrift. *Anthropos* 9:1019
- 1927 Anschluß der Maya Chronologie an die julianische. Anthropos 22:1-15
- 1932 Über die Maya-Chronologie. *Anthropos* 27:621-26
- 1933 Zur Mayachronologie. Anthropos 28:490

Kremer, Jürgen

o.D. Das Venus-Kapitel der Dresdener Mayahandschrift. Unveröffentliche Magisterarbeit, Bonn, Rheinische Friedrich-Wilhelms-Universität

Krusche, Rolf

1956 Schrift- und Buchmalerei der Maya-Indianer, 24 Tafeln aus dem Codex Dresdensis. Insel-Bücherei Nr. 462, Insel-Verlag, Leipzig

1966 Die Maya-Handschrift Codex Dresdensis. 24 Tafeln, Frankfurt am Main

Kubler, George

- 1969 Studies in Classic Maya Iconography. Memoirs of the Connecticut Academy of Arts and Science, Vol. XVIII, New Haven
- 1976 Mythological dates at Palenque and the Ring Numbers in the Dresden Codex. In: M.G. Robertson (Hg.), The Art, Iconography and Dynastic History of Palenque. *Proceedings of the Segunda Mesa Redonda de Palenque 1974*, Part 3, Pebble Beach, 225-30

La Farge, Oliver

1934 Post-Columbian Dates and the Mayan Correlation Problem. In: Franz Blom (Ed.), Maya Research, Vol. I, 109-124

Lamb, Weldon W.

- 1979 Star Lore in the Yucatec Maya Dictionaries. In: Ray A. Williamson (ed.), Archaeoastronomy in the Americas, Ballena Press Anthropological Papers No. 22. Santa Fe, New Mexico, 233-48
- 1980 The Sun, Moon and Venus at Uxmal. American Antiquity 45:79-86

Landa, Diego de

- o.D. Manuskript der Biblioteca Real Academia de História, Madrid
- 1959 Relación de las cosas de Yucatán. Octava Edicion. Editorial Porrua S. A., México D.F.
- 1990 Bericht aus Yucatán. In: Rincón, Carlos (Hg.), Bericht aus Yucatán. Aus dem Spanischen von Ulrich Kunzmann, Reclam, Leipzig

Lee, Thomas A. $(\rightarrow Codex Dresden)$

1983 Los Códices Mayas. Introducción y Bibliografía por Thomas A. Lee. Fundación Arqueología Nuevo Mundo, A.C., San Cristobal de las casas, Chiapas y Brigham Young University, Provo, Utah. Universidad Autónoma de Chiapas, Tuxtla Guttierrez

Lehmann, Walter

1912 Einige Probleme des Centralamerikanischen Kalenders. 18th International Congress of Americanists, Vol. 18, London, 155-63

Lévi-Strauss, Claude

- 1958 Anthropologie structurale, Paris [dt. Strukturale Anthropologie. Frankfurt a. M. 1967, 1978]
- 1962a Le totémisme aujourd'hui. Paris [dt. Das Ende des Totemismus. Frankfurt a. M. 1965]
- 1962b La pensée sauvage. Paris [dt. Das wilde Denken. Frankfurt a. M. 1965]
- 1964-71Mythologiques I-IV, Paris [dt. Mythologica I-IV. Frankfurt a. M. 1971-75]
- 1973 Anthropologie structurale deux, Paris [dt. Strukturale Anthropologie II. Frankfurt a. M. 1975]

Lincoln, Charles Edward

1986 The Chronology of Chichén Itzá: A Review of the Literature. In: Jeremy Sabloff und E. W. Andrews (Ed.), Late Lowland Maya Civilization: Classic to Postclassic, University of New Mexico, Albuquerque, 141-96

Lizardi Ramos, César

1941 El glifo B y la Sincronología Maya-cristiana. In: Los Mayas Antiguos. Monografías de Arqueología, Etnografía y Lingüística Mayas. Fondo de Cultura Maya, México D. F., 245-59

Long, Austin und Bruce Rippeteau

1974 Testing Contemporaneity and Averaging Radiocarbon Dates. *American Antiquity* 39:205-15

Long, Richard C. E.

- 1918a The Maya and Christian Eras. Man 18 (8), No. 70:121-26
- 1918b The Maya and Christian Eras. Man 18 (9), No. 74:132-38
- 1923 Maya and Christian Chronology. *Journal of the Royal Anthropological Institute* 53:36-41
- 1924a The Age of the Maya Calendar. *Journal of the Royal Anthropological Institute* 54:353-62
- 1924b A Link between the Earlier and Later Maya Chronologies. Man 24 (6), No. 66:89-91
- 1925a Some Maya Time Periods. 21^e Congrès International des Américanistes, Göteborg 1924, 575-80
- 1925b The Bowditch and Morley Correlations of Maya Chronology. Man 25(1), No. 2:7-11
- 1931 The Correlation of Maya and Christian Chronology. *Journal of the Royal Anthropological Institute* 61:407-12
- 1934 The Correlation of Maya and Christian Chronology. Verhandlungen des 24. Internationalen Amerikanisten-Kongress, 7.-13.9.1930, Hamburg
- Remarks on the correlation question. In: J. E. S. Thompson, Maya chronology: the Correlation question, App. 3, Contributions to American Archaeology 3(14):97-100
- 1947 Dr. Makemson's New Maya Correlation. Proceedings of the 28th International Congress of Americanists, 441-44

Lounsbury, Floyd G.

- Maya Numeration, Computation and Calendrical astronomy. In: Charles Coulson Gillispie (Ed.), Dictionary of Scientific Biography, Suppl. 1, 759-818
- 1982a The base of the Venus table of the Dresden Codex, and its significance for the calendar correlation problem. *Proceedings of the 44th International Congress of Americanists*, 397-98
- 1982b Astronomical knowledge and its use in Bonampak, México. In: Anthony F. Aveni (ed.) Archaeoastronomy in the New World, Cambridge University Press, Cambridge, 143-68
- 1983 The Base of the Venus Table of the Dresden Codex, and its Significance for the Calendar-Correlation Problem. In: Anthony F. Aveni und Gordon Brotherston (Ed.), Calendars in Mesoamerica and Peru, Native American Computations of Time, Bar International Series 174, Oxford, 1-26
- 1992a A derivation of the Mayan-to-Julian Calendar Correlation from the Dresden Codex Venus Chronology. In: Anthony F. Aveni (Ed.), The Sky in Mayan Literature, Oxford University Press, Oxford, 184-206
- 1992b A Solution for the Number 1.5.5.0 of the Mayan Venus Table. In: Anthony F. Aveni (Ed.), The Sky in Mayan Literature, Oxford University Press, Oxford, 207-15

Love, Bruce

- 1986 A Text from the Dresden New Year Pages. In: M.G. Robertson und V.M. Fields (eds.), 6th Palenque Round Table (The Palenque Round Table Series 8), University of Oklahoma Press, Norman, 293-302
- 1994 The Paris Codex. Handbook for a Maya Priest. University of Texas Press, Austin

Lothrop, Samuel K.

1930 A Modern Survival of the Ancient Maya calendar. Proceedings of the 23rd International Congress of Americanists, Sept. 1928, 652-55

Ludendorff, Hans

- 1930a Über die Entstehung der Tzolkin-Periode im Kalender der Maya. Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1930b Über die Reduktion der Maya-Datierungen auf unsere Zeitrechnung. Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1931a Die astronomische Bedeutung der Seiten 51 und 52 des Dresdener Maya-Kodex (Untersuchungen zur Astronomie der Maya, Nr. 3). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1931b Das Mondalter in den Inschriften der Maya (Untersuchungen zur Astronomie der Maya, Nr. 4). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1931c Die Venustafel des Dresdener Kodex (Untersuchungen zur Astronomie der Maya, Nr.
 5). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1933a Bemerkungen zu der Arbeit von H. Beyer "Zur Konkordanzfrage der Mayadaten mit denen der christlichen Zeitrechnung". Zeitschrift für Ethnologie 65:401-2
- Über die Seiten 51 und 52 des Dresdener Kodex und über einige astronomische Inschriften der Maya (Untersuchungen zur Astronomie der Maya, Nr. 6).
 Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1933c Die astronomischen Inschriften in Yaxchilan (Untersuchungen zur Astronomie der Maya, Nr. 7). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1934 Weitere astronomische Inschriften der Maya (Untersuchungen zur Astronomie der Maya, Nr. 8). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1935 Die astronomischen Inschriften aus dem Tempel des Kreuzes in Palenque (Untersuchungen zur Astronomie der Maya, Nr. 9). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1936 Die astronomische Deutung der Maya-Inschriften (Untersuchungen zur Astronomie der Maya, Nr. 10). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1937 Zur Deutung des Dresdener Maya-Kodex (Untersuchungen zur Astronomie der Maya, Nr. 11). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin
- 1938 Astronomische Inschriften in Palenque (Untersuchungen zur Astronomie der Maya, Nr.
 12). Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Berlin

MacLeod, Barbara

1989 The 819-Day-Count: A Soulful Mechanism. In: William F. Hanks und Don S. Rice (Hg.), Word and Image in Maya Culture. Salt Lake City, University of Utah Press, 112-126

Makemson, Maud Worcester

- The Astronomical Tables of the Maya. Contributions to American Anthropology and History 8(42), Carnegie Institution of Washington, Publication 546, 183-221
- 1946 The Maya Correlation Problem. Publications of the Vassar College Observatory 5, Poughkeepsie, 1-79
- 1957 The Miscellaneous Dates of the Dresden Codex. Publications of the Vassar College Observatory 6, Poughkeepsie, 1-48

Malmstrom, Vincent H.

- 1973 Origin of the Mesoamerican 260-day Calendar. Science 181:939-41
- 1978 A Reconstruction of the Chronology of Mesoamerican Calendrical Systems. *Journal for the History of Astronomy* 9:105-16
- 1979 Architecture, Astronomy, and Calendrics in Pre-Columbian America. In: Ray A. Williamson (ed.), Archaeoastronomy in the Americas, Ballena Press Anthropological Papers, No. 22. Santa Fe, New Mexico, 249-61

Marcus, Joyce

- 1992 Mesoamerican Writing Systems, Princeton University Press, Princeton, 95-142
- 2000 Los calendarios prehispánicos. Arqueología Mexicana VII(41):12-19

Martínez Hernández, Juan

- Los grandes ciclos de la historia Maya, según el manuscrito de Chumayel. Proceedings of the 17th International Congress of Americanists, México, 180-213
- La creación del mundo según los Mayas. Páginas inéditas del manuscrito de Chumayel. Proceedings of the 18th International Congress of Americanists, London, 164-71
- 1926 Paralelismo entre los calendarios maya y Azteca. Diario de Yucatan, 7.2.1926, Mérida
- 1928 Significación cronológica de los ciclos Mayas. *Informe presentado al Congreso Internacionál de Americanistas*, New York, Sept. 1928, Talleres de la Comp. tipogr. Yucateca, Mérida
- 1930 The Mayan Lunar Table. *Proceedings of the 23rd International Congress of Americanists*, NY, 17.-22.9.1928, Science Press Printing New York, 149-54
- 1932 Correlation of the Maya Venus Calendar. Middle American Research Series 4, 137-44
- 1944 La tabla maya de eclipses. *Diario de Yucatan*, 1.1.1944, Mérida
- 1948 Edad de la luna en la cronología maya cristiana. Diario de Yucatan, 5.12.1948, Mérida

Mc Cluskey, Stephen C.

1983 Maya observations of very long periods of Venus. *Journal for the History of Astronomy* 14:92-101

Meinshausen, Martin

1913 Über Sonnen- und Mondfinsternisse in der Dresdner Mayahandschrift. Zeitschrift für Ethnologie 45:221-27

Merrill, R. H.

1945 Maya Sun Calendar Dictum Disproved. *American Antiquity* 10:307-11

Milbrath, Susan

1979 Astronomical Imagery in the Serpent Sequence of the Madrid Codex. In: Ray A. Williamson, (ed.), Archaeoastronomy in the Americas, Ballena Press Anthropological Papers No. 22. Santa Fe, New Mexico, 263-84

1999 Star Gods of the Maya. Astronomy in Art, Folklore, and Calendars. University of Texas Press. Austin

Miles, Suzanna W.

An Analysis of Modern Middle American Calendars: A Study in Conservation. 29th International Congress of Americanists, New York, Vol. 2:273-84

Miller, Arthur G.

1989 Comparing Maya Image and Text. In: William F. Hanks und Don S. Rice (eds.), Word and Image in Ancient Maya Culture. Explorations in Language, Writing, and Representation. University of Utah Press, Salt Lake City, 176-87

Miller, Mary Ellen und Karl Taube

1993 The Gods and Symbols of Ancient Mexico and the Maya, An Illustrated Dictionary of Mesoamerican Religion. Thames and Hudson, New York, 146-48, 180-81

Miram, Helga-Maria

1988 Transkriptionen der Chilam Balames, Vol. 1 bis 4. Toro, Hamburg

Mittelstraß, Jürgen (Hg.)

2004 Enzyklopädie Philosophie und Wissenschaftstheorie, 4 Bde., Metzler, Stuttgart

Mitton, Simon (Hg.)

1978 Cambridge Enzyklopädie der Astronomie. Bertelsmann, Gütersloh

Morley, Sylvanus Grisvold

- 1910 The Correlation of Maya and Christian Chronology. Archaeological Institute of America. Papers of the School of American Archaeology, No. 11, 193-204
- 1920 Inscriptions at Copán, Appendix II: The Correlation of Maya and Christian Chronology. The Carnegie Institution of Washington Publication 219, Washington, D.C.
- 1925 The Earliest Mayan Dates. 21^e Congrès International des Américanistes, Göteborg 1924, 655-67
- 1938 The Maya New Empire. Carnegie Institution of Washington, Publication 501, Washington D.C., 533-65
- 1940 Maya Epigraphy. In: Clarence L. Hay und Ralph L. Linton (Hg.), The Maya and their Neighbors, Dover, New York, 139-49
- 1946 The Ancient Maya. Stanford University Press. Stanford, 1st Edition
- An Introduction to the Study of the Maya Hieroglyphs, Dover Publications, Inc., New York. Republication of the work originally published by the Government Printing Office, Washington D.C., 1915, as Bulletin 57 of the Bureau of American Ethnology, Smithsonian Institution

Nahm, Werner

Links Between Ritual and Astronomical Cycles in Maya Culture. In: Daniel Graña-Behrens und Nikolai Grube, Christian M. Prager, Frauke Sachse, Stefanie Teufel, Elisabeth Wagner (Ed.), Continuity and Change, 5th European Maya Conference, Universitty of Bonn, Acta Mesoamerican, Vol. 14: Anton Saurwein, Markt Schwaben, 41-56

Noll-Husum, Herbert

1937 Grundlegendes zur Zeitbestimmung der Maya. Eine Aufgabe der geschichtlichen Himmelskunde. *Zeitschrift für Ethnologie* 69:53-63

Noriega, Raul

1957 Eclipses y cronología Maya - Mexicana. Suplemento de la Revista "*El Universo*" e la Sociedad Astronomica de México, México

Nowotny, Karl Anton

- 1951 Die Konkordanz der mesoamerikanischen Chronologie. *Zeitschrift für Ethnologie* 76:239-245
- 1961 Die astronomischen Tafeln des Codex Dresdensis. *Archiv für Völkerkunde* 16:140-61, Universitäts-Verlag, Wien
- 1962-3 Übersicht über den Inhalt des Codex Dresdensis. *Archiv für Völkerkunde* 17-18: 179-93, Universitäts-Verlag, Wien

Nuttall, Zelia

Nouvelles lumères sur les civilisations américaines et les système du calendrier. Atti de XXII. Congresso Internazionale degli Americanisti, Roma, Settembre 1926, Vol. I. Reprint Nendeln, Liechtenstein, 1968:119-48

Oppolzer, Theodor E. von

1887 Canon der Finsternisse. Denkschriften der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Band 52. Wien

Owen, Nancy Kelly

1975 The Use of Eclipse Data to Determine the Maya Correlation Number. In: Anthony F. Aveni (Ed.), Archaeoastronomy in Pre-Columbian America, University of Texas Press, Austin, 2. Auflage 1977, 237-46

Palacios, Enrique Juan

- 1932 Maya-Christian Synchronology or Calendrical Correlation. Middle American Research Series 4, New Orleans, 146-175
- 1943 Las Sincronologías A y B, y la Nueva Tesis del Doctor Spinden. Sociedad Mexicana de Antropología, Tercera Mesa Redonda, México D.F., 324-28

Pallattino, Massimo (ed.)

1965 Encyclopedia of World Art, Volume 10. McGraw-Hill, London, revised printing 1972:1-81

Paxton, Merideth Daniel

- 1986a Codex Dresden: Stylistic and Iconographic Analysis of a Maya Manuscript. Ph. D. dissertation, University of New Mexico, Albuquerque
- 1986b Codex Dresden: Late Postclassic Ceramic Depictions and the Problems of Provenience and Date of Painting. In: M.G. Robertson und V.M. Fields (eds.), 6th Palenque Round Table, (The Palenque Round Table Series 8), University of Oklahoma Press, Norman und London, 303-8
- 1992 The Books of Chilam Balam: Astronomical Content and the Paris Codex. In: Anthony F. Aveni (Ed.), The Sky in Mayan Literature, Oxford University Press, Oxford, 216-46
- 2001 The Cosmos of the Yucatec Maya. Cycles and steps from the Madrid Codex. University of New Mexico Press, Albuquerque

Pérez Suárez, Tomás

2007 Dioses Mayas. Arqueología Mexicana XV(88):57-65

Prem, Hanns J.

- 1983 Das Chronologieproblem in der autochthonen Tradition Zentralmexikos. *Zeitschrift für Ethnologie* 108(1):133-61
- 1988 Calendrical Traditions in the Writings of Sahagún. In: J. Jorge Klor de Alva und N. B. Nicholson, Eloise Quiñones Keber. The Work of Bernardino de Sahagún Pioneer Ethnographer of the Sixteenth Century Aztec Mexico –, Studies on Culture and Society, Vol. 2. Institute of Mesoamerican Studies, Albany State University, University of Texas Press, 135-49
- 1990 Probleme der Chronologie. In: Ulrich Köhler (Hg.), Altamerikanistik. Eine Einführung in die Hochkulturen Mittel- und Südamerikas. Dietrich Reimer Verlag, Berlin, 173-77
- 1990 Kalender und Schrift. In: Ulrich Köhler (Hg.), Altamerikanistik. Eine Einführung in die Hochkulturen Mittel- und Südamerikas. Dietrich Reimer Verlag, Berlin, 241-53
- 1991 Los calendarios prehispánicos y sus correlaciones (problemas históricos y técnicos). In: Johanna Broda, Stanislaw Iwaniszewski, Lucrecia Maupomé (Hg.), Arqueoastronomía y Etnoastronomía en Mesoamerica, Universidad Nacional Autónoma de México, México, 389-411

Prem, Hanns J. und Berthold C. Riese

1986 Schrift, Kalender und Wissenschaft. In: H. J. Prem, U. Dyckerhoff, Das Alte Mexiko. Geschichte und Kultur der Völker Mesoamerikas. Bertelsmann, München, 371-83

Rätsch, Christian (Hg.)

1986 Chactun - Die Götter der Maya. Diederichs, Köln

Råde, L. und B. Westergren

1997 Springers Mathematische Formeln, 2. Auflage

Reents-Budet, Dorie J.

Narrative in Classic Maya Art. In: William F. Hanks und Don S. Rice (eds.), Word and Image in Ancient Maya Culture. Explorations in Language, Writing, and Representation, University of Utah Press, Salt Lake City, 189-97

Remington, Judith Ann

1979 Mesoamerican Archaeoastronomy: Parallax, Perspective, and Focus. In: Ray A. Williamson (ed.), Archaeoastronomy in the Americas, Ballena Press Anthropological Papers No. 22. Santa Fe, New Mexico, 193-204

Riese, Berthold C.

- 1971 Grundlagen der Entzifferung der Mayahieroglyphen. Dargestellt an den Inschriften von Copán. Renner, München
- 1972 Die Geschichte der Maya, Kohlhammer, Stuttgart
- 1974 Rezension: J. Eric S. Thompson: A Commentary on the Dresden Codex. Zeitschrift für Ethnologie 99:300-2
- 1976a Rezension: Codex Dresdensis, Graz 1975. Zeitschrift für Ethnologie 101:190-91
- 1976b *Rezension:* Corpus of Maya Hieroglyphic Inscriptions, 1975. *Zeitschrift für Ethnologie* 101:191-93
- 1978 Stellungnahme zur Inschrift [Playa del Carmen, México]. *Etnología Americana* 15(87): 860-61
- 1980 Katun-Altersangaben in klassischen Maya-Inschriften. Baessler-Archiv, Neue Folge, Bd. 28, 155-80

- Eine mexikanische Gottheit im Venuskapitel der Mayahandschrift Codex Dresdensis. Bulletin de la Société Suisse des Américanistes 46, 37-39
- Dynastiegeschichtliche und kalendarische Beobachtungen an den Maya-Inschriften von Machaquilá, Petén, Guatemala. *Tribus*, Jahrbuch Band 33, 149-54
- Die Maya. In: Hanns J. Prem und Ursula Dyckerhoff, Das Alte Mexiko: Geschichte und Kultur der Völker Mesoamerikas. Bertelsmann, München, 155-90
- 1988a Vasenmalerei als Quelle zu Geschichte und Religion der Maya. Mitteilungen der Berliner Gesellschaft für Anthropologie, Ethnologie und Urgeschichte 9, 37-47
- 1988b Neues zur Dynastie und Chronologie von Machaquilá. Mexicon 10(5):96-98
- 1988c Weiteres zur Dynastie und Chronologie von Machaquilá. *Tribus*, Jahrbuch Band 37, 175-77
- 1990a Kultur und Gesellschaft im Maya-Gebiet. In: Ulrich Köhler (Hg.), Altamerikanistik. Eine Einführung in die Hochkulturen Mittel- und Südamerikas. Dietrich Reimer Verlag, Berlin, 75-99
- 1990b Schrift, Kalender und Astronomie der Maya. In: Ulrich Köhler (Hg.), Altamerikanistik. Eine Einführung in die Hochkulturen Mittel- und Südamerikas. Dietrich Reimer Verlag, Berlin, 101-32
- 1990c Steinerne Deckelgefäße mit Hieroglyphen-Inschriften aus Copán. In: Bruno Illius und Matthias Laubscher (Hg.), Circumpacifica: Festschrift für Thomas S. Barthel, Bd. 1, Peter Lang, Bern, 343-68
- 1993 Hieroglyphen und Sterne bei den Maya. UNESCO Kurier 34(11):18-20, Bern
- 1995 Die Maya, Geschichte Kultur Religion. Beck, München
- 1997 Zeitstrukturen in Mesoamerika. In: E. Müller und Jörn Rüsen (Hg.), Historische Sinnbildung: Problemstellungen, Zeitkonzepte, Wahrnehmungshorizonte, Darstellungsstrategien, Rowohlt, Reinbek, 240-50
- 2004 Maya-Religion: Ziele und Wege ihrer Erforschung. In: Daniel Graña-Behrens und Nikolai Grube, Christian M. Prager, Frauke Sachse, Stefanie Teufel, Elisabeth Wagner (Ed.), Continuity and Change, 5th European Maya Conference, University of Bonn, Acta Mesoamerican, Vol. 14:25-30, Anton Saurwein, Markt Schwaben

Riese, Berthold C. und Claude F. Baudez

1990 Maya Sculpture of Copán. With Contributions by Maria Gaida, Frauke J. Riese and Deborah Tear Haynes. Microfilm Collection of Manuscripts on Cultural Anthropology, No. 381, Series LXXIII. University of Chicago Library, 1-74

Rose, Lynn E.

2000 The Maya Venus Numbers. *Estudios de Cultura Maya*, Vol. XXI, Universidad Nacional Autónoma de México, México, 113-33

Roys, Ralph Lawrence

- 1933 The Maya Correlation Problem Today. American Anthropologist 35(3):403-17
- 1967 The Book of Chilam Balam of Chumayel. Norman, University of Oklahoma

Sabloff, Jeremy A.

- 1991 Die Maya. Archäologie einer Hochkultur. Spektrum der Wissenschaft Verlagsgesellschaft, Heidelberg
- Ancient Maya Civilization in Space and Time. In: Peter Schmidt und Mercedes de la Garza, Enrique Nalda (Hg.), Maya. Bompiani, 53-71

Satterthwaite, Linton

- 1938 Maya Dating by Hieroglyph Styles. *American Anthropologist* 40:416-28
- 1947a Further Implications of Thompson's Readings of Maya Inscriptions at Copán. 28^e Congrès International des Américanistes, Paris, 467-93
- 1947b Concepts and structures of Maya calendrical arithmetics. Joint Publications. Museum of the University of Pennsylvania. The Philadelphia Anthropological Society
- 1951 Moon Ages of the Maya Inscriptions: The Problem of their Seven-Day Range of Deviation from Calculated Mean Ages. Proceedings of the 29th International Congress of Americanists, 142-54
- 1956 Radiocarbon Dates and the Maya Correlation Problem. *American Antiquity* 21(4):416-19
- 1959a Early "Uniformity" Maya Moon Numbers at Tikal and elsewhere. *33. Congreso Internacional de Americanistas 1958, Tomo II-III*, San José, Costa Rica, 200-10
- 1959b Maya Long Count, El México Antiguo, Tomo 9, 125-35
- 1962 An Appraisal of a New Maya-Christian Calendar Correlation. *Estudios de Cultura Maya*, Vol. 2, México, 251-275
- 1964 Long Count Positions of Maya Dates in the Dresden Codex, with Notes on Lunar Positions and the Correlation Problem. *Proceedings of the 35th International Congress of Americanists*, Vol. 2, Mexico City 1962, 47-67
- 1965 Calendrics in the Maya Lowlands. In: Handbook of Middle American Indians, Vol. 3, Part 2, 603-31
- 1971 The Form, Dating and probable use of Landa's Christian-Maya Year Table. *Revista Epañola de Antropología Americana*, Vol. 6, 9-44

Satterthwaite, Linton und William R. Coe

The Maya-Christian Calendrical Correlation and the Archaeology of the Petén. 37th *International Congress of Americanists, Actas y Memorias*, 3, Buenos Aires, 3-19

Schalley, Andrea C.

2000 Das mathematische Weltbild der Maya, Frankfurt a. Main

Schele, Linda und David A. Freidel

1995 Die unbekannte Welt der Maya. Augsburg, Weltbild

Schele, Linda und Nikolai Grube

1997 Notebook for the XXIst Maya Hieroglyphic Workshop, March 8-9, 1997: The Dresden Codex. University of Austin. Texas,

Schellhas, Paul

- 1892 Die Göttergestalten der Maya-Handschriften. Zeitschrift für Ethnologie 24:101-21
- 1904a Die Göttergestalten der Maya-Handschriften. 2. Umgearbeitete Auflage. Asher, Berlin
- 1904b Representation of Deities of the Maya manuscript. Papers of the Peabody Museum of American Archaeology and Ethnology, Vol. 4 No. 1 Harvard University Press, Cambridge
- 1926 Der Ursprung der Maya-Handschriften. Zeitschrift für Ethnologie 58(1/2):1-16
- 1933 Die Zahlzeichen der Maya. Zeitschrift für Ethnologie 65:93-100

Schlosser, Wolfhard und Jan Cierny

1996 Sterne und Steine. Eine praktische Astronomie der Vorzeit. Wissenschaftliche Buchgesellschaft, Darmstadt

Schove, Derek Justin

- 1976 The Mayas and the Planets, AD 293-1237. *Journal of the British Astronomical Association* 86, 466-70
- 1977a Maya dates AD 352-1296. Nature 268:670
- 1977b Maya Chronology and Planetary Conjunctions. *Journal of the British Astronomical Association* 88:38-52

Schrode, Antonius

2002 Kosmos Planetarium Bessel 4.0. Navigo, United Soft Media, München

Schulz, Ramón P. C.

- 1933 Zur Korrelation des Mayakalenders mit der europäischen Zeitrechnung. Zeitschrift für Ethnologie 65:396-99
- 1935a Zur Chronologie der Maya. Zeitschrift für Ethnologie 67:49-68
- 1935b Zur Chronologie der Maya II. Zeitschrift für Ethnologie 67:321-31
- 1936c Beiträge zur Chronologie und Astronomie des alten Zentralamerika. *Anthropos* 31:758-88
- 1937 Über einige Long-count-Daten des Codex Dresdensis. Anthropos 32:287-89
- 1939 Anotaciones sobre las Series de Serpientes en el Códice de Dresde. *El México Antiguo* 4:293-95
- 1940 Las fechas de la cuenta larga en las páginas 51a y 52a del Códice de Dresde. *El México Antiguo* 5:195-97
- 1949 Los llamados números de serpiente del códice Maya de Dresde y el punto cero de la cuenta larga Maya. *El México Antiguo* 7:322-42
- Sobre la antigüedad de los monumentos del llamado "Antiguo imperio de los mayas" (Nueva sincronología de los calendarios Maya y Europeo). *El México Antiguo* 8:225-32
- 1959 Otra vez las series de números en las páginas 51a y 52a del Códice Dresde. *El México Antiguo* 9:183-93

Schultze Jena, Leonhard

1933 Indiana I: Leben, Glaube und Sprache der Quiché in Guatemala. Fischer, Jena, 28-39

Schwede, Rudolf

1912 Über das Papier der Maya-Codices und einiger altmexicanischer Bilderhandschriften. Technische Universität Dresden. Dresden

Seidenberg, A.

1986 The Zero in the Mayan Numerical Notation. In: Michael P. Closs (Ed.), Native American Mathematics, University of Texas Press, Austin, 371-386

Seler, Eduard

- 1887 Über die Bedeutung des Zahlzeichens 20 in der Mayaschrift. Zeitschrift für Ethnologie 19:237-41
- 1889 Die Chronologie der Cakchiquel-Annalen. Zeitschrift für Ethnologie 21:475-76
- 1892 On Maya Chronology. Science 20(496): 557

- 1894 Der Fledermausgott der Mayastämme. Zeitschrift für Ethnologie 26:577-85
- 1895a Die Bedeutung des Mayakalenders für die historische Chronologie. Globus 68(3):37-41
- 1895b Die wirkliche Länge des Katun's der Maya-Chroniken und der Jahresanfang in der Dresdener Handschrift und auf den Copan-Stelen, *Zeitschrift für Ethnologie* 27:441-49
- 1886 Maya-Handschriften und Maya-Götter. Verhandlungen der Berliner Anthropologischen Gesellschaft, 416-20
- 1887 Über die Namen der in der Dresdener Handschrift abgebildeten Maya-Götter. Verhandlungen der Berliner anthropologischen Gesellschaft, 224-31
- 1903 Die Korrekturen der Jahrslänge und der Länge der Venusperiode in den mexikanischen Bilderschriften. Zeitschrift für Ethnologie 35:1-49

Serra, Liwy del Carmen Grazioso

1998 Maya Gods. In: Peter Schmidt und Mercedes de la Garza, Enrique Nalda (Hg.), Maya. Bompiani, 671

Severin, Gregory M.

1981 The Paris Codex: Decoding an Astronomical Ephemeris. Transactions of the American Philosophical Society, Independence Square, Philadelphia

Sharer, Robert J.

1989 The Preclassic Origins of Maya Writing. A Highland Perspective. In: William F. Hanks und Don S. Rice (eds.), Word and Image in Ancient Maya Culture. Explorations in Language, Writing, and Representation. University of Utah Press, Salt Lake City, 165-73

Sharer, Robert J.

1994 The Ancient Maya, 5th Edition, Stanford University Press, Stanford, California

Sharer, Robert J. und Loa P. Traxler

2006 The Ancient Maya, 6th Edition, Stanford University Press, Stanford, California

Smiley, Charles H.

- 1960a A New Correlation of the Mayan and Christian Calendars. *Nature* 188(4746):215-16
- 1960b The Antiquity and Precision of Maya Astronomy. *Journal of the Royal Astronomical Society of Canada* 54(5):222-26
- Bases astronomicos para una nueva correlación entre los calendarios Maya y Cristiano. Estudios de Cultura Maya 1:237-42
- 1962 The Mayan Calendar. Astronomical Society of the Pacific, Leaflet No. 392, 1-8
- 1975 The Solar Eclipse Warning Table in the Dresden Codex. In: Anthony F. Aveni (Ed.), Archaeoastronomy in Pre-Columbian America, University of Texas Press, Austin, 2. Auflage 1977, 247-56

Smiley, Charles H. und Fred F. Czarnec

1961 The Paths of Solar Eclipses. *Journal of the Royal Astronomical Society of Canada* 55(5):211-17

Sotelo Santos, Laura Elena

1997 Los códices mayas. Arqueología Mexicana IV(23):34-43

Spinden, Herbert J.

1924 The Reduction of Mayan Dates. *Papers of the Peabody Museum of American Archaeology and Ethnology*, Harvard University, Vol. 6(4)

- 1930a The Eclipse Table of the Dresden Codex. Proceedings of the 23rd International Congress of Americanists, New York, 17.-22. 9.1928, Science Press, New York, 140-48
- 1930b Maya Dates and What They Reveal. *The Museum of the Brooklyn Institute of Arts and Sciences, Science Bulletin* 4 (1):1-111
- 1940 Diffusion of Maya Astronomy. In: Clarence L. Hay und Ralph L. Linton (Hg.), The Maya and their Neighbors, Dover, New York 162-78
- 1942 Time Scale for the New World. Proceedings of the 8th American Scientific Congress, Washington, 2, 39-44
- 1948 Mexican Calendars and the Solar Year. Smithsonian Institution of Washington, Report for 1948, Publication 3973, 383-405

Sprajc, Ivan

- 1989 Comentario a la conferencia de David H. Kelley Maya Astronomy and the Correlation Problem. In: David Humiston Kelley, Mesoamerican Astronomy and the Maya Calendar Correlation Problem, 103-108
- 1993a The Venus-rain-maize Complex in the Mesoamerican World View: Part I. Journal for the History of Astronomy, 24, 17-70
- 1993b The Venus-rain-maize Complex in the Mesoamerican World View: Part II. Archaeoastronomy 18 (= Journal for the History of Astronomy, Supplement to Vol. 24), 27-53

Stein, E. M. und G. Weiss

1971 Fourier Analysis on Eucledian Spaces. Princeton University Press, Princeton

Stock, Anton

1998 Astronomie der Maya-Kultur, Die Datierung der Finsternistafel aus dem Dresdner-Codex und das Korrelationsproblem. Katun Verlag, München

Stuart, David

2002 Glyph for "Right" and "Left". Peabody Museum of American Archaeology and Ethnology, Vol. 4(1), Harvard University Press, Cambridge

Stuart, George E.

1986 A Review of *Los Códices Mayas*. Introduction and bibliography by Thomas A. Lee, Jr., 1985. *Archaeoastronomy* 9(1-4):164-75

Tate, Carolyn

- 1988 Summer solstice ceremonies performed by Bird Jaguar III of Yaxchilán, Chiapas, México. Estudios de Cultura Maya Vol. XVI, Universidad Nacional Autónoma de México, México, 85-113
- The use of astronomy in political statements at Yaxchilán. In: Anthony F. Aveni (Ed.), *World Archaeoastronomy*, Cambridge University Press, Cambridge, 416-29

Taube, Karl A.

- 1989 Itzam Cab Ain: Caimans, Cosmology and Calendrics in Postclassic Yucatán. *Research Reports on Ancient Maya Writing* 26-27, Center for Maya Research, Washington, 1-12
- 1996 Antiguos dioses mayas. Arqueología Mexicana IV(20):20-29

Taube, Karl A. und Bonnie L. Bade

An Appearance of Xiuhtecuhtli in the Dresden Venus Pages. *Research Reports on Ancient Maya Writing* 34-35, Center for Maya Research, Washington, 13-24

Tedlock, Dennis

Myth, Math, and the Problem of Correlation in Mayan Books. In: Anthony F. Aveni, (Ed.), The Sky in Mayan Literature, Oxford University Press, Oxford, 247-73

Teeple, John Edgar

- 1926 Maya Inscriptions [III]: The Venus Calendar and another Correlation. *American Anthropologist* 28(2):402-8
- 1927a Maya Inscriptions: Stela C at Copán. American Anthropologist 29(3):278-82
- 1927b Maya Inscriptions IV. American Anthropologist 29(3):283-91
- 1928 Maya Inscriptions VI: The Lunar Calendar and its Relation to Maya History. *American Anthropologist* 30:391-407
- Factors which may lead to a Correlation of Maya and Christian Dates. Proceedings of the 23rd International Congress of Americanists, New York, 17.-22.9.1928, Science Press, New York, 136-39
- 1930 Maya Astronomy. *Contributions to American Archaeology* 1(2), Carnegie Institution of Washington, Publ. 403, 29-116

Tena, Rafael

2000 El calendario mesoamericano. Arqueología Mexicana VII(41):4-11

Termer, Franz

1952 Die Mayaforschung, Nova Acta Leopoldina, Abhandlungen der Deutschen Akademie der Naturforscher zu Halle (Saale), 143-50

Teufel, Stefanie

2004 Die Monumentalskulpturen von Piedras Negras, Petén, Guatemala. Eine hieroglyphische und ikonographisch-ikonologische Analyse. Dissertation, Rheinische-Friedrich-Wilhelms-Universität Bonn, http://hss.ulb.uni-bonn.de/2004/0343/0343.htm; URN: urn:nbn:de:hbz:5-03438

Thomas, Cyrus

- 1893 Time-Periods of the Mayas. *Science* 21(527):128-30
- 1894 The Maya Year. Smithsonian Institution, Bureau of American Ethnology
- 1894-5 Aids to the Study of the Maya Codices. Annual Report of the Bureau of American Ethnology 6:253-371
- 1900a Mayan Time Systems and Time Symbols. American Anthropologist, N.S. 2:53-62
- 1900b Mayan Calendar Systems. Bureau of American Ethnology 19th Annual Report, Part 2, Washington D.C., Smithsonian Institution, 693-819
- 1904 Mayan Calendar Systems II. Bureau of American Ethnology 22nd Annual Report, Part 1, Washington D.C., Smithsonian Institution, 197-305

Thompson, John Eric Sidney

- 1927 A Correlation of the Mayan and European Calendars. *Anthropological Series* 17(1), Field Museum of Natural History, Publ. 241, Chicago, 1-22
- 1929 Maya Chronology: Glyph G of the Lunar Series. American Anthropologist 21(2):223-31
- 1932a A Maya Calendar from the Alta Vera Paz, Guatemala. *American Anthropologist* 34:449-54
- 1932b The Civilization of the Maya. Field Museum of Natural History and Anthropology, Leaflet 25, 2nd ed., 45-57, 97-98

- 1934a Skybearers, Colors and Directions in Maya and Mexican Religion. *Contributions to American Archaeology* 2(10), Carnegie Institution of Washington, Publ. 436
- 1934b Maya Chronology: The fifteen tun Glyph. *Contributions to American Archaeology* 2(11), Carnegie Institution of Washington, Publ. 436, 243-254
- 1935 Maya Chronology: The Correlation Question. *Contributions to American Archaeology* 3(14), Carnegie Institution of Washington, Publ. 456, 51-104
- 1941 Maya Arithmetic. *Contributions to American Anthropology and History* 36, Carnegie Institution of Washington, Vol. VII, Publ. 528, 37-62
- 1943a Maya Epigraphy: Directional Glyphs in Counting. Notes on Middle American Archaeology and Ethnology 20, Carnegie Institution of Washington, Cambridge, 122-26
- 1943b Maya Epigraphy: A cycle of 819 days. Carnegie Institution of Washington, Notes on Middle American Archaeology and Ethnology 22:137-51
- 1944 La correlación más probable entre las cronologías Maya y Cristiana. *Diario de Yucatan*, 9.2.1944, Mérida
- 1950 Maya Hieroglyphic Writing. An Introduction. Norman, University of Oklahoma Press
- 1954 The Rise and Fall of Maya Civilization. University of Oklahoma Press. Norman
- 1958 Symbols, Glyphs, and Divinatory Almanacs for Diseases in the Maya Dresden and Madrid Codices. *American Antiquity* 23(3):297-308
- 1962 A Catalog of Maya Hieroglyphs. University of Oklahoma Press. Norman,
- 1972 A Commentary on the Dresden Codex: A Maya Hieroglyphic Book. Memoirs of the American Philosophical Society, 93, American Philosophical Society, Philadelphia
- 1974 Maya Astronomy. Philosophical Transactions of the Royal Society of London 276, 83-98

Tichy, Franz (Hg.)

Proceedings of the symposium Space and Time in the Cosmovision of Mesoamerica, XLIII Internatinal Congress of Americanists, Vancouver, Canada, August 11 to 17, 1979, Fink, München

Todorov, Tzvetan

1985 Die Eroberung Amerikas - Das Problem des Anderen. Edition Suhrkamp 1213, Neue Folge Band 213, Frankfurt am Main

Tozzer, Alfred M. (Hg.)

1941 Landa's Relación de las cosas de Yucatan. Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University, Cambridge

Tozzer, Alfred M. und G. Allen

1910 Animal Figures in the Maya Codices. Papers of the Peabody Museum. Harvard University, Cambridge

Treiber, Hannelore

1987 Studien zur Katunserie der Pariser Mayahandschrift. Acta Mesoamericana, Bd. 2, von Fleming, Berlin

Unsöld, Albrecht und Bodo Baschek

1999 Der neue Kosmos. Einführung in die Astronomie und Astrophysik. 6. Auflage, Springer, Berlin, Heidelberg

Vail, Gabrielle

- 2001 Maya Screenfolds. In: Davíd Carrasco (Ed.), The Oxford Encyclopedia of Mesoamerican Cultures, 3 Volumes, Oxford University Press, Oxford, Vol. 2, 196-98
- A Reinterpretation of Tzolk'in Almanacs in the Madrid Codex. In: Gabrielle Vail und Anthony F. Aveni (Ed.), The Madrid Codex New Approaches to Understanding an Ancient Maya Manuscript, University Press of Colorado

Vail, Gabrielle und Anthony F. Aveni (Ed.)

2004 The Madrid Codex - New Approaches to Understanding an Ancient Maya Manuscript, University Press of Colorado

Vail, Gabrielle und Anthony F. Aveni

2004 Maya Calendars and Dates: Interpreting the Calendrical Structure of Maya Almanacs. In: Gabrielle Vail und Anthony F. Aveni (Ed.), The Madrid Codex - New Approaches to Understanding an Ancient Maya Manuscript, University Press of Colorado

Villacorta Calderón, Juan Antonio und Carlos A. Villacorta (→ Codex Dresden)

1930 Códices mayas. Reproducidos y desarrollados por Juan Antonio Villacorta Calderón und Carlos A. Villacorta. Tipografía Nacional, Guatemala

Vollemaere, Antoon Léon

- 1972 Problèmes des calendriers Mayas et de corrélation. Proceedings of the 40th International Congress of Americanists 1, 419-26
- 1975 De Maya-Juliaanse Korrelatie. America Antiqua 8, Mechelen, 3-45
- 1984 De Leiden-plaat en de Maya-korrelatie. *Oud-Amerika* 17, 219-46
- JDN 774.080: ¿Una solución más para la correlación Maya? In: Johanna Broda, Stanislaw Iwaniszewski, Lucrecia Maupomé (Hg.), Arqueoastronomía y Etnoastronomía en Mesoamerica, Universidad Nacional Autónoma de México, México, 113-128

Vogtherr, Thomas

2001 Zeitrechnung. Von den Sumerern bis zur Swatch. C. H. Beck. München

Weber, Richard

- 1950 Neue Untersuchungen zum Korrelationsproblem der Maya-Zeitrechnung. Zeitschrift für Ethnologie 75:90-102
- 1952 Tafel zur Umrechnung von Maya-Daten. Zeitschrift für Ethnologie 77:251-53

Webster, David L.

- 2001 Maya Culture and History. In: Susan Toby Evans and David L. Webster (Ed.), Archaeology of Ancient Mexico and Central America - An Encyclopedia, Garland Publishing, New York und London, 424-30,
- 2001 Maya Religion. In: Susan Toby Evans and David L. Webster (Ed.), Archaeology of Ancient Mexico and Central America An Encyclopedia, Garland Publishing, New York und London, 448-51

Weitzel, Robert B.

- 1930 Maya Chronological Systems. *American Journal of Archaeology* 2nd Series, 34:182-89
- 1935a Maya Moon Glyphs and New Moons. In: Franz Blom (Ed.), Maya Research II(1):14-23
- 1935b Maya Correlation Problem. In: Franz Blom (Ed.), Maya Research II(1):278-86
- 1945 Chichén Itzá Inscriptions and the Maya Correlation Problem. *American Antiquity* 11(1): 27-31

1947/8 Yucatecan Chronological systems. American Antiquity 13:53-58

1947/8 An Astronomical Test of Caso's Correlation. American Antiquity 13:323

Wells, Bryan

The Venus Table of the Dresden Codex and the Movements of the Planet Venus. *Journal of the Royal Astronomical Society of Canada* 85(6):291-315

Wells, Bryan und Andreas Fuls

2000 Correlating the Modern Western and Ancient Maya Calendars, Berlin

Weitzmann, Kurt

1970 Illustration in Roll and Codex: A Study of the Origin and Method of Text-Illustration. Princeton, Princeton University 12-19, 193

Whiting, Thomas A. Lee

1998 The Maya Codices. In: Peter Schmidt und Mercedes de la Garza, Enrique Nalda (Hg.), Maya. Bompiani, 206-15

Whittaker, Gordon R.

1986 The Mexican names of three Venus Gods in the Dresden Codex, *Mexicon* 8(3):56-60

Wilhelmy, Herbert

1981 Welt und Umwelt der Maya. Aufstieg und Untergang einer Hochkultur. Piper, München

Willey, Gordon R.

1974 Das Alte Amerika. Propyläen Kunstgeschichte, Band 18. Propyläen, Berlin

Willson, Robert W.

1924 Astronomical Notes on the Maya Codices. *Papers of the Peabody Museum of American Archaeology and Ethnology* 6(3), Harvard University, Cambridge

Zimmermann, Günter

- 1933 Die Bedeutung der oberen Teile der Seiten 4-10 der Dresdener Maya-Handschrift. Zeitschrift für Ethnologie 65:399-401
- 1935 Einige Erleichterungen beim Berechnen von Maya-Daten. Anthropos 30(5,6):707-15
- 1956 Die Hieroglyphen der Maya-Handschriften. Abhandlungen auf dem Gebiet der Auslandskunde 62, Reihe B, Universität Hamburg

Zwicky, Fritz

1971 Entdecken, Erfinden, Forschen im Morphologischen Weltbild, Droemer Knaur, München und Zürich

Zygmund, A.

1977 Trigonometric Series, Vol. I, II. Cambridge University Press, Cambridge

ohne Autor

1995 Lexikon der Astronomie, Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford, 2 Bände

Internet-Adressen

http://www.antonis.de/qbebooks/gwbasman/index.html

http://www.famsi.org

http://www.famsi.org/mayawriting/codices/dresden.html

http://www.famsi.org/mayawriting/codices/pdf/dresden_fors_schele_all.pdf

http://www.famsi.org/research/graz/dresdensis/index.html

http://www.famsi.org/mayawriting/codices/pdf/gates.pdf

http://www.famsi.org/mayawriting/codices/pdf/kings.pdf

http://www.famsi.org/mayawriting/codices/grolier.html

http://www.famsi.org/mayawriting/codices/pdf/grolier_kerr.pdf

http://www.famsi.org/mayawriting/codices/madrid.html

http://www.famsi.org/mayawriting/codices/pdf/madrid_rosny_bb.pdf

http://www.famsi.org/mayawriting/codices/paris.html

http://www.famsi.org/mayawriting/codices/pdf/paris_love.pdf

http://www.slub.dresden.de

http://digital.slub-dresden.de/sammlungen/werkansicht9/titeldaten

http://www.slub-dresden.de/sammlungen/handschriften-und-seltene-drucke/maya-handschrift/material-drucke/maya-drucke/maya-drucke/maya-drucke/maya-drucke/maya-drucke

und-inhalt

http://webopac.slub.dresden.de/libero/WebOpac

ANHANG

Anhang 1: Paginierung des Codex Dresden

Die Tabelle parallelisiert die Seiten recto und verso eines Blattes. Spalten (1) und (3) zeigen die korrekte Paginierung in Klammern (Thompson 1972:18). Spalten (2) und (4) zeigen die Paginierung der Editionen Förstemann (1892), Thompson (1972), Graz (1975) und Cholsamaj (1998, 2001) unter Berücksichtigung der Leerseiten (durch b gekennzeichnet), die Förstemann (1892) nicht paginiert hatte. Unterbrochene Linien (- - -) markieren die von Förstemann zunächst vorgefundene Teilung in drei separaten Stücken.

rec	cto	vei	rso
(1)	(2)	(3)	(4)
(1) (2) (3) (4)	1	(78)	45
(2)	2	(77)	44
(3)	2 3	(76)	44 43
(4)	4	(77) (76) (75)	42
(5) (6)	5	(74)	41
(6)	6	(73) (72) (71) (70)	40
(7) (8) (9)	7	(72)	39 38 37
(8)	8	(71)	38
(9)	9	(70)	37
(10)	10	(69)	36
(11)	11	(68)	35
(12)	12	(67)	34
(12) (13) (14)	13	(68) (67) (66) (65) (64)	33
(14)	14	(65)	32
(15)	15	(64)	31 30
(16)	16	(63)	30
(17)	17	(62)	29
(16) (17) (18)	18	(63) (62) (61)	b
(19) (20) (21) (22) (23)	19	(60) (59) (58) (57) (56) (55) (54) (53) (52) (51) (50)	b
(20)	20	(59)	b
(21)	21 22	(58)	28
(22)	22	(57)	27
(23)	23	(56)	26
(24)	24 46	(55)	25 74
(25)	46	(54)	74
(26)	47	(53)	73 72 71
(27)	48	(52)	72
(28)	49	(51)	
(29)	50	(50)	70
(24) (25) (26) (27) (28) (29) (30) (31)	51	(49)	69
	52	(48)	68
(32)	53	(47)	67
(33)	54	(46)	66
(34)	55	(45)	65
(35)	56	(44)	64
(36)	57	(43)	63
(37)	58	(42)	62
(38)	59	(41)	61
(39)	60	(40)	b

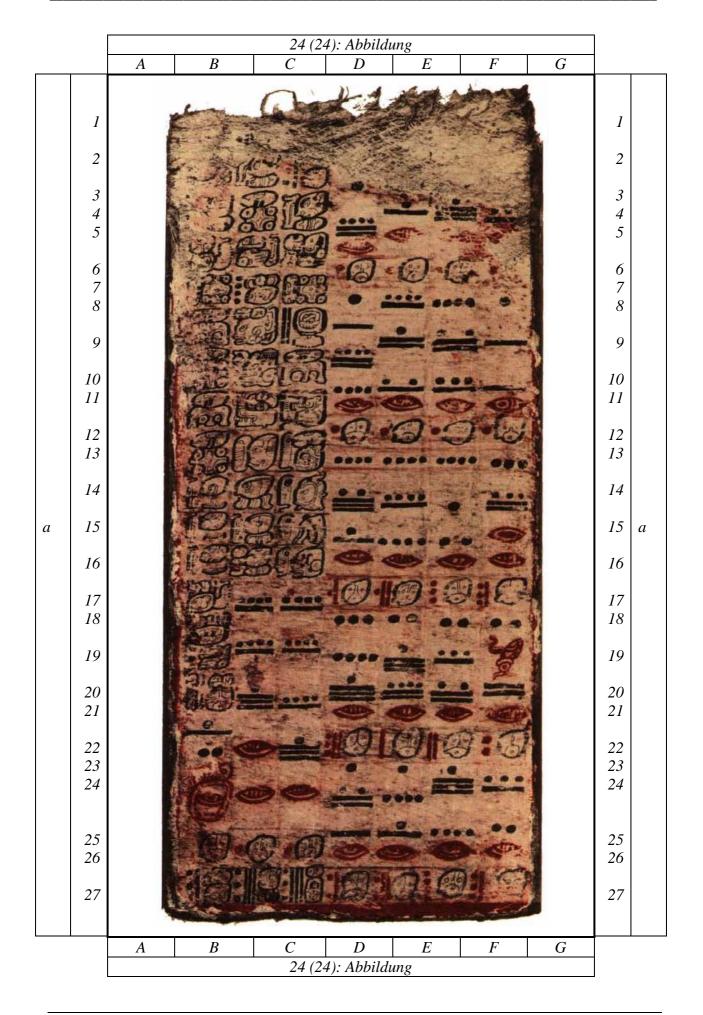
Anhang 2: Darstellung ausgewählter Abschnitte des Codex Dresden

Die ausgewählten Abschnitte des Codex Dresden sind gemäß folgenden Regeln dargestellt:

- (1) Für das Hieroglyphen-Korpus folgen die *Transkription* und *Transliteration* Davoust (1997:15, 96-321) sowie Schele und Grube (1997:80-246). Deren Übersetzungen in französischer (Davoust 1997) und englischer Sprache (Schele und Grube 1997) diente als Basis für eine Übersetzung in deutscher Sprache. Die Orthographie der Mayasprachen ist in der wissenschaftlichen Literatur auch nach einer Ratifizierung durch staatliche Organe nicht einheitlich (Kettunen und Helmke 2008:4-5 und Calvin 2004:8-9). Die Orthographie der Nominale des Tzolkin und des Haab erfolgt daher in der Schreibweise des yukatekischen Maya des 16. Jahrhunderts (Kettunen und Helmke 2006:46-49), die in der wissenschaftlichen Literatur verbreitet ist und weitgehend mit der Orthographie und phonetischen Schreibweise des Hieroglyphen-Korpus bei Davoust (1997:15) übereinstimmt.
- (2) Für das numerische Korpus wurde eine eigene Lesung anhand der Editionen des Codex Dresden (a) www.famsi.org/mayawriting/codices/pdf/dresden_fors_schele_all.pdf (12. 9. 2007)
- (b) Guatemala (2001),
- (c) Graz (1975) www.famsi.org/research/graz/dresdensis/index.html (11. 9. 2007),
- (d) Gates (1932) www.famsi.org/mayawriting/codices/pdf/gates.pdf (11. 9. 2007),
- (e) Kingsborough (1831-48) www.famsi.org/mayawriting/codices/pdf/kings.pdf (12. 9. 2007) vorgenommen.
- (3) Der C.D. enthält Zahlzeichen für die Numerale des Tzolkin und des Haab. Ihre *Transkription* erfolgt daher ebenso mittels Zahlzeichen und nicht Zahlworten.
- (4) Eigene Rekonstruktionen innerhalb des numerischen Materials erfolgen in *Kursivschrift*. Für die Teile des C.D., die für die *Statistische Analyse* nicht relevant sind, wurden Rekonstruktionen nicht vorgenommen.
- (5) Eigene Modifikationen am numerischen Material sind
- im Blatt Transkription/Transliteration in der Form (a \rightarrow) b, d.h.: der Wert einer Vigesimalstelle a ist in b modifiziert worden.
- im Blatt *Translation* in der Form **a b**, d.h.: die ohne Modifikation der Vigesimalstelle entstehende Dezimalzahl **a** ist durchgestrichen, die mit Modifikation der Vigesimalstelle entstehende Dezimalzahl **b** ersetzt sie.

im Blatt Interpretation erscheint nur noch der Wert b.

- (6) Die Lesung und Interpretation des numerischen Materials durch Förstemann (1901) und Thompson (1972) sind in Teilen voneinander sowie von der eigenen Lesung abweichend (→ Anhang 3 und Anhang
 4). Diese Abweichungen sind in den Seiten *Translation* in eckigen Klammern ([...]) eingetragen und in Bezug auf diese Arbeiten zitiert.
- (7) Die Abbildungen der Seiten des Codex Dresden basieren auf der im WorldWideWeb verfügbaren Version www.famsi.org/mayawriting/codices/pdf/dresden_fors_schele_all.pdf (12. 9. 2007).
- (8) Die Götter des C.D. werden mit den von Schellhas (1892:100-21) eingeführten Großbuchstaben bezeichnet. Miller und Taube (1993:146) verweisen nicht nur auf den weiterhin üblichen Gebrauch dieser Bezeichnungen, sondern stellen auch fest, dass "... the Yucatec Maya often called a particular god by a number of epithets, and it is frequently difficult, to select which term is the most appropriate ..." und "... recent research indicates that the majority of Postclassic codical gods isolated by Schellhas also appear in the Classic period, and it is unwarranted to assume that the Yucatec deity terms recorded for the early Colonial period were also present during the Classic era." (Miller und Taube 1993:146-48).


"What may be called gods in Maya religion are visual representations of supernatural beings composed of highly stylized traits of different animals and plants, which sometimes combine with human forms. ... Each one of the sacred beings has different manifestations and multiple names in accord with their attributes, and above all, in relation to time ... [und] ... the four directions of the cosmos." (Garza 1998:235)

Unter Berücksichtigung dieser Hinweise werden im Folgenden auch die in moderner Literatur verwendeten Namen angegeben. Das geschieht anhand von Anders (1963), Grube in Rätsch (1986:29-106), Miller und Taube (1993:146-48), Taube (1996:20-29), Davoust (1997:16-23), Garza (1998:235-47), Garza in Benavides Castillo (1998:99-130), Serra (1998:671) und Pérez Suárez (2007:57-65). Für drei Gottheiten des Venus-Kapitels (p.24, 46-50) wurden darüber hinaus Namen im Nahuatl der Azteken durch Riese (1982), Whittaker (1986) sowie Taube und Bade (1991) identifiziert. Sie sind ebenfalls angeführt.

- (9) Angaben zur Leserichtung werden durch die Zeichen \leftarrow , \uparrow , \rightarrow , \downarrow und ähnliche vorgenommen sowie durch explizite Hinweise auf:
- den Ausgangspunkt [Beispiel: $(\rightarrow A01)$ bedeutet: ist Fortsetzung von A01],
- den Zielpunkt [Beispiel: $(B02 \rightarrow)$ bedeutet: Fortsetzung folgt in B02].

Anhang 2.1: Seiten p. 24, 46-50

Das Datenmaterial für die statistischen Analysen der ausgewählten Teile des numerischen Korpus dieser Seiten ist der nachfolgenden Darstellung zu entnehmen und in Anhang 4.1 tabellarisch zusammengestellt.

		24 (24): Transk	ription/Tre	ansliteratio	on			
	A	В	С	D	E	F	G		
1	ં	ં	ં	1	-	-	-	1	
2	i	yo-OC yoc	8 Cumku	1	15	10	5	2	
3	ં	CHAC EK chac ek'	yo-OC yoc	1	16	10	5	3	
4	-	-	-	14	6	16	8	4	
5	la-KIN lak'in	KAL (li)-ah k'alah	HA' ? ha' ?	0	0	0	0	5	
6	CHAC EK chac ek'	CAN PAWAHTUN can pawah tun	CHAC EK chac ek'	1 Ahau	1 Ahau	1 Ahau	1 Ahau	6	
7	-	-	-	1	-	-	-	7	
8	-	-	-	5	9	4	1	8	
9	CHAC EK chac ek'	AHAW NA'UH ahaw na'uh	LAHUN CHAN lahun chan	14	11	12	5	9	
10	CHAC EK chac ek'	HUN AHAW hun ahaw	CHAC EK chac ek'	4	7	8	5	10	
11	CHAC EK chac ek'	PAWAH AHIN pawah ahin	YA' KAWIL ya' kawil	0	0	0	0	11	
12	-	-	-	1 Ahau	1 Ahau	1 Ahau	1 Ahau	12	
13	CHAC EK chac ek'	ah CIZIN ah cizin	YA' CHAC BOLAY ya' chac bolay	4	4	4	3	13	
14	u mu-c(a) u muc	CAB (ba) cab	YA' NAL ya' nal	17	9	1	13	14	
15	u ha-c(a) u hac	u CUN (na) u cun	YA'AC ya'ac	6	4	2	0	15	
16	u ha-c(a) u hac	(wi)WINIK(ci) winic	YA'TZ'UL ya' tz'ul	0	0	0	0	16	
17	XUL KIN(ni) xul k'in	-	-	6 Ahau	11 Ahau	3 Ahau	8 Ahau	17	
18	XUL HAAB xul hab	9	9	3	2	2	2	18	
19	TA HUN CA' AN-al ta hun ca'an-	9	9	4	16	8	0	19	
20	(a)Ahau Tzuc ahaw tzuc	16	9	16	14	12	10	20	
21	6	-	-	0	0	0	0	21	
22	2	0	16	13 Ahau	5 Ahau	10 Ahau	2 Ahau	22	
23	-	-	-	1	1	-	-	23	
24	((0))	0	0	12	4	16	8	24	
25	-	-	-	5	6	4	2	25	
26	4 Ahau	1 Ahau	1 Ahau	0	0	0	0	26	
27	8 Cumku	18 Kayab	18 Uo	7 Ahau	12 Ahau	4 Ahau	9 Ahau	27	
	A	В	C	D	Е	F	G		_

): Translati		1	1		
	_	A	В	С	D	E	F	G		
	1	ં	ં	ં					1	
	2	ં	(er, sie, es) tritt ein	8 Cumku					2	
	3	i	Venus	(er, sie, es) tritt ein	151.840	113.880	75.920	37.960	3	
	4	-	-	-					4	
	5	(im) Osten	ist/war verbunden	Wasser-?					5	
	6	Venus	4 Pawahtun	Venus	1 Ahau	1 Ahau	1 Ahau	1 Ahau	6	
	7	-	-	-					7	
	8	-	-	-					8	
	9	Venus	Herrin/ Göttin	10 Himmel	185.120	68.900	33.280	9.100	9	
	10	Venus	Mond 1 Ahau	Venus	103.120	08.900	33.200	9.100	10	
	11	Venus	Pawah	Unglück für				[9.360] (Thompson 1972:62)	11	
	10		Krokodil	Kawil	1 41	1 41	1 41		10	
	12	-	-	-	1 Ahau	1 Ahau	1 Ahau	1 Ahau	12	
	13	Venus	Herr, Gott des Todes	Unglück des Jaguar					13	
	14	bedeckt ist	die Erde	Unglück für den Mais	35.040	32.120	29.200	26.280	14	
а	15	Untergang	der Herrschaft	Unglück der Schildkröte					15	а
	16	Untergang	der Menschen	Unglück des Fremden					16	
	17	Ende des Tages	-	-	6 Ahau	11 Ahau	3 Ahau	8 Ahau	17	
	18	Ende des							18	
	19	Jahres mit dem 1.							19	
	19	Himmel			23.360	20.440	17.520	14.600	19	
	20	Herr der Teilung							20	
	21								21	
	22	2.200			13 Ahau	5 Ahau	10 Ahau	2 Ahau	22	
	23	oder:	1 266 560	1 264 260	11.620	0.7.0	5.040	2.020	23	
	24	- 2.200	1.366.560	1.364.360	11.620 [11.680]	8.760	5.840	2.920	24	
	25	(→6.3)			(Förstemann 1901:48)				25	
	26	4 Ahau	1 Ahau	1 Ahau	(Thompson 1972:62)				26	
	27	8 Cumku	18 Kayab	18 Uo	7 Ahau	12 Ahau	4 Ahau	9 Ahau	27	
		A	В	С	D	E	F	G		
				24 (24)): Translati	ion				

			Т		: Interpreta		T	T		
	-	Α	В	С	D	E	F	G		1
	1	ં	i	ં	151.840	113.880	75.920	37.960	1	
	2	ં	(er, sie, es) tritt ein	8 Cumku	=584 · 260	=438 · 260	=292 · 260	=146 · 260	2	
	3	ં	Venus	(er, sie, es) tritt ein	=416 · 365	=312 · 365	=208 · 365	=104 · 365	3	
	4	-	-	-	=260 · 584	=195 · 584	=130 · 584	= 65 · 584	4	
	5	(im) Osten	ist/war verbunden	Gott L?	=8 · 18980	=6 · 18980	=4 · 18980	=2 · 18980	5	
	6	Venus	vierfache Gottheit (N)	Venus	1 Ahau	1 Ahau	1 Ahau	1 Ahau	6	
	7	-	[vierfaches (Ed (Rätsch 1986:		185.120	68.900	33.280	9.100	7	
	8	-	-	-	=712 · 260	=265 · 260	=128 · 260	= 35 · 260	8	
	9	Venus	Mondgöttin	Gott 10 Himmel	=507 · 365	=188 · 365	= 91 · 365	= 25 · 365	9	
	10	Venus	(I) Gott CH	Venus	+ 65	+ 280	+ 65	$ \begin{array}{r} -25 \\ = 25 \cdot 364 \end{array} $	10	
	11	Venus	Gott N mit Krokodil-	Unglück für Kawil	=317 · 584 - 8	=118 · 584 - 12	$= 57 \cdot 584$ -8	= 15 · 584 + 340	11	
	10		rachen		1 41	1 41	1 41	1 41	10	
	12	-	- T. 1	- TY 10: 1 1	1 Ahau	1 Ahau	1 Ahau	1 Ahau	12	
	13	Venus	Todesgott (A)	Unglück des Jaguar	35.040	32.120	29.200	26.280	13	
a	14	bedeckt ist	die Erde	Unglück für den Mais	=134 · 260	=123 · 260	=112 · 260	=101 · 260	14	a
	15	Untergang	der Herrschaft	Unglück der Schildkröte	$+200$ $= 96 \cdot 365$	$+ 140$ $= 88 \cdot 365$	$+80$ $=80 \cdot 365$	$+20$ $= 72 \cdot 365$	15	
	16	Untergang	der Menschen	Unglück des/ der Fremden	= 60 · 584	= 55 · 584	= 50 · 584	= 45 · 584	16	
	17	Ende des Tages	-	-	6 Ahau	11 Ahau	3 Ahau	8 Ahau	17	
	18	Ende des Jahres	1 266 560	1 264 260	22.260	20.440	17.520	14.600	18	
	19	mit dem 1.	1.366.560	1.364.360	23.360	20.440	17.520	14.600	19	
	20	Himmel Herr der	= 5256 · 260	$= 5247 \cdot 260 + 140$	$= 89 \cdot 260 + 220$	$= 78 \cdot 260 + 160$	$= 67 \cdot 260 + 100$	$= 56 \cdot 260 + 40$	20	
	21	Teilung	= 3744 · 365	= 3737 · 365	= 64 · 365	= 56 · 365	= 48 · 365	= 40 · 365	21	
		2.200	= 2340 · 584	$+355$ $=2336 \cdot 584$	= 40 · 584	= 35 · 584	= 30 · 584	= 25 · 584		
	22	= 8 · 260	= 72 ·18980	+ 136	13 Ahau	5 Ahau	10 Ahau	2 Ahau	22	
	23	$+120$ $= 6 \cdot 365$			11.620	8.760	5.840	2.920	23	
	24	$+10$ $= 3 \cdot 584$	= 468 ·2920		$= 44 \cdot 260 + 180$	$= 33 \cdot 260 + 180$	$= 22 \cdot 260 + 120$	= 11 · 260 + 60	24	
	25	+448			$= 31 \cdot 365 + 305$	= 24 · 365	$= 16 \cdot 365$	= 8 · 365	25	
	26	4 Ahau	1 Ahau	1 Ahau	$= 19 \cdot 584 + 524$	= 15 · 584	= 10 · 584	$= 5 \cdot 584$	26	
	27	8 Cumku	18 Kayab	18 Uo	7 Ahau	12 Ahau	4 Ahau	9 Ahau	27	
		A	В	<i>C</i>	D : Interpreta	. E	F	G		

				46 (25): Tra				1			
		A	В	С	D	E	F	G	Н		Т
	1	ં	i	i	ં	ં	ં	ં	i	1	
	2	ં	i	ં	i	ં	CHAC EK chac ek	ં	i	2	
	3	i	i	8 Cib	3 Kan	to-b(e) NAL? tob nal?	YA'CUN NAL ya'cun nal	YA' ch'o- c(o) ya' ch'oc	i	3	
	4	i	13 Cimi	3 Cib	11 Kan					4	
	5	9 Cib	8 Cimi	11 Cib	6 Kan	1				5	
	6	4 Cib	3 Cimi	6 Cib	1 Kan	1				6	
	7	12 Cib	11 Cimi	1 Cib	9 Kan					7	
	8	7 Cib	6 Cimi	9 Cib	4 Kan					8	
а	9	2 Cib	1 Cimi	4 Cib	12 Kan					9	(
	10	10 Cib	9 Cimi	12 Cib	7 Kan					10	
	11	5 Cib	4 Cimi	7 Cib	2 Kan					11	
	12	13 Cib	12 Cimi	2 Cib	10 Kan					12	
	13	8 Cib	7 Cimi	10 Cib	5 Kan	KAL-(li)- ah k'alah	la- KIN(ni) lak'in	YA' UH ya' uh	YA' WINIK ya' winik	13	
	14	4 Yaxkin	14 Zac	19 Tzec	7 Xul	HA'-?-?	CHAC EK chac ek	u mu-c(a)	ca' yax k'an ca' yax kan	14	
	15	KAL (li) kal	KAL (li) kal	KAL (li) kal	KAL (li) kal	KAWIL K'awil	u HUL u hul	YA' NAL ya' nal	YA' AKAB? ya' akab?	15	
	16	(na)NAL	chi-K'IN(ni)	NOHOL	la-KIN(ni)	Kuwii	инш	ya nai	уи икив:	16	
	17	nal	chikin	nohol CHAC T'UL	lak'in ah CIZIN					1.7	
b	17	u-lu-m(u) ulum	zi-na-n(a) zina'an	(CHAC PEK) chak t'ul/pek	ah cizin					17	l
	18	CHAC EK chac ek	CHAC EK	CHAC EK chac ek	CHAC EK chac ek					18	
	19	-	-	1	1					19	
	20	11	16	10	11					20	
	21	16	6	16	4					21	
	22	8 Zac	18 Muan	4 Yax	12 Yax	1				22	
	23	PAWAH AHIN	u-lu-m(u)	zi-na-n(a)	CHAC T'UL/PEK	CA' UH WINIC	u ha-c(a)	ma-cha- b(a) ZIH	AHAW (wa)	23	
		pawah ahin	ulum	zina'an	chak t'ul/pek	ca' uh winic	u hac	mach'ab zih	ahaw		
c	24	tze-ni (ya) tzen-i	tze-ni (ya) tzen-i	tze-ni (ya) tzen-i	tze-ni (ya) tzen-i	POP tz'a- m(a) pop tz'am	u mu- c(a) u muc	ma-AK-ab ZIH mak-ab zih	ch'o- c(o) ch'oc	24	
	25	CHAC EK	CHAC EK	CHAC EK	CHAC EK					25	
	26	chac ek la-KIN(ni) lak'in	chac ek (na)NAL nal	chac ek chi-K'IN(ni) chikin	chac ek NOHOL nohol					26	
	27	19 Kayab	4 Zotz'	14 Pax	2 Kayab	1				27	
	28	11	4	12	0	1				28	
	29	16	10	10	8	1				29	
		A	В	С	D	E	F	G	Н		1
				46 (25): Tra	nskription/	Translite	ration		•	1	

				46	(25): Tran	slation					
	<u> </u>	A	В	С	D	E	F	G	Н		<u> </u>
	1	ં	ં	ં	ં	ં	ં	ં	ં	1	
	2	ં	ં	ં	ં	ં	Venus	ં	ં	2	
	3	i	i	8 Cib	3 Kan	bedeck- ter Mais	wehe d. Ort	wehe d. Kind	ં	3	
	4	i	13 Cimi	3 Cib	11 Kan		<u>I</u>			4	
	5	9 Cib	8 Cimi	11 Cib	6 Kan					5	
	6	4 Cib	3 Cimi	6 Cib	1 Kan					6	
	7	12 Cib	11 Cimi	1 Cib	9 Kan					7	
a	8	7 Cib	6 Cimi	9 Cib	4 Kan					8	
а	9	2 Cib	1 Cimi	4 Cib	12 Kan					9	
	10	10 Cib	9 Cimi	12 Cib	7 Kan					10	
	11	5 Cib	4 Cimi	7 Cib	2 Kan					11	
	12	13 Cib	12 Cimi	2 Cib	10 Kan					12	
	13	8 Cib	7 Cimi	10 Cib	5 Kan	war verbunden	Osten	Unheil d. Mondes	Unheil der Menschen	13	
	14	4 Yaxkin	14 Zac	19 Tzec	7 Xul	Wasser-?	Venus	ist unter-	2. neue	14	
	15	verbunden	verbunden	verbunden	verbunden	Kawil	aufge-	gegangen Unheil d.	Reife Unheil der	15	
	16	mit Norden	mit Westen	mit Süden	mit Osten		spießt	Maises	Dunkelheit	16	
		Truthahn	Skorpion	großes	Herr, Gott						
	17	Trumann	Skorpion	Kaninchen oder:	des Todes					17	
b	18	VENUS	VENUS	großer Hund VENUS	VENUS					18	
		, El (es	VERTOR	721(05	721(05						
	19									19	
	20	236	326	576	584					20	
	21									21	
	22	8 Zac	18 Muan	4 Yax	12 Yax					22	
	23	Gott N	Truthahn	Skorpion	großes Kaninchen	während 2 Monden	ist (ab-) fallend	ist erfasst	(der) Herr - ?	23	
					oder: großer Hund						
c	24	nährt	nährt	nährt	nährt	der Thron d. Herren	ist unter- gegangen	sind uner- sättlich	das Kind	24	
	25	VENUS	VENUS	VENUS	VENUS				<u>.</u>	25	
	26	Osten	Norden	Westen	Süden					26	
	27	19	4	14	2					27	
	28	Kayab	Zotz'	Pax	Kayab					28	
	29	236	90	250	8					29	
	29	A	D	C	D	E	п		7.7	29	1
		A	В	C	(25): Tran	E	F	G	H	1	

				46	(25):	Interpre	tation				
		A	В	С		D	E	F	G	Н	
	1	3 Cib	2 Cim	i 5 Cib		13 Kan	ં	ં	ં	ં	1
	2	11 Cib	10 Cim	i 13 Cib		8 Kan	i	Venus	i	i	2
	3	<mark>6</mark> Cib	5 Cim	i 8 Cib		3 Kan	bedeck- ter Mais	wehe d. Ort	wehe d. Kind	i	3
	4	1 Cib	13 Cim	i 3 Cib		11 Kan	<u> </u>				4
	5	<mark>9</mark> Cib	8 Cim			6 Kan		•	ab, Paua genkopfso	*	5
	6	4 Cib	3 Cim	i 6 Cib		1 Kan	sitzt - ei	nen Becl	her in de	r rechten	6
	7	12 Cib	11 Cim	i 1 Cib		9 Kan			uf einem Seite ein	,	7
a	8	7 Cib	6 Cim	i <mark>9</mark> Cib		4 Kan			ymbolen		8
	9	2 Cib	1 Cim	i 4 Cib		12 Kan	Himmel	sbandes	ziert, das en Kopf	s an der	9
	10	10 Cib	9 Cim	i 12 Cib		7 Kan	Gottheit	L (Sche	le, Grube	e 1997)	10
	11	5 Cib	4 Cim	i 7 Cib		2 Kan	oder K (Davoust	1997) ei	ndet.	11
	12	13 Cib	12 Cim	i 2 Cib		10 Kan					12
	13	8 Cib +236=	7 Cim	i $\begin{vmatrix} 10 \text{ Cib} \\ 250 = \end{vmatrix} + 8$	_	5 Kan +236=	war ver- bunden	Osten	Unheil d. Mondes	Unheil der Menschen	13
	14			250 = +8 250 = +8		+236=	Gott L?	Venus	ist unter-	2. neue	14
		4 Yaxkin	14 Zac	19 Tzec	7 Xu				gegangen	Reife	
	15	verbunden mit	verbunden mit	verbunden mit		bunden mit	Gott K	aufge- spießt	Unheil d. Maises	Unheil der Dunkel- heit	15
	16	Norden	Westen	Süden	C	Sten	Gottheit	L, Venus		•	16
b	17	Truthahn	Skorpion	großes	Too	desgott	personifi	zierend, l	nält in der		17
				Kaninchen oder:		(A)			n Schild		
	18	VENUS	VENUS	großer Hund VENUS	VI	ENUS			eerschleu kniend		18
	19	236	326	576		584	$\approx 1.0 \cdot \mathrm{U_{s}}$				19
	20	+236=	+ 90 = +	$\frac{1}{250} = \frac{1}{100} + \frac{1}{100}$	8 =	+236=	<u></u>		!		20
	21				8 =	+236=			n Bild (→		21
	22	8 Zac	18 Muan	4 Yax	12 Y	ļ	dargeste	IIten Wes	en zugew	andt.	22
	23	Gott N	Truthahn	Skorpion	großes	Kaninchen oder:	während 2 Monden	ist (ab-) fallend	ist erfasst	der Herr	23
	24	nährt	nährt	nährt	gro	ßer Hund nährt	der Thron	ist unter-	sind un-	das Kind	24
c	25	VENUS	VENUS	VENUS	VI	ENUS	d. Herren	gegangen	ersättlich		25
	26	Osten	Norden	Westen		üden	Gottheit	K als O	nfor dar		26
	27	19 Kayab	4 Zotz'	14 Pax	2 Ka				prer der den Gottl	heit L	27
	28	, i	1	1	8 =	+236 =	,		en Speer		28
	29	Morgen obe	ere Ab	end- unter	е	Morgen-	Leib, au	i einem	Objekt (S	sonne!).	29
			njunktion ste	,	ınktion	stern	E	E	<u></u>	11	
		A	В	C	(25)	<u>D</u> Interpre	E	F	G	Н	

				47 (26):	Transkripti	ion/Transl	literation	_			
		A	В	С	D	Е	F	G	Н		ı
	1	ં	ં	ં	ં	ં	ં	ં	ં	1	
	2	? Ahau	? Oc	? Ahau	? Lamat	ં	CHAC EK chac ek	ં	ં	2	
	3	? Ahau	? Oc	7 Ahau	? Lamat	u mu-c(a) u muc	TOK ba-te(l) tok batel	1 CA'AN- al 1 ca'an-al	i	3	
	4	? Ahau	12 Oc	2 Ahau	10Lamat			•		4	
	5	8 Ahau	7 Oc	10 Ahau	5 Lamat					5	
	6	3 Ahau	2 Oc	5 Ahau	13Lamat					6	
	7	11Ahau	10 Oc	13 Ahau	8 Lamat					7	
	8	6 Ahau	5 Oc	8 Ahau	3 Lamat					8	
a	9	1 Ahau	13 Oc	3 Ahau	11Lamat					9	а
	10	9 Ahau	8 Oc	11 Ahau	6 Lamat					10	
	11	4 Ahau	3 Oc	6 Ahau	1 Lamat					11	
	12	12Ahau	11 Oc	1 Ahau	9 Lamat					12	
	13	7 Ahau	6 Oc	9 Ahau	4 Lamat	KAL-(li)- ah	la-KIN(ni)	u mu-c(a)	yo-OL (la)	13	
						k'alah	lak'in	и тис	y-ol		
	14	3 Cumku	8 Zotz'	18 Pax	6 Kayab	10 CHAN(na)	CHAC EK	ah KUL	YA' (wa) WAYAZ(zi)	14	
	15	KAL-(li)-ah	KAL-(li)-	KAL-(li)-	KAL-(li)-ah	10 chan CHAC	chac ek u HUL	<i>ah kul</i> 3 KUL	ya' wayaz YA' AC	15	
	13	k'alah	ah <i>k'alah</i>	ah <i>k'alah</i>	k'alah	BOLAY chac bolay	u hul	HUL 3 kul hul	ya' ac	13	
	16	(na)NAL	chi- K'IN(ni)	NOHOL	la-KIN(ni)			I	<u> </u>	16	
	17	nal ?	chikin	nohol 13 CA'AN	lak'in 4 PAWAH					17	
b	17	?	ah ? ah ?	NAL 13 ca'an nal	TUN 4 pawah tun					17	b
	18	CHAC EK chac ek	CHAC EK chac ek	CHAC EK chac ek	EK ek					18	
	19	2	2	3	3					19	
	20	5	9	4	4					20	
	21	0	10	0	8					21	
	22	3 Zotz'	13 Mol	18 Uo	6 Zip					22	
	23	ah CIZIN	?	ah ?	13 CA'AN	1 u tu-n(u)	ah CIM-al	u mu-c(a)	KAN wa-	23	
		ah cizin	?	ah?	NAL 13 ca'an nal	1 u tun	ah cim-al	и тис	h(a) kan wah		
c	24	CHAC EK	CHAC EK	CHAC EK	CHAC EK	TOK ba- te(l)	YA' AHAW TZ'UC	YA'mu- c(a)	ca-c(a)-tu- na-l(a)	24	c
		chac ek	chac ek	chac ek	chac ek	tok batel	ya' ahaw tz'uc	ya' muc	cac-tunal		
	25	la-KIN(ni)	(na)NAL	chi- K'IN(ni)	NOHOL		se (1982) ,,			25	
	26	lak'in 13	nal 3	chikin 8	nohol 16		» entzifferte I bel als Nahua			26	
		Yax	Muan	Ch'en	Ch'en	tunalli» od	der kontrahier	t «çeacatu	nal(li)»,		
	27	11	4	12	0		tekischer Tag ca-Ixquimilli			27	
	28	16	10	10	8		$[\rightarrow 50E14]$			28	
		A	В	C	D	E	F	G	Н		
				47 (26):	Transkripti	ion/Transl	literation				

	1 2 3	A 2 Ahau	B 1 Oc	С	D	E	F	<i>C</i>	7.7		
	2		1 Oc		_	L	Г	G	Н		
				4 Ahau	12 Lamat	i	ં	ં	ં	1	
	3	10 Ahau	9 Oc	12 Ahau	7 Lamat	i	Venus	ં	ં	2	
		5 Ahau	4 Oc	7 Ahau	2 Lamat	ist unter- gegangen	Feuerstein- klinge	1. Himmel	ં	3	
	4	13 Ahau	12 Oc	2 Ahau	10 Lamat					4	
	5	8 Ahau	7 Oc	10 Ahau	5 Lamat					5	
	6	3 Ahau	2 Oc	5 Ahau	13 Lamat					6	
a	7	11Ahau	10 Oc	13 Ahau	8 Lamat					7	a
	8	6 Ahau	5 Oc	8 Ahau	3 Lamat					8	
	9	1 Ahau	13 Oc	3 Ahau	11 Lamat					9	
	10	9 Ahau	8 Oc	11 Ahau	6 Lamat					10	
	11	4 Ahau	3 Oc	6 Ahau	1 Lamat					11	
	12	12Ahau	11 Oc	1 Ahau	9 Lamat			T .		12	
	13	7 Ahau	6 Oc	9 Ahau	4 Lamat	war ver- bunden	Osten	ist unter- gegangen	Anfang	13	
	14	3 Cumku	8 Zotz'	18 Pax	6 Kayab	10. Himmel	Venus	der Gottheit	Unheil der Geister	14	
b	15	war verbunden	war verbunden	war verbunden	war verbunden	Jaguar	ist auf- gespießt	3 göttliche Bogen- schützen	Unheil der Schild- kröte	15	b
b	16	Norden	Westen	Süden	Osten					16	b
	17	?	?	13. Himmel	4 Pawahtun					17	
	18	VENUS	VENUS	VENUS	VENUS					18	
	19									19	
	2021	820	910	1.160	1.168					20 21	
	22	3 Zotz'	13 Mol	18 Uo	6 Zip					22	
	23	Herr, Gott	?	?	13.	während eines Jahres	der Tod	ist unter- gegangen	wertvolle Tortilla	23	
c	24	des Todes VENUS	VENUS	VENUS	Himmel VENUS	Kriegs-	Unheil des	Unheil	Cactunal	24	c
	25	Ootara	Nordan	Wastan	C#da	feuerstein	Herrn der Teilung	der Gräber	(aztek. Gottheit)	25	
	2526	Osten 13 Yax	Norden 3 Muan	Westen 8 Ch'en	Süden 16 Ch'en					25 26	
	20 27	13 1 ax	3 iviuali	o Cii cii	10 CII CII					27	
	28	236	90	250	8					28	
		A	В	С	D	E	F	G	Н		<u> </u>
		11	D		(26): Trans		1		11	-	

					26): Interpret						
		A	В	С	D	E	F	G	Н		1
	1	2 Ahau	1 Oc	4 Ahau	12 Lamat	ં	i	i	ં	1	
	2	10 Ahau	9 Oc	12 Ahau	7 Lamat	i	Venus?	i	i	2	
	3	5 Ahau	4 Oc	7 Ahau	2 Lamat	sind unter- gegangen	Feuerstein- klinge	1. Himmel	i	3	
	4	<i>13</i> Ahau	12 Oc	2 Ahau	10 Lamat					4	
	5	8 Ahau	7 Oc	10 Ahau	5 Lamat					5	
	6	3 Ahau	2 Oc	5 Ahau	13 Lamat	Die Got	theit des T	odes (Got	t A)	6	
	7	11Ahau	10 Oc	13 Ahau	8 Lamat	sitzt, ei	n zylindri:	sches Ob	jekt in	7	
a	8	6 Ahau	5 Oc	8 Ahau	3 Lamat		nten Hand Podest, de			8	a
	9	1 Ahau	13 Oc	3 Ahau	11 Lamat		n Orname			9	
	10	9 Ahau	8 Oc	11 Ahau	6 Lamat	des Hin	nmelsban	des ziert.		10	
	11	4 Ahau	3 Oc	6 Ahau	1 Lamat					11	
	12	12Ahau	11 Oc	1 Ahau	9 Lamat					12	
	13	7 Ahau	6 Oc	9 Ahau	4 Lamat	war ver- bunden	Osten	ist unter- gegangen	Anfang	13	
	14			250 =		10.	Venus	der	Unheil der	14	
		3 Cumku	8 Zotz'	18 Pax	6 Kayab	Himmel		Gottheit	Geister		
	15	war verbunden	war verbunden	war verbunden	war verbunden	Jaguar	ist auf- gespießt	göttliche Bogen- schützen	Unheil der Schild- kröte	15	
b	16	Norden	Westen	Süden	Osten	Die Got	theit Zehn	<i>Himmel</i> h	ält in der	16	b
	17	?	?	13. Himmel	vierfache Gottheit (N)		Hand zwei die Jaguar-		_	17	
	18	VENUS	VENUS	VENUS	VENUS	1	t sind und			18	
	19	820	910	1.160	1.168	≈ 2,0 · U	syn(Venus)	1		19	
	20	+236= + 9	00 = + 2	250 = + 8	B = +235=					20	
	21	+236= + 9	00 = + 2	250 = + 8	B = +236=	Hand	l eine Spee	rschleude	r.	21	
	22	3 Zotz'	13 Mol	18 Uo	6 Zip					22	
	23	Todesgott (A)	?	?	13. Himmel	während eines Jahres	der Tod	ist unter- gegangen	wertvolle Tortilla	23	
c	24	VENUS	VENUS	VENUS	VENUS	Kriegs- feuer- stein	Unheil d. Herrn der Teilung	Unheil d. Gräber	Cactunal (aztek. Gottheit)	24	С
	25	Osten	Norden	Westen	Süden					25	
	26	13 Yax	3 Muan	8 Ch'en	16 Ch'en		per der Jag		_	26	
	27	+236=	+ 90 = +	250 = +	8 = +236=		eer der Got) getroffen			27	
	28	Morgen- obe stern Ko	ere Abe njunktion ster	end- untero rn Konji	e Morgen- unktion stern					28	
		A	В	C	D	Е	F	G	Н		
				47 (2	26): Interpret	ation					

				· · · · · · · · · · · · · · · · · · ·	ranskriptio						
		A	В	С	D	E	F	G	Н		1
	1	i	ં	i	i	ં	ં	ં	ં	1	
	2	ં	i	i	? Eb	AHAW el ahaw el	3 WI'IL 3 wi'il	pu-chil-li puch-il	ta HAAB-il ta haab-il	2	
	3	i	? Ix	? Kan	? Eb	ah NIC- il	ZAC hu-ci	u mu(c)	(wi)WINIC (ci) winic	3	
	4	12 Kan	11 Ix	1 Kan	9 Eb	ah nic-il	zac nac	и тис		4	
	5	7 Kan	6 Ix	9 Kan	4 Eb					5	
	6	2 Kan	1 Ix	4 Kan	12 Eb					6	
	7	10 Kan	9 Ix	12 Kan	7 Eb					7	
a	8	5 Kan	4 Ix	7 Kan	2 Eb					8	
a	9	13 Kan	12 Ix	2 Kan	10 Eb					9	a
	10	8 Kan	7 Ix	10 Kan	5 Eb					10	
	11	3 Kan	2 Ix	5 Kan	13 Eb					11	
	12	11 Kan	10 Ix	13 Kan	8 Eb					12	
	13	6 Kan	5 Ix	8 Kan	3 Eb	KAL-(li)- ah	la-KIN (ni)	u mu-c(a)	la-KIN (ni)	13	
	1.1	17 Yax	7 Pax	12 Ch'en	0 Yax	k'alah ta-wi-zi-	lak'in CHAC EK	u muc tu CAB(ha)	lak'in tu CUN (na)	11	
	14	1/ Tax	/ Pax	12 CH en	UTax	ca-la tawizcal ²⁾				14	
	15	KAL-(li)-ah	KAL-(li)-ah	KAL-(li)-ah	KAL-(li)-ah	ah NAL	chac ek u HUL	u mu-c(a)	tu cun CUN NAL	15	
		k'alah	k'alah	k'alah	k'alah	ah nal	u hul	и тис	WINIC cun nal winic		
	16	(na)NAL nal	chi-K'IN(ni)	NOHOL nohol	la-KIN (ni) lak'in				winic	16	
b	17	AHAW (wa)	6 yi-ch(i)	AHAW P'IZ AKAB	AHAW NA' UH					17	b
		KIN ahaw kin	6 y-ich	ahaw p'iz akab	ahaw na' uh			986) als Tei	l des		
	18	CHAC EK chac ek	CHAC EK chac ek	CHAC EK chac ek	CHAC EK chac ek		uatl deity r alpantecul	name <i>htli</i> , the Venu	ıs god of	18	
	19	3	4	4	4			pretiert; siehe		19	
	20	16	2	15	15	auch Tai	ibe und Ba	ide (1991:20).	20	
	21	3	14	4	12					21	
	22	2 Muan	7 Pop	17 Mac	5 Kankin					22	
	23	tze-(ya)ni	tze-(ya)ni	tze-(ya)ni	tze-(ya)ni	3 ta UH	3 tu WINIC	AHAW(wa)	u ha-ca	23	
		tzen-i	tzen-i	tzen-i	tzen-i	3 ta uh	3 tu winic	ahaw	u hac		
С	24	4 PAWAH TUN	AHAW (wa) Kin	6 yi-ch(i)	AHAW P'IZ AKAB	u ha-ca	KAN- TE'NAL	la-KIN (ni)	7 HA' NAL	24	C
		4 pawah tun	ahaw kin	6 y-ich	ahaw p'iz akab	u hac	kante'nal	lak'in	7 ha' nal		
	25	la-KIN (ni) lak'in	(na)NAL nal	chi-K'IN(ni) chikin	NOHOL nohol					25	
	26	7	17	2	10					26	
	27	Zip 11	Yaxkin 4	12	Uo 0					27	
	28	16	10	10	8					28	
	20	A	B	C	D	E	F	G	Н	20	<u></u>
		Л	D		ranskriptic			l U	11		

		A	n		8 (27): Trai				77	_	
	1	A	B 12.1	C	D	E	F	G	Н	7	T
	1	1 Kan	13 Ix	3 Kan	11 Eb	ં	ં	ં	ં	1	
	2	9 Kan	8 Ix	11 Kan	6 Eb	Herr	Überfluß an Nahrung	Krankheit (Ruhr)	im Jahr	2	
	3	4 Kan	<i>3</i> Ix	6 Kan	<i>1</i> Eb	Blume/ Blüte	weiße Decke	Begräbnis	Mensch	3	
	4	12 Kan	11 Ix	1 Kan	9 Eb					4	
	5	7 Kan	6 Ix	9 Kan	4 Eb					5	
	6	2 Kan	1 Ix	4 Kan	12 Eb					6	
	7	10 Kan	9 Ix	12 Kan	7 Eb					7	
a	8	5 Kan	4 Ix	7 Kan	2 Eb					8	
	9	13 Kan	12 Ix	2 Kan	10 Eb					9	
	10	8 Kan	7 Ix	10 Kan	5 Eb					10	
	11	3 Kan	2 Ix	5 Kan	13 Eb					11	
	12	11 Kan	10 Ix	13 Kan	8 Eb					12	
	13	6 Kan	5 Ix	8 Kan	3 Eb	war verbunden	Osten	sind unter- gegangen	Osten	13	
	14	17 Yax	7 Pax	12 Ch'en	0 Yax	Tawizcal (aztek. Gottheit)	Venus	in der Erde	Milpas	14	
	15	war verbunden	war verbunden	war verbunden	war verbunden	Gottlery Gott E (Mais)	ist aufge- spießt	sind unter- gegangen	Mais- felder der Menschen	15	
	16	Norden	Westen	Süden	Osten			ı	Wensenen	16	
b	17	Herr der Sonne	6 Gesellen	Herr der Nacht	Göttin Mond					17	
	18	VENUS	VENUS	VENUS	VENUS					18	
	19									19	
	20	1.403	1.494	1.744	1.752					20	
	21									21	
	22	2 Muan	7 Pop	17 Mac	5 Kankin					22	
	23	nährt	nährt	nährt	nährt	3 weitere Monate	3 Men- schen	Herr(scher)	ist (ab-) fallend	23	
c	24	4 Pawahtun	Herr der Sonne	6 Gesellen	Herr der Nacht	ist (ab-) fallend	gelber Baum	Osten	7 Wasser- tropfen	24	
	25	Osten	Norden	Westen	Süden		l	I	портоп	25	
	26	7	17	2	10					26	
	27	Zip	Yaxkin	Uo	Uo					27	
	27 28	236	90	250	8					27 28	
			_	_	_		T _		T	L	
		A	B	C	D	E	F	G	H	1	

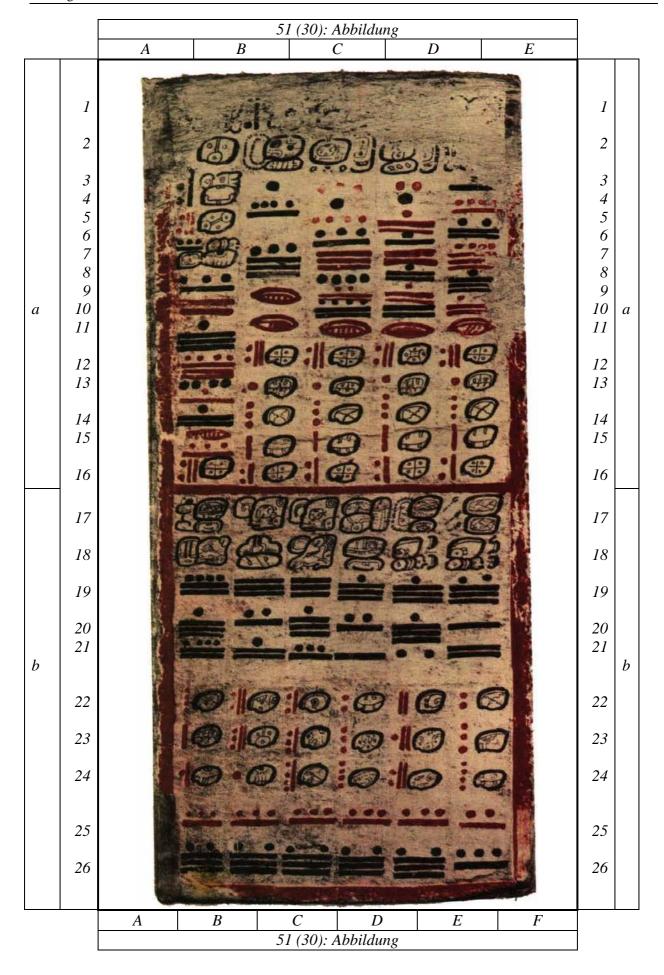
								(27)	: Interpr		_				
		A		I			C		D	E	F	G	Н		T
	1	1 K	Can		13 Ix	3	Kan		11 Eb	i	i	i	i	1	
	2	9 K	Can		8 Ix	11	Kan		<u>6</u> Eb	Herr	Überfluß an Nahrung	Krankheit (Ruhr)	im Jahr	2	
	3	4 K	Can		<i>3</i> Ix	6	Kan		<i>1</i> Eb	Blume/ Blüte	weiße Decke	Begräbnis	Mensch	3	
	4	12 K	Can		11 Ix	1	Kan		9 Eb					4	
	5	7 K	Can		6 Ix	9	Kan		4 Eb					5	
	6	2 K	Can		1 Ix	4	Kan		12 Eb					6	
	7	10 K	Can		9 Ix	12	Kan		7 Eb			Haartracht e chten Hand		7	
а	8	5 K	Can		4 Ix	7	Kan		2 Eb	Objekt (S	Schelle?) s	itzt auf eine	em Podest,	8	a
	9	13 K	Can		12 Ix	2	Kan		10 Eb			ite mit eine) verziert is		9	
	10	8 K	Can		7 Ix	10	Kan		5 Eb	rugen (e	ies rodes.) verziert is		10	
	11	3 K	Can		2 Ix	5	Kan		13 Eb					11	
	12	11 K	Can		10 Ix	13	Kan		8 Eb					12	
	13	6 K +236=	Can +	90 =	5 Ix + 25		Kan + 8	 	3 Eb +236=	war verbunden	Osten	sind unter- gegangen	Osten	13	
	14	+236=	+	90 =	+ 25	50 =	+ 8	=	+236=	Tawizcal (aztek.	Venus	in der Erde	Milpas	14	
	15	war war verbunden verbunden		ar	W	h'en ar anden		War war rbunden	Gottheit) Mais- gott (E)	ist aufge- spießt	sind unter- gegangen	Maisfelder der	15		
	16	Norden We		West	en	Süde	en	Oste	en	Die eztel	risaha Gati	l theit <i>Tlahui</i>	Menschen	16	
	17	Sonnengott		6 Ges	ellen	Herr	der	Mor	nd-	Pantecul	<i>htli</i> hält, ha	lb kniend, i	n der	17	
b	18	(G) VENU	S	VEN	NUS	Nach VEI	nt NUS		tin (I) ENUS			peerschleud beere, die au		18	b
	19	1.403	}	1.4	.94	1.7	1.744 1.7		1.752	$\approx 3.0 \cdot U_{\text{syn}}(\text{Venus})$				19	
	20	+235=	+	91 =	+ 25	$0 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} + 236 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$		Wese	20						
	21	+236=	+	90 =	+ 25	50 =	+ 8	=	+236=	gerichtet		21			
	22	2 Muan		7 Pop		17 N			ankin					22	
	23	nährt		nährt		nähr	t	näh	rt	3 weitere Monate	3 Men- schen	Herr (scher)	ist (ab-) fallend	23	
	24	vierfache Gottheit(Sonne (G)	engott	6 Gese	llen	Heri		ist (ab-) fallend	gelber Baum	Osten	7 Wasser- tropfen	24	
C	25	Osten		Nord	en	Wes	ten	Süd	en		<u> </u>	ı	1 55.011	25	C
	26	7 Zip		17 Yaxk	in	2 Uo		10 Uo			•	Gott E) liegt al Pantecuh		26	
	27	+236=	+	90 =	+ 25	50 =	+ 8	3 =	+236=			ernd am Bo		27	
	28	Morgen- stern	ober Konj	e iunktion	Abend stern	ī-	untere Konjui		Morgen- stern					28	
										F	G	Н			
							48	(27)	: Interpr	etation					

		A	B 4	¹⁹ (28): Tra C	nskription/ D	Transliter E	ation F	G	Н		
	1	ં	? Etz'nab	? Lamat	? Cib	ં	ં	i	ં	1	
	2	? Lamat	? Etz'nab	? Lamat	? Cib	u mu-c(a) u muc	AHAW TZ'AC ahaw tz'ac	u mu- c(a)	i	2	
	3	? Lamat	? Etz'nab	5 Lamat	13 Cib	ah-ha-yi ah hay	TOK ba- te(l) tok batel	ya' CAB (ba) ya' cab	Ya' cun	3	
	4	? Lamat	10Etz'nab	13 Lamat	8 Cib				•	4	
	5	? Lamat	5Etz'nab	8 Lamat	3 Cib					5	
	6	? Lamat	13Etz'nab	3 Lamat	11 Cib					6	
	7	9 Lamat	8Etz'nab	11 Lamat	6 Cib					7	
a	8	4 Lamat	3Etz'nab	6 Lamat	1 Cib					8	
и	9	12 Lamat	11Etz'nab	1 Lamat	9 Cib					9	
	10	7 Lamat	6Etz'nab	9 Lamat	4 Cib					10	
	11	2 Lamat	1Etz'nab	4 Lamat	12 Cib					11	
	12	10 Lamat	9Etz'nab	12 Lamat	7 Cib					12	
	13	5 Lamat	4Etz'nab	7 Lamat	2 Cib	KAL-(li)- ah k'alah	la-KIN (ni) lak'in	u mu- c(a) u muc	AHAW (wa)KIN ahaw kin	13	
	14	11 Zip	1 Mol	6 Uo	14 Uo	CHAC xi- wi-te-i 3) chacxiwtei	CHAC EK	u ha-c(a)	KAWIL kawil	14	
	15	KAL-(li)-ah	KAL-(li)-ah	KAL-(li)-ah	KAL-(li)-ah	KAN	u HUL	u mu-	6 YAX-il	15	
		k'alah	k'alah	k'alah	k'alah	AC(AC)		c(a)	WINIC 6 yax il		
	16	(na)NAL	chi-K'IN(ni)	NOHOL	la-KIN (ni)	kan ac	u hul	и тис	winic	16	
		nal ?	chikin	nohol	lak'in	³⁾ Von Ta	ube und B	ade als N	ahuatl-		
b	17	?	ah CIZIN ah cizin	KAWIL kawil	1 AHAW 1 ahaw		s mit Feue			17	
	18	CHAC EK chac ek	CHAC EK chac ek	CHAC EK chac ek	CHAC EK chac ek		991:20) ass			18	
	19	5	5	6	6		<i>htli</i> interpr Translitera			19	
	20	9	13	8	8		ihre Interp			20	
	21	8	18	8	16		eotl, einem			21	
	22	16 Yaxkin	6 Ceh	11 Xul	19 Xul	Tetzcatli	poca (Whi	ttaker 198	36).	22	
	23	tze-ni (ya)	tze-ni (ya) tzen-i	tze-ni (ya) tzen-i	tze-ni (ya)	7 ta UH 7 ta uh	7 winic	u ha-c(a) u hac	ah P'EN ah p'en	23	
	24	AHAW NA'	?	ah CIZIN	KAWIL	tze-NAL	CAN AC	u mu-	ya AHAW	24	
		UH ahaw na' uh	?	ah cizin	kawil	tzen-al	can ac	c(a) u muc	zuy y-ahaw		
c	25	CHAC EK	CHAC EK	CHAC EK	CHAC EK	3,20.7 000	San ac		zuy	25	
		chac ek la-KIN (ni)	chac ek (na)NAL	chac ek	chac ek NOHOL						
	26			K'IN(ni)						26	
	27	lak'in	nal 16	chikin 1	nohol					27	
	21	6 Kankin	Cumku	Mac	Mac					2/	
	28	11	4	12	0					28	
	29	16	10	10	8					29	
		A	В	С	D	E	F	G	Н		_

		A	В	C 4	9 (28): Tra D	nslation E	F	G	Н		
	1	A 13 Lamat	12Etz'nab	2 Lamat	10 Cib	i	i i	ં	i	1	
	2	8 Lamat	7 Etz'nab	10 Lamat	5 Cib	unter-	Thron-	Unheil	i	2	
	3	3 Lamat	2Etz'nab	5 Lamat	13 Cib	gehen Nieder- lage	folger Kriegs- feuerstein	Unheil	Milpa	3	
	4	11 Lamat	10Etz'nab	13 Lamat	8 Cib	lage	rederstein			4	
	5	6 Lamat	5Etz'nab	8 Lamat	3 Cib					5	
	6	1 Lamat	13Etz'nab	3 Lamat	11 Cib					6	
	7	9 Lamat	8Etz'nab	11 Lamat	6 Cib					7	
a	8	4 Lamat	3Etz'nab	6 Lamat	1 Cib					8	a
	9	12 Lamat	11Etz'nab	1 Lamat	9 Cib					9	
	10	7 Lamat	6Etz'nab	9 Lamat	4 Cib					10	
	11	2 Lamat	1Etz'nab	4 Lamat	12 Cib					11	
	12	10 Lamat	9Etz'nab	12 Lamat	7 Cib					12	
	13	5 Lamat	4Etz'nab	7 Lamat 6 Uo	2 Cib	war ver- bunden	Osten	unterge- gangen	Herr d. Sonne	13	
	14	11 Zip	·		14 Uo	aztek. Gottheit	Venus	ist (ab-) fallend	Gott K	14	
	15	war verbunden	war verbunden	war verbunden	war verbunden	gelbe Schild- kröte	ist aufge- spießt	unterge- gangen sind	6 erste Men- schen	15	
	16	Norden	Westen	Süden	Osten					16	
b	17	?	Herr, Gott des Todes	Gott K	Gott Ch					17	b
	18	VENUS	VENUS	VENUS	VENUS					18	
	192021	1.988	2.078	2.328	2.336					19 20 21	
	22	16 Yaxkin	6 Ceh	11 Xul	19 Xul					22	
	23	nährt	nährt	nährt	nährt	während 7 Monate	7 Menschen	ist (ab-) fallend	?	23	
	24	Mond- göttin (I)	?	Herr, Gott des Todes	Gott K	Nahrung	wilde Schildkröte	unterge- gangen ist	Herr Wirbel- wind	24	
C	25	VENUS	VENUS	VENUS	VENUS					25	C
	26	Osten	Norden	Westen	Süden					26	
	27	6 Kankin	16 Cumku	1 Mac	9 Mac					27	
	28									28	
	29	236	90	250	8					29	
		A	В	C	D	E	F	G	Н		
				4	9 (28): Tra	nslation					

				49 (2	28): Interpr	etation					
		A	В	С	D	Е	F	G	Н		
	1	13 Lamat	12 Etz'nab	2 Lamat	10 Cib	ં	ં	ં	ં	1	
	2	8 Lamat	7 Etz'nab	10 Lamat	<i>5</i> Cib	unter- gehen	Thron- folger	Unheil	ં	2	
	3	3 Lamat	2 Etz'nab	5 Lamat	13 Cib	Nieder- lage	Kriegs- feuerstein	Unheil	Milpa	3	
	4	11 Lamat	10 Etz'nab	13 Lamat	8 Cib					4	
	5	6 Lamat	5 Etz'nab	8 Lamat	3 Cib					5	
	6	1 Lamat	13 Etz'nab	3 Lamat	11 Cib	Die junge	e Mondgött	in (I) sitzt	, in der	6	
	7	9 Lamat	8 Etz'nab	11 Lamat	6 Cib	rechten H	Iand einen	Becher mi	it einem	7	
a	8	4 Lamat	3 Etz'nab	6 Lamat	1 Cib	Podest, d	ornament h essen sicht	bare Seite	mit	8	a
	9	12 Lamat	11 Etz'nab	1 Lamat	9 Cib	Symbolei verziert is	n des Himr st.	nelsbandes	S	9	
	10	7 Lamat	6 Etz'nab	9 Lamat	4 Cib					10	
	11 12	2 Lamat 10 Lamat	1 Etz'nab 9 Etz'nab	4 Lamat	12 Cib 7 Cib					11 12	
	13	5 Lamat	4 Etz'nab	7 Lamat	2 Cib	war ver-	Osten	unterge-	Herr d.	13	
		+236= +	90 = + 2.	50 = + 8	= +236=	bunden		gangen	Sonne		
	14	+230= + 11 Zip	90 = + 2. $1 Mol$	50 = + 8 $ 6 Uo$	14 Uo	aztek. Gottheit	Venus	ist (ab-) fallend	Gott K	14	
	15	war verbunden	war verbunden	war verbunden	war verbunden	gelbe Schild-	ist aufge-	unterge- gangen	6 erste Men-	15	
	16	Norden	Westen	Süden	Osten	kröte	spießt	sind	schen	16	
,	10 17	?	Todesgott	Gott K		Gott Ch Xiuhtecuhtli) hockt auf einem Knie				17	,
b			(A)				r linken Ha				b
	18	VENUS	VENUS	VENUS	VENUS	Speersch		18 19			
	19	1.988	2.078	2.328	2.336	$\approx 4.0 \cdot U_{\text{syn}}(\text{Venus})$					
	20			250 = + 8 =		rechten zwei (Lang-)Speere, die					
	21 22	+ 236 = 16	$+90 = \begin{vmatrix} +2 \end{vmatrix}$ 6 Ceh	250 = + 8 = 11 Xul	+ 236 = 19 Xul	auf das W 25) gericl	Vesen im B	ild unter il	$hr (\rightarrow E$	21	
		Yaxkin							1	22	
	23	nährt	nährt	nährt	nährt	während 7 Monate	7 Menschen	ist (ab-) fallend	?	23	
	24	Mond- göttin (I)	?	Todesgott (A)	Gott K	Nahrung	wilde Schildkröte	unterge- gangen ist	Herr Wirbel- wind	24	
С	25	VENUS	VENUS	VENUS	VENUS		1	ı	···III	25	С
	26	Osten	Norden	Westen	Süden		dkrötengot			26	
	27	6 Kankin	16 Cumku	1 Mac	9 Mac	Speer du	iegend und rchbohrt, al	ls Opfer de	es <i>Chac</i>	27	
	28	1	' I	$50 = \begin{vmatrix} 1 & 1 & 1 \\ 50 & 1 & 1 \end{vmatrix} + 8 = $	'	Xiwtei (de Xiuhtecul	er aztekiscl htli)	he Gotthei	t	28	
	29	Morgen obe -stern Ko	ere Aben njunktion stern		Morgen- ion stern		,			29	
		A	В	C	D	E	F	G	Н		1
				49 (2	28): Interpr	etation	•				

	A	В	C	50 (29): A	Abbildung E	$\frac{g}{F}$	G	Н		
1 2 3 4 5 8 9 10 11 12 13 14 15 16 b 17 18								Н	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	a
19 20 21 22 23									19 20 21 22 23	
23 24 25 c 26		SEPERIES:	過事の	活躍					24 25 26	c
27 28 29									27 28 29	
	A	В	С	D 50 (29): 1	E Abbildun _s	F	G	Н		


			T	`		tion/Transli		I	1		
		A	В	C	D	E	F	G	Н		1
	1	ં	i	ં	ં	1 AHAW	CHAC EK	u mu- c(a)	ં	1	
	2	_	? Ik	? Eb	? Ahau	1 ahaw KO' TUN ni	chac ek AHAW(wa)	u muc KA'WAH	ta HAAB-	2	
	2	ં	! IK	! EU	Allau	ko' tun	KIN Ahaw kin	HA' k'a wah	il ta haab-il	2	
	3	? Eb	? Ik	? Eb	12 Ahau	XUL KIN	XUL HAAB	u mu-c(a)	CUN NAL	3	
	4	10 Eb	? Ik	12 Eb	7 Ahau	xul kin	xul haab	и тис	cun nal	4	
	5	5 Eb	? Ik	7 Eb	2 Ahau					5	
	6	13 Eb	12 Ik	2 Eb	10 Ahau					6	
	7	8 Eb	7 Ik	10 Eb	5 Ahau						
a	,									7	a
	8	3 Eb	2 Ik	5 Eb	13 Ahau					8	
	9	11 Eb	10 Ik	13 Eb	8 Ahau					9	
	10	6 Eb	5 Ik	8 Eb	3 Ahau					10	
	11	1 Eb	13 Ik	3 Eb	11 Ahau					11	
	12	9 Eb	8 Ik	11 Eb	6 Ahau					12	
	13	4 Eb	3 Ik	6 Eb	1 Ahau	KAL-(li)-ah k'alah	la-KIN (ni) lak'in	u mu-c(a) u muc	ah KUL ah kul	13	
	14	10	20	5	13	ca-ca-tu-na-la 1)	CHAC EK	u mu-c(a)	AHAWwa TZ'AC	14	
		Kankin	Cumku	Mac	Mac	(c)aca-tun-al	chac ek	и тис	ahaw tz'ac		
	15	KAL-(li)- ah k'alah	KAL-(li)-ah k'alah	KAL-(li)- ah <i>k'alah</i>	KAL-(li)- ah k'alah	(tz'u)TZ'UL tz'ul	u HUL u hul	u mu-c(a) u muc	ah NAL ah nal	15	
	16	(na)NAL	chi- K'IN(ni)	NOHOL	la-KIN (ni)					16	
		nal	chikin	nohol	lak'in	1) Von Riese	e (1982) "	. als «cace	atunal»		
b	17	ah NAL	?	7 LOL- om	PAWAH AHIN	oder «acatu				17	b
		ah nal	?	7 lolom ?	pawah ahin	Mayahierog		_			
	18	CHAC EK chac ek	CHAC EK chac ek	CHAC EK chac ek	CHAC EK chac ek	Nahuatl-Na kontrahiert				18	
	19	7	7	8	8	aztekischer	•			19	
	20	2	7	1	2	Tezcatlipuc				20	
	21	12	2	12	0	(Riese 1982	2:39); siehe	hierzu aud		21	
	22	15	0	10	18	Whittaker (1986). [→	47H24]		22	
	22	Cumku	Tzec	Kayab	Kayab					22	
	23	tze-ni	tze-ni	tze-ni	tze-ni	10 UH	u mu-c(a)	ZAC ta-	u mu-	23	
		(ya)	(ya)	(ya)	(ya)	WINIC 10 uh winic	и тис	b(a) zac ta'ab	c(a) u muc		
	24	tzen-i 1 AHAW	ah NAL	tzen-i ?	<i>tzen-i</i> 7 LOL-om	2 YAX KAN	u mu-c(a)	tz'u-l(u)	chi-	24	
С		1 ahaw	ah nal	?	7 lolom ?	2 yax kan	и тис	tz'ul	K'IN(ni) chikin		C
	25	CHAC EK	CHAC EK	CHAC EK	CHAC EK					25	
	26	chac ek la-KIN (ni)	chac ek (na)NAL	chac ek	chac ek NOHOL					26	
	20	lak'in		K'IN(ni)						20	
	27	20 Xul	nal 10 Zac	chikin 15 Tzec	nohol 3 Xul					27	
	28	11	4	12	0					28	
	29	16	10	10	8					29	
		\boldsymbol{A}	В	C	D	E	F	G	Н		
				50 (29):	Transkripi	tion/Transli	teratio n		·		

		A	В	C	50 (29): Tr	anslation E	F	G	Н		
	1	12 Eb	11 Ik	1 Eb	9 Ahau	Gott CH	Venus	Begräbnis		1	Г
	2	7 Eb	6 Ik	9 Eb	4 Ahau	?	Herr der Sonne	Überfluß Nahrung	im Jahr	2	
	3	2 Eb	<i>1</i> Ik	4 Eb	12 Ahau	Ende der Tage	Ende des Jahres	u.Wasser begraben	Maisfeld	3	
	4	10 Eb	9 Ik	12 Eb	7 Ahau			1	1	4	
	5	5 Eb	4 Ik	7 Eb	2 Ahau					5	
	6	13 Eb	12 Ik	2 Eb	10 Ahau					6	
	7	8 Eb	7 Ik	10 Eb	5 Ahau					7	
а	8	3 Eb	2 Ik	5 Eb	13 Ahau					8	6
	9	11 Eb	10 Ik	13 Eb	8 Ahau					9	
	10	6 Eb	5 Ik	8 Eb	3 Ahau					10	
	11	1 Eb	13 Ik	3 Eb	11 Ahau					11	
	12	9 Eb	8 Ik	11 Eb	6 Ahau					12	
	13	4 Eb	3 Ik	6 Eb	1 Ahau	war verbunden	im Osten	ist unter- gegangen	die Gottheit	13	
	14	10 Kankin	0 Uayeb	5 Mac	13 Mac	Cacatunal (Acatunal)	Venus	ist unter- gegangen	dynastische Folge	14	
	15	war verbunden	war verbunden	war verbunden	war verbunden	die fremde Gottheit	ist aufge- spießt	ist unter- gegangen	Gott E (Mais)	15	
	16	Norden	Westen	Süden	Osten				, ,	16	
b	17	Maisgott	Gott L?	Blume, Blüte?	Krokodil ?		se (1982) , tunal» entz	als « <i>cac</i> zifferte	atunal»	17	b
	18	VENUS	VENUS	VENUS	VENUS			" und plaus: catl tunalli»		18	
	19 20 21	2.572	2.662	2.912	2.920	kontrahier aztekische Tezcatlipu 1982:39);	rt « <i>çeacatu</i> er Tagesnar eca-Ixquim siehe hierz	nal(li)», d.h me des Gott illi, interpre zu auch Whi	als es tiert (Riese	19 20 21	
	22	15 Cumku	0 Tzec	10 Kayab	18 Kayab	(1986). [–	→ 47H24]			22	
	23	nährt	nährt	nährt	nährt	10 weitere Monate	ist unter- gegangen	die Salinen	sind unter- gegangen	23	
c	24	1 Ahau	Maisgott	Gott L?	Blume, Blüte?	zweite neue Reife	sind unter- gegangen	die Fremden	des Westens	24	c
	25	VENUS	VENUS	VENUS	VENUS					25	
	26	Osten	Norden	Westen	Süden	1				26	
	27	20 Xul	10 Zac	15 Tzec	3 Xul					27	
	28 29	236	90	250	8					28 29	
		A	В	C	D	E	F	G	Н	ļ	<u></u>
		11			50 (29): Tr		1 1		111		

							50	(29): 1	nterpr	etation					
		A		В		(C	1)	E	F	G	Н		
	1	12	2 Eb	İ	1 Ik		1 Eb	9	Ahau	Gott CH	Venus	Begräbnis	ં	1	
	2	,	7 Eb		6 Ik		9 Eb	4	Ahau	?	Herr der Sonne	Überfluß Nahrung u.Wasser	im Jahr	2	
	3		2 Eb		<i>1</i> Ik		4 Eb	12	Ahau	Ende der Tage	Ende d. Jahres	begraben	Maisfeld	3	
	4	10) Eb		9 Ik		12 Eb	7	Ahau					4	
	5	5	5 Eb		4 Ik		7 Eb	2	Ahau			5			
	6	13	3 Eb	1	2 Ik		2 Eb	10	Ahau	Don Maia	6				
	7	8	8 Eb		7 Ik	·	10 Eb	5	Ahau	Der Maisgott (E) steht, in der rechten Hand ein zylindrisches Objekt haltend, vor dem auf einem Podest sitzenden Gott <i>Eins Ahau</i> (Gott CH). Die sichtbare Seite des Podest zeigt zwei Symbole des Himmelsbandes.					
a	8		3 Eb		2 Ik		5 Eb	13	Ahau						a
	9	11	l Eb	1	0 Ik		13 Eb	8	Ahau						
	10		5 Eb		5 Ik		8 Eb		Ahau						
	11		L Eb	1	3 Ik		3 Eb		Ahau		10 11				
	12		Eb		8 Ik		11 Eb		Ahau					12	
										war	im Osten	ist unter-	die Gottheit		
	13	+ 236 =	4 Eb ₌ .	 + <i>90</i> =	3 Ik + 2	1 250 =	6 Eb + 8 =		Ahau 236 =	verbunden	iii Osteii	gegangen	uic Gottiich	13	
	14	+ 236 =		+ 90 =	+ 2	250 =	+ 8	= +	236 =	aztekische Gottheit ¹⁾	Venus	ist unter-	dynastische	14	
	15	10 Kanl war	kin	0 Uayeb war		5 Ma war	ic	13 Ma	ac	fremde	ist auf-	gegangen ist unter-	Folge Gott E	15	
	13	verbunde	nden verbunden		verbu	ınden	verbur	nden	Gottheit	gespießt	gegangen	(Mais)	13		
	16	Norden		Westen		Süde	n	Osten		1) Die azte	ekische G	ottheit Cac	catunal	16	
b	17	Gott E		Gott	<i>L</i> ?	Blun Blüte		The property of the propert					E14) hält,	17	b
	18	VENU	JS	VEN	IUS	VE	NUS	VE	NUS	eine Spee	erschleude	er und in de	er	18	
	19	2.57	2	2.6	62	2.9	912	2.9	20	= 8 · 365 ×	$\approx 5.0 \cdot \mathrm{U_{syn}}$	Venus)		19	
	20	+ 236 =	+ 2	90 =	+ 2.	50 =	+ 4	8 =		1.	TT 1	· /T	\ C	20	
	21	+ 236 =	+ 3	90 =	+ 2.	50 =	+ 4	8 =				wei (Lang-) E25) geric		21	
	22	15 Cum	ıku	0 Tze	ec	10 K	ayab	18 Ka	iyab		`	, &		22	
	23	nährt		nährt		nähr	t	nährt		10 weitere Monate	ist unter- gegangen	die Salinen	sind unter- gegangen	23	
c	24	Gott CI	-I	Gott	E	Gott	L ?	Blum Blüte		zweite neue Reife	sind unter- gegangen	die Fremden	des Westens	24	C
	25	VENU	J S	VEN	IUS	VE	NUS	VE	NUS					25	
	26	Osten		Nord		West		Süder				it als Opfer (al) (Riese		26	
	27	0 Yaxkii	0 Yaxkin 10 Zac 15 Tzec 3 Xul +236 =			E14) lieg	t am Bode	en, ein von	einem	27					
	28	+236=				Speer get Leib.	troffener S	Schild bede	eckt seinen	28					
	29	Morgen- stern	obere Konji	ınktion	Abena stern	d-	untere Konju			2010.				29	
		A	A B C D							E	F	G	Н		
							50	(29): 1	nterpr	etation					

Anhang 2.2: Seiten p. 51-58

Das Datenmaterial für die statistischen Analysen der ausgewählten Teile des numerischen Korpus dieser Seiten ist der nachfolgenden Darstellung zu entnehmen und in Anhang 4.2 tabellarisch zusammengestellt.

A B C D E				51 (30): Tro	anskrip	tion/Tra	nslit	eration				
2 P-Ahau KULOC WA'-la-h(a) NiC-xa-h(a) & 2 3		1	A			(\mathcal{C}		D		E		
S Cumku		1	ં	8-?			Ċ		ં		ં	1	
A		2	?-Aha								ં	2	
S		3	8 Cumk	u 1			3		2	6		3	
a kin tab - 8 6 12 6 7 10 18 15 10 19 7 8 16 - 4 11 - 8 9 19 0 12 11 16 9 a 10 4 - 14 10 12 10 11 16 9 a 11 6 0 0 0 0 0 0 0 11 12 12 10 11 12 10 11 12 10 11 12 12 10 11 12 10 11 12 10 11 12 10 11 12 12 11 12 12 12 12 12 12 11 12 12 13 13 14 13 14 14 14 14 14 14 14 14 14		4	12 Lama	at 9		1		1			9	4	
a 6 8 - 8 6 12 6 7 10 18 15 10 19 7 8 16 - 4 11 - 8 9 19 0 12 11 16 9 10 4 - 14 10 12 10 11 6 0 0 0 0 0 0 11 12 1 12 Lamat 12 Lamat 12 Lamat 12 Lamat 12 12 13 10 1 Akbal 1 Akbal 1 Akbal 1 Akbal 13 14 15 8 5 Ben 5 Ben 5 Ben 5 Ben 5 Ben 15 16 12 Lamat 7 Lamat 7 Lamat 7 Lamat 7 Lamat 16 17 Wa' Ca'an mu-te'(e) Mu-te'(5	`	-			4		11		-	5	
a 8 16 - 4 11 - 8 8 9 19 0 12 11 16 9 a 10 4 - 14 10 12 10 11 6 0 0 0 0 0 0 0 0 0 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 12 12 12 14 12 12 12 14 12 12 14 12 12 14 15 15 16 </td <td></td> <td>6</td> <td></td> <td>-</td> <td></td> <td>8</td> <td></td> <td>6</td> <td></td> <td>12</td> <td></td> <td>6</td> <td></td>		6		-		8		6		12		6	
a 9 19 0 12 11 16 9 a 10 4 - 14 10 12 10 11 16 10 11 11 16 0 0 0 0 0 0 0 0 11 12 13 10 1 14 15 15 16 16 17 19 18 14 15 15 16 16 17 17 17 17 17 17		7	1	0 18			15		10		19	7	
19		8	16	-		4		11			-	8	
11	a	9	1	9 0			12		11	16		9	а
12		10	4	-		14		10			12	10	
13 10		11		6 0		0	0	0	0	0	0	11	
14 0		12		1 12 La	mat	12	Lamat	-	12 Lamat		12 Lamat	12	
15		13	10	1 A	kbal	1	Akbal		1 Akbal		1 Akbal	13	
16		14	0	3 Etz'	nab	3 E	tz'nab		3 Etz'nab		3 Etz'nab	14	
17		15		8 5	Ben		5 Ben		5 Ben		5 Ben	15	
(na) wa' ca'an mutz mutz kintel Ca'Nan (na) lu-ti (ya) mu-ti (ya) ha' pop mu-ti (ya) 18 18 HAB-PEK hab pek YAX TAL yax tal PAWAH OCH pawah och CA'AN (na) ca'an u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (ya) u-ti (16	12 Lama	at 7 La	mat	7	Lamat		7 Lamat		7 Lamat	16	
18 HAB-PEK hab pek YAX TAL yax tal PAWAH OCH pawah och ca'an CA'AN (na) ca'an u-ti (ya) ut-i 18 19 14 15 15 16 16 17 19 20 16 7 16 7 16 5 20 21 14 11 8 5 2 10 21 22 4 Ik 12 Cauac 7 Cib 2 Ben 10 Oc 2 Etz'nab 22 b 23 5 Akbal 13 Ahau 8 Caban 3 Ix 11 Chuen 3 Cauac 23 24 6 Kan 1 Imix 9 Etz'nab 4 Men 12 Eb 4 Ben 24 25 8 8 8 8 8 7 25 26 17 17 17 17 17 8 26		17	(na)					·l(e)	CA'AN(na)			17	
20 16 7 16 7 16 5 20 21 14 11 8 5 2 10 21 22 4 Ik 12 Cauac 7 Cib 2 Ben 10 Oc 2 Etz'nab 22 b 23 5 Akbal 13 Ahau 8 Caban 3 Ix 11 Chuen 3 Cauac 23 24 6 Kan 1 Imix 9 Etz'nab 4 Men 12 Eb 4 Ben 24 25 8 8 8 8 8 7 25 26 17 17 17 17 17 8 26 A B C D E F		18	HAB-PEK							u u	-ti (ya) <i>t-i</i>	18	
21 14 11 8 5 2 10 21 22 4 Ik 12 Cauac 7 Cib 2 Ben 10 Oc 2 Etz'nab 22 23 5 Akbal 13 Ahau 8 Caban 3 Ix 11 Chuen 3 Cauac 23 24 6 Kan 1 Imix 9 Etz'nab 4 Men 12 Eb 4 Ben 24 25 8 8 8 8 7 25 26 17 17 17 17 17 8 26 A B C D E F		19	14	15		15	16		16		17	19	
b 22 4 Ik 12 Cauac 7 Cib 2 Ben 10 Oc 2 Etz'nab 22 b 23 5 Akbal 13 Ahau 8 Caban 3 Ix 11 Chuen 3 Cauac 23 24 6 Kan 1 Imix 9 Etz'nab 4 Men 12 Eb 4 Ben 24 25 8 8 8 8 7 25 26 17 17 17 17 8 26 A B C D E F		20	16	7		16	7		16		5	20	
23 5 Akbal 13 Ahau 8 Caban 3 Ix 11 Chuen 3 Cauac 23 24 6 Kan 1 Imix 9 Etz'nab 4 Men 12 Eb 4 Ben 24 25 8 8 8 8 7 25 26 17 17 17 17 17 8 26 A B C D E F		21	14	11		8	5		2		10	21	
24 6 Kan 1 Imix 9 Etz'nab 4 Men 12 Eb 4 Ben 24 25 8 8 8 8 7 25 26 17 17 17 17 8 26 A B C D E F	b	22	4 Ik	12 Cauac		7 Cib	2	Ben	10 C	oc 2	2 Etz'nab	22	b
25 8 8 8 8 8 7 25 26 17 17 17 17 17 8 26 A B C D E F		23	5 Akbal	13 Ahau	8	Caban		3 Ix	11Chue	en	3 Cauac	23	
26 17 17 17 17 8 26 A B C D E F		24	6 Kan	1 Imix	9 E	tz'nab	4 1	Men	12 E	b	4 Ben	24	
A B C D E F		25	8	8		8	8		8		7	25	
		26	17	17		17	17		17		8	26	
		ı	A	В		C	D		Е		\overline{F}		
51 (30): Transkription/Transliteration			**): Tra			nslit			±		

				51		ranslati	on				
	,	A	B			<u></u>		D	E	7	
	1	ં	8-?			į,		ં	ં	1	
	2	?-Aha	Basis	ene	ist erric		dori Blui	me	ં	2	
	3	8 Cumk	u 215.280		40	66.440		371.020	47.840	3	
	4	12 Lam	at				[370.760]		4	
	5	8 Tage zusätzlich						stemann 190 ompson 1972		5	
	6	1.268.840								6	
	7	[1 260 000]			203.32	20	191	.360	71.880	7	
	8	[1.268.800] (Förstemann 1	901:120)							8	
а	9	[1.412.840]							[71.760]	9	a
	10	(Thompson 19	972:71)						mann 1901:119) on 1972:71, 115)	10	
	11							(Thompse	JII 1972.71, 113)	11	
	12	1.578.98	38 12 La	ımat	12	Lamat		12 Lamat	12 Lamat	12	
	13		1 A	kbal	1	Akbal		1 Akbal	1 Akbal	13	
	14		3 Etz	'nab	3 E	Etz'nab	3	3 Etz'nab	3 Etz'nab	14	
	15		5	Ben		5 Ben		5 Ben	5 Ben	15	
	16	12 Lama	at 7 La	ımat	7	Lamat		7 Lamat	7 Lamat	16	
	17	der Himmel errichtet	Trockenheit, Dürre	Trock Dürre	kenheit,	Notwend keit, Ma		Besuch des Himmels	Regen über der Matte	17	
	18	Baum (Cassia Peralteana)	die 1. Ankunft	Pawa	h Och	Himmel		ist/war angekomme	ist/war n angekommen	18	
	19	5374	5551	5	728	590	5	6082	6230	19	
	20	[5275]	[5552]	r.e-	7201	[500		[6002]	[6221]	20	
	21	[5375]	[5552]		729] Thompson	[590 1972:11		[6083]	[6231]	21	
b	22	4 Ik	12 Cauac		7 Cib	2	Ben	10 O	c 2 Etz'nab	22	b
	23	5 Akbal	13 Ahau	8	Caban		3 Ix	11 Chue	n 3 Cauac	23	
	24	6 Kan	1 Imix	9 E	Etz'nab	4 1	Men	12 E	b 4 Ben	24	
	25									25	
	26	177	177	-	177	177	7	177	148	26	
		A	В		\overline{C}	D		E	F		<u> </u>
		**		51		ranslati	on		<u> </u>	1	

A B C D E					51 ((30): Ini	terpreta	tion						
A Ahau R Cumku Basis Abau Ab			A	_		(\mathcal{C}		D			E		
R Cumku Cursprungs 215,280 466,440 371,020 47,840 3 47,840 3 47,840 47,840 3 47,840		1	ં	8-?					ં			ં	1	
13		2			ene	ist erric	chtet		_			ં	2	
12 Lamat		3		215.280	.960			371.	020				3	
S Zusätzlich(e) 2 368 588 2 360 8 588 780		4	12 Lamat	= 828 · = 1872 ·	260 115	= 1794 · = 4056 ·	260 115			=	184 ·	260	4	
A B C D E F		5		= 552 ·	390								5	
1		6		_									6	
a 8		7	= 4880 · 260+40		0								7	
10	a					= 782 ·	260	= 73	36 · 260	=	276 ·	260+120		a
11 12 1.578.988 12 Lamat 13 14 15 3 Etz'nab 3 Etz'nab 3 Etz'nab 3 Etz'nab 3 Etz'nab 14 15 5 Ben 5 Ben 5 Ben 5 Ben 15 16 12 Lamat 7 Lamat 7 Lamat 7 Lamat 7 Lamat 7 Lamat 7 Lamat 16 17 der Himmel Trockenzeit Trockenzeit Notwendig-keit, Mangel Besuch des Regen über 17 der Himmel die 1. (Cassia Ankunft Gottheit N Himmel ist/war angekommen angekommen 18 18 19 (58D3→) (→52C20) 19 20 5374 5551 5728 5905 6082 6230 20 21 +177=														
12														
13 = 6.073 · 260 +8			1.578.988	12 La	mat	12	Lamat]	12 Lama	ıt	12	Lamat		
15		13	= 6.073 · 260 +8	1 Al	kbal	1	Akbal		1 Akba	.1	1	Akbal	13	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14		3 Etz'	nab	3 E	tz'nab	3	BEtz'na	b	3 1	Etz'nab	14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15		5	Ben		5 Ben		5 Be	n		5 Ben	15	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		16	12 Lamat	7 La	mat	7	Lamat		7 Lama	ıt	7	Lamat	16	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		17		 Frockenzeit	Troc	kenzeit							17	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18			Gott	heit N				man			18	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		19	Peralteana)	Ankunft					angekon	IIICII			19	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			5374	5551	5	728	590)5	608	2		5230		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		21	 ₊₁₇₇₌	77 = + 1	 <i>77</i> =	+ 17	77 =	+ 17	 '7 =	-148	 =	+178=	21	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{c} b \end{array} \right $	22	4 Ik								,	Etz'nab	22	h
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		23	5 Akbal	13 Ahau	8	Caban		3 Ix	11 Cł	uen	3	Cauac	23	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		24	6 Kan	1 Imix	9 E	tz'nab	4]	Men	12	Eb	(4		24	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			→)	-	l <i>55</i>			. -		1 40			25	
		26	155 155	+ 17	// =	+ 17		-148	i =	$(\rightarrow$	26			
51 (30): Interpretation			A	A B			D		E			F		
					51 ((30): Int	terpreta	tion						

			52 (3	1): Transkrip	otion/Transli	teration			
	ı	A	В	С	D	Е	F		
	1	ં	ં	ં	ં	ં	ં	1	
	2	i	i	CHI'-BIL ? chi'bil ?	8 Kin	8 Cumku	8 Cumku	2	
	3	4	3	1	1 5 winic tun	9	9	3	
	4	8	4	6	CA' ta-b(a) ca' tab	9	9	4	
	5	19	6	18	13	19	16	5	
	6	6	19	12	13	16	16	6	
	7	11	8	5	13	8	4	7	
	8	2	12	16	13	4	4	8	
a	9	0 0	0 0	0 0	13	7	11	9	a
	10	-	-	-	13	10	10	10	
	11	12 Lamat	12 Lamat	12 Lamat	13	8	3	11	
	12	1 Akbal	1 Akbal	1 Akbal	13	18	8	12	
	13	3 Etz'nab	3 Etz'nab	3 Etz'nab	13	-	-	13	
	14	5 Ben	5 Ben	5 Ben	13	3 Etz'nab	12 Lamat	14	
	15	7 Lamat	7 Lamat	7 Lamat	13	7 Lamat	1 Akbal	15	
	16	-	-	-	13	-	-	16	
	17	-	-	-	13	-	-	17	
	18	BUTZ' MUYAL(la)	HOY CAN	ZIH-ba	HA'-al	HA'-al	HA' po-p(o)	18	
	19	butz' muyal NAH	hoy can u ca-hi (ya)	zih-ba CA'AN (na)	ha'-al OCHCAN	ha'-al KULU	ha' pop ta UH	19	
	17	CA'AN (na) nah ca'an	u cah-i	ca'an	ochcan	kulu	ta uh	1)	
	20	TOK EK OCHCAN tok ek ochcan	PAT(ta)-ah	17	18	18	19	20	
	21	AH CIM-al	pat-ah u KAN	14	5	14	4	21	
,		ah cim-al	CA'AN (na) u kan ca'an						,
b	22			8	5	2	19	22	b
	23			11 Cib	6 Ben	1 Oc	9 Manik	23	
	24			12 Caban	7 Ix	2 Chuen	10 Lamat	24	
	25			13 Etz'nab	8 Men	3 Eb	11 Muluc	25	
	26			8	8	8	8	26	
	27			17	17	17	17	27	
		A	В	С	D	E	F		•
			52 (3.	1): Transkrip	otion/Transli	teration			

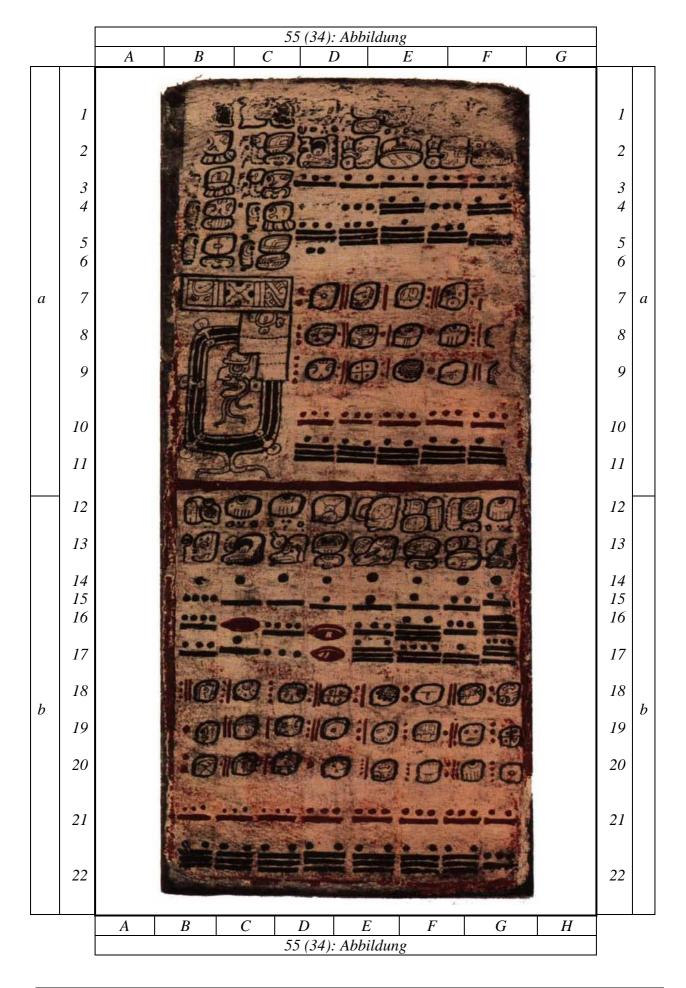
				\ /	Translation	1			
		A	В	С	D	E	F		_
	1	ં	ં	ં	ં	ં	ં	1	
	2	ં	ં	Finsternis?	8 Tage	8 Cumku	8 Cumku	2	
	3	35.860	23.920	13.780	1 Monat + 5 Jahre	1.435.828	1.412.863	3	
	4	[25 000]		[11 060]	2 Zusätze	[1 424 740]		4	
	5		stemann 1901:1			[1.434.748] (Förstemann 1	901:119)	5	
	6	(In	nompson 1972:7 	1)		[1 425 460]		6	
	7	59.800	35.880	47.840		[1.435.468] (Thompson 19	72:71)	7	
	8							8	
a	9					1.412.858	1.412.848	9	a
	10				5,04455 ·	[1.412.878]		10	
	11	12 Lamat	12 Lamat	12 Lamat	10^{16}	(Förstemann 19 (Thompson 19		11	
	12	1 Akbal	1 Akbal	1 Akbal		(Thompson 19)	12	
	13	3 Etz'nab	3 Etz'nab	3 Etz'nab		-	-	13	
	14	5 Ben	5 Ben	5 Ben		3 Etz'nab	12 Lamat	14	
	15	7 Lamat	7 Lamat	7 Lamat		7 Lamat	1 Akbal	15	
	16	-	-	-		-	-	16	
	17	-	-	-		-	-	17	
	18	(Rauch-?) Wolke	Schlange	geboren durch	Regen von	Regen von	Regen über der Matte	18	
	19	der/des 1. Himmels	in der Aktion	Himmel	Boa Constrictor	Waschbär	des Mondes	19	
	20	der Stern Silex Boa	war sichtbar	6408	6585	6762	6939	20	
	21	der Tod auf,	der gelbe					21	
	22	über	Himmel	[6409]	[6586]	[6763]	[6940]	22	
	22			11 Cib		n 1972:115)	9 Manik	22	
b	23				6 Ben	1 Oc		23	b
	24			12 Caban	7 Ix	2 Chuen	10 Lamat	24	
	25			13 Etz'nab	8 Men	3 Eb	11 Muluc	25	
	26			177	177	177	177	26	
	27			1//	1//	1//	1//	27	
		A	В	C	D	Е	F		
				52 (31):	Translation				

				52 (31).	: Interpreta	ıtion	ı					
		\boldsymbol{A}	В	С	D		1	Ξ		F		ı
	1	ં	i	ં	ં		č	,		ં	1	
	2	i	i	Finsternis	8 Tage	;	8 Cu	mku	8	Cumku	2	
	3	35.860 = 3 · 11.960	23.920 = 2 · 11.960	13.780 = 11.960 +	1 Mona		1.435	5.828	1.	.412.863	3	
	4	-20 = 138 · 260	$= 92 \cdot 11.900$	$ \begin{array}{r} -11.900 + \\ 1.820 \\ = 53 \cdot 260 \end{array} $	$ \begin{array}{r} + 5 \text{ Jahr} \\ 2 \text{ vor Im} \end{array} $						4	
	5	- 20	= 208 · 115	= 120 · 115							5	
	6			- 20	0						6	
	7	59.800	35.880	47.840							7	
	8	$= 5 \cdot 11.960$ = 230 · 260	$= 3 \cdot 11.960$ = $138 \cdot 260$	$= 4 \cdot 11.960$ $= 184 \cdot 260$							8	
a	9	= 520 · 115	$= 312 \cdot 115$ $= 46 \cdot 780$	= 416 · 115	5		1.412	2.858	1.	.412.848	9	а
	10				5,04455	5 ·					10	
	11	12 Lamat	12 Lamat	12 Lama	<u> </u>						11	
	12	1 Akbal	1 Akbal	1 Akba							12	
	13	3 Etz'nab	3 Etz'nab	3 Etz'nal			0.71		10		13	
	14	5 Ben	5 Ben	5 Ber			3 Etz'ı		12	Lamat	14	
	15	7 Lamat	7 Lamat	7 Lama	t		7	Lamat		1 Akbal	15	
	16	-	-	-			-	-		-	16	
	17	-	-	-			-	-		-	17	
	18	(Rauch-?) Wolke	Schlange	geboren durch	Regen von		Regen v	on	Reg Mat	en über der te	18	
	19	der/des 1. Himmels	in der Aktion	Himmel	Boa Constrictor		Waschb	är	des	Mondes	19	
	20	der Stern Silex Boa	war sichtbar	(51F19→)						(→53A13)	20	
	21	der Tod auf, über	der gelbe Himmel	6408	6585		67	62		6939	21	
	22	Unterhalb ein bandes das si	nes Himmels-	1	+ 177 =	+ 1		+ 177	7 =	+177=	22	
	23		e Symbol der	11 Cit	6 B	en		1 Oc		9 Manik	23	
b	24	Hälften mit u schiedlichen	ınter-	12 Cabar	n 7	Ix	2	Chuen		10 Lamat	24	b
	25	verziert sind,		13 Etz'nal	8 M	en		3 Eb		11 Muluc	25	
	26	dem Kreuzur zweier Knoc	ngspunkt	(51F25→)							26	
	27	(Davoust 199			+ 177 =	+ 1	77 =	+ 177	7 =	+177=	27	
	2/									(→53A20)	4/	
		A	В	C	D		1	Ξ		\boldsymbol{F}		
				52 (31).	: Interpreta	ıtion	ı					

				~): Abbild			~ T			
		A	В	C	D	E		F	G	Н		
а	1 2 3 4 5										1 2 3 4 5	а
	8		20	1:01	6	a U	1.		意思		8	
	9			222			···				9	
	10										10	
b	11 12 13 14 15 16 17 18 19 20 21								O		11 12 13 14 15 16 17 18 19 20 21	b
	<u> </u>	A	В	C		D	E		F	G		
					<i>33 (32</i>	?): Abbila	ung					

				53 (32)	: Tran	skriptio	n/Tra	ınsliter	ation			
		A	В	C	D	Î		F	G	Н		
	1	ં	ં	ah CIM-al ah cim-al	XUL MEI MUK xul men muk	YA' C. ya' cab		ં	i	ن	1	
	2	ah CIM-al	ITZ-AM-na	UH	CA'AN	(a)AHA ne-n(e)		EK'	OCH CAN	i i	2	
		ah cim-al	itzam na	uh	ca'an	ahaw	nen	ek	och can			
	3	-	-	1	CHI'BI KIN chi'bil k			1	2	2	3	
	4	7	17	7	ta HUN CA'AN- ta hun ca'ana	al TZI	UC	15	6	15	4	
	5	17	13	2	ah CIM-a	al YA'	(na)	14	16	13	5	
a	6	6 Kan	1 Imix	6 Muluc		,		Cin	1 ni Akb	9 4 pal Ahau	6	a
	7	7	2	7					2	10 5	7	
		Chicchan	Ik	Oc				Mani		an Imix		
	8	8 Cimi	3 Akbal	8 Chuen				Lam	3 at Chicch	4 6 an Ik	8	
	9	8	8	7				8	8	8	9	
	10	18	18	8				17	17	17	10	
	11	ch'a-ch'(a)	CHI'BIL KIN	za-p(a)	ha	a-l(a)	ba-n	a-l(u)	ah CIM-al	HA'CA'AN (na)	11	
		ch'ach'	chi'bil ki	~ 1	ho		ban		ah cim-al	ha' ca'an		
	12	KUL OC(ci)	ya-AHAW KIN	u EK-a	ıl co	o-tz'a-t(a)	WA	H (hi)	ta UH	MUWAN/CUY	12	
		kul oc	y-ahaw-ki			otz'at	wah	ı	ta uh	muwan/cuy		
	13	-	1	ta-y UI	Y	OB AX-un <i>b yaxun</i>		1	1	1	13	
	14	19	0	u ca-hi (ya)	H C.	A'KUL A'AN A' ?		0	1	1	14	
	15	13	3	u-cah-i	i ho	a'kul a'an za'?		12	2	11	15	
b	16	16	4					1	18	15	16	b
	17	4 Kan		9 lb]	4 Muluc	12 Cimi	7 Akbal	17	
	18	5 Chicchan		0 en				5 Ok	13 Manik	8 Kan	18	
	19	6 Cimi		1 [x				6 Chuen	1 Lamat	9 Chicchan	19	
	20	8	7					8	8	8	20	
	21	17	8					17	17	17	21	
		A	В	C		D		E	\overline{F}	G		
						skriptio				<u> </u>	1	

1						53	(32):	Trans	slati	ion					
2 der Tool, Itzamma Mond Himmael Herr des Spiegels Gevides 1. Herr der Himmels Herr der Himmels Gröstemann 1901:123) Gevides 1. Herr der Himmels Gröstemann 1901:123) Gröstemann 1901:123 Gröstemann 19			A	В	C					F		G	Н		
Spiegels Cvenus? Constrictor Constri		1	ં	ં		verbo	rgenen			i		ં	ં	1	
1.77		2		Itzamna	Mond								r i	2	
177		3	157	353	502					674		856	1033	3	
1		4												4	
Kan	a	5	(Förstemann	n 1901:123)				Unglüder So	ck nne	(Förstem	ann		(Förstemann	5	a
Chicchan Ik Oc 8		6		_						Cin	1 mi			6	
Cimi		7	-		•					Mar				7	
10		8		_						Lan				8	
10		9												9	
12 himmlischer große Anfang Sonne Dunkelheit umgeben, umschlossen Tortillas des Mondes Muwan?) 12 13 7116 7264 Vollendung des Mondes Muwan?) 13 14 [7117] [7265] (Thompson 1972:115) 15 (Thompson 1972:115) 16 16 17 4 9 (Shan Eb 18 5 10 Chicchan Ben 19 6 11 Cimi Ix 20 21 177 148 148 177 177 177 177 21 177 177 21 177 177 177 21 177 177 177 177 21 177 177 177 177 21 177		10	177	177	148					177		177	177	10	
Anfang Sonne Dunkelheit umschlossen Mondes Muwan ?) 12		11	reinigen		war						de	r Tod	Himmelsregen	11	
14		12		8	l l	elheit			To	rtillas				12	
14		13	7116	7264			des Co	otinga	,	7441		7618	7795	13	
15		14					himm-	-						14	
10		15			des		Regen himm	und lische	[15	
Kan Eb Muluc Cimi Akbal 17 18	b	16												16	b
Chicchan Ben Oc Manik Kan 19 6 11 19 Chicchan Chicchan 20 21 177 148 177 177 177 177 21		17												17	
Cimi Ix Chuen Lamat Chicchan 20 20 21 177 148 177 177 177 21		18	_										_	18	
21 177 148 177 177 177		19												19	
		20												20	
A B C D E F G		21	177	148						177		177	177	21	
			A	В	C	7	I.)		Е		F	G		<u> </u>


A B C D E F G H						53 (32):	Interpre	etatio	on						
1			A	В	C		I	\mathcal{E}			G		Н		
2 das Ende (Schöpfer gerit) (schöpfer gerit		1	i	ં		verborge	nen der E		ં		ં		ં	1	
3		2		(Schöpfer	Mond								ં	2	
177 354		3	(Anfang: 0)									(-	→54A3)	3	
a 6 6 1 10 6 1 10		4	, ,	` ′	502	Teilung	d. TZU	C			856		1033	4	
A B C D E F G C C C C C C C C C		5	+177			das Ende	$\frac{d. So}{172 = \rightarrow)}$				+177	7 =		5	
Kan	a			1						1					a
Chicchan Ik Oc (Knochen-) Thron und erhebt den rechten Arm (Davoust 1997:200)		0	_	-		(A) si	tzt auf		Cin	ni				0	
8 S Cimi Akbal Chuen Freehet den rechten Arm (Davoust 1997:200) Chuen Freehet den rechten Arm (Davoust 1997:200) Freehet den rechten Arm (Chicchan Ika Ika Illian Illia		7	-	1	,	(Knoc	chen-)						_	7	
Climi Akbai Chuen rechten Arm (Davoust 1997:200) + 177 = + 177 = + 177 = + 177 = + 177 = 10		8	8	3	8					3	4		6	8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Cimi	Akbal	Chuen				Lama	at Ch	icchan	١ .	Ik		
10		9	+									_	+ 177	9	
10				177= +	148=	1997:	200)		+ 1	177 =	+177	7 =	=		
11 reinigen Sonnen finsternis war verbunden, vereint von der Tod Himmels- regen 11 12 himmlischer Anfang Sonne heit umgeben, heit umgeben, heit umgeben, heit umgeben, heit des Mondes (Eule ?) 13 (52F20→) Vollendung des des Cotinga (-vogels) 14 7116 7264 während himmelischer Handlung, der Handlung, himmlischer Regen und himmlischer Handlung, himmlischer Handlung, himmlischer Handlung, himmlischer Ereignisses Atole ? + 177 = + 177 = + 177 = 16 b 16		10				+	- 177 =							10	
12 himmlischer große Anfang Sonne heit umgeben, umschlossen Tortillas des Mondes (Eule?, Muwan?) 13 (32F20→) Vollendung Unglück des Cotinga Mondes (-vogels) Während himmder lischer Handlung, des himmlische Himmelsbandes hängt Himmels		11	reinigen							der To	od			11	
Anfang Sonne heit umschlossen Mondes (Eule ?, Muwan ?)															
13 (52F20→)		12		0				Tor	tillas		es	(Eule	e ?,	12	
14		13	(52F20→)											13	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		14	7116	726	4 währei				7441	,	7618		7795	14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,			ung, R	egen und								
Unterhalb eines Himmelsbandes hängt die junge Mondgöttin (I) in einer Schlinge um ihren Hals; ihre geschlossenen Augen Zeigen sie als Verstorbene. Symbolisiert sie eine Mondfinsternis? (Davoust 1997:208) A B C D E F G		15	+177= +	148 =					+ 17	7 =	+ 177	' =	 +177=	15	
17	b	16	ļ		_	+ 177	=	_		ı		ı		16	b
Kan Eb die junge Mondgöttin (I) in einer Schlinge um ihren Hals; ihre geschlossenen Augen Zeigen sie als Verstorbene. Symbolisiert sie eine Mondfinsternis? (Davoust 1997:208) A B C D E F G				·	Unterl	nalb eines									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		17		·	41				•				,	17	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								N							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18			ihren l	Hals; ihre								18	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					zeigen		Augen	ļ		N					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		19			Versto	rbene.				T	-	Ch:		19	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20		<i>'</i>	~ 5			'	Juen	L I	amal		CCHall	20	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20	→)	140					. 17	_	. 177		1.5-	20	
A B C D E F G		21	+177=	148 =		+ 177	=		+ 17	/ =	+1//=		$(\rightarrow$	21	
			Α	D					F		,				
			A	D				tatio		Г			U		

		A	В	5 C	74 (33): Ab	bildung	E	F	G		
		A	D	C			E		G		
	1			一	SE SE	6		1		1	
	2		الب	10 E	382	(0)		2	9	2	
	<i>3 4</i>			= -						<i>3 4</i>	
	5		A STATE OF	James .		*				5	
a	6				940		• @	15		6	a
	7		•	0:0	D:1100		:0	14		7	
	8		@	010	9:11@	:1 🛭	: @			8	
	9		***	** **		÷		÷		9	
	10							•••		10	
	11		B	38	E)	9	CA	(63)	n)	11	
	12		200			9	E.) E		12 13	
	13 14	3	-			9				14	
	15 16			7 .	***			1		15 16	
b	17		:@II	Ø18) (G)			17	b
	18		:01	0.16)-1@	N]	t a		18	
	19		10:1	Ø:10	ua				A Company	19	
	20					Sa				20	
	21					W ()				21	
	<u> </u>	A	В	<i>C</i> 5	D (4 (33): Ab	bildung	E	F	G		<u> </u>

						ransliteratio				
		A	В	С	D	E	F	G		
	1	ં	i	i	WA CA'AN (na) wa' ca'an	za-h(a) zah	i	į	1	
	2	ં	ta CAN	CA'AN (na)	ta-n(a)UH	KUL-OC	CA'AN (na)	OCH AN	2	
			ta can	ca'an	tan uh	kul oc	ca'an	och can		
	3	3	3	4	4	5	5	6	3	
	4	6	15	6	15	5	10	4	4	
a	5	11	8	5	8	19	16	4	5	a
	6	13	8	3	11	6	1	6	6	
		Etz'nab	Men	Eb	Muluc	Cib	Akbal	Chuen		
	7	1	9	4	12	7	2	7	7	
	0	Cauac	Cib	Ben	Oc	Caban	Kan	Eb		
	8	2 A how	10 Caban	5	Chyan	8 Etz'nob	3 Chicchan	8 Dan	8	
	0	Ahau	Caban	Ix	Chuen	Etz'nab		Ben	0	
	9	8	8	8	8	8	8	7	9	
	10	17	17	17	17	17	17	8	10	
	11	HA' CA'AN (na) ha' ca'an	ch'a-ch'(a)	na-c(i)	KIN UH	YA' CA'AN (na) ya' ca'an	YA' CAB (ba) ya' cab	pa-l(a) KIN paal kin	11	
	12	KULU	KUL OC	CA'AN	CHI'BIL	u-ca-hi (ya)	CUM NA'	OCH	12	
	12	kulu	(ci) kul oc	(na) ca'an	KIN chi'bil kin	u-ca-ni (ya) u-cah-i	UH cum na' uh	CAN och can	12	
	13	1	1	1	1	NAH OCHCAN	yo-m(u)	1	13	
	14	2	2	3	3	nah ochcan	yom	4	14	
b	15	2	11	2	9	ta HUN CA'AN-al	KIN CUN (na)	0	15	ŀ
b	16	12	9	6	14	ta hun ca'an-al	kin cun	11	16	
	17	2	10	5	10		<u> </u>	5	17	
		Ahau	Caban	Ix	Ik			Cauac		
	18	3 Imix	10 Etz'nab	6 Men	11 Akbal			6 Ahau	18	
	19	4	12	7	12			Aliau 7	19	
	17	Ik	Cauac	Cib	Kan			Imix		
	20	8	8	8	7			7	20	
	21	17	17	17	8			17	21	
		A	В	C	D	E	F	G		
			54	(33): Tran	skription/Ti	ransliteratio	n			

A B C D E F G						(33): Transle		T			
2		ı							G		
3 1211 1388 1565 1748 1919 2016 2244 3		1	ં	i	i			i	i	1	
A		2	i	Schlange	Himmel		lischer	Himmel		2	
1742		3	1211	1388	1565	1748	1919	2016	2244	3	
1		4				[174 2]		[2006]		4	
Etz'nab Men Eb Muluc Cib Akbal Chuen		5				(Fö		23)		5	
7	a	6						1 Akbal		6	a
Cauac Cib Ben Oc Caban Kan Eb		7								7	
Ahau Caban Ix Chuen Etz'nab Chicchan Ben 9			Cauac	Cib	Ben		Caban	Kan	Eb		
9 10 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 148 10 10 10 10 10 10 10 1		8	_	_			_		_	8	
10			Ahau	Caban	Ix	Chuen	Etz'nab	Chicchan	Ben		
10		9								9	
Regen		10	177	177	177	177	177	177	148	10	
13		11		reinigen						11	
14		12	Waschbär	lischer						12	
14		13	7972	8149	8326	8474	Boa Con-	Schaum	8651	13	
15		14	[7973]	[8150]	[8327]	[8475]	strictor		[8652]	14	
17 2 10 5 10 Ahau Caban Ix Ik 18 3 10 6 11 Imix Etz'nab Men Akbal 19 4 12 7 12 Ik Cauac Cib Kan 20 Imix 21 177 177 148 A B C D E F G		15	[1713]			[04 73]			(Thompson	15	
Ahau Caban Ix Ik 18 3 10 6 11 Imix Etz'nab Men Akbal Akbal 19 4 12 7 12 Imix Imix 19 Imix 20 (157→) 177 21 A B C D E F G	b	16								16	b
18 3 10 6 11 Imix Etz'nab Men Akbal 19 4 12 7 12 Ik Cauac Cib Kan 20 Imix 20 21 177 177 148 A B C D E F G		17								17	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18								18	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			_	_					_	10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		19							7 Imix	19	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	270		313					20	
			177	177	177	148				21	
		I	A	В	С	D	Е	F	G		

A B C 1 i i 2 i Schlange Himmel 3 (53H03 \rightarrow) Himmel 4 1211 1388 1565 5 +178 = +177 = +177 = +177 = 6 13 8 8 8 8 8 8 8 8 Etz'nab Men H 7 1 9 9 9 9 9 9 Cauac Cib Be 8 2 10 10 10 10 Ahau Caban Caban 9 (53H09 9 9 +178 +177 = +177 = -177 =	Mond 5 1748 +183= +183	schrecklich E schrecklich himmlischer Anfang E E E E E E E E	1 Akbal 2 Kan 3 Chicchan = →)	Chuen 7 Eb 8 Ben	1 2 3 4 6 6 7 8	а
2 i Schlange Himmel 3 (53H03 \rightarrow) 4 1211 1388 1565 5 +178 = +177 = +177 = 6 13 8 Etz'nab Men Etz'nab Men Etz'nab Men Gib Be 8 2 10 Ahau Caban 9 (53H09	errichtet mit dem Mond 1748 $+183 = +183$ Eb Muluc -4 -12 Coc -5 -13 Chuen -13	himmlischer Anfang 1919 171= $+97$ $(6 \text{ Cib} \rightarrow)$ 6 Cimi (7 Caban \rightarrow) 7 Manik (8 Etz'nab \rightarrow) 8 Lamat (Thompson 1972: 115) $(7 = \rightarrow)$ $(+307 = 0)$ $(7 = \rightarrow)$ $(+47 = 0)$	Himmel $ 2016 $ $ 7 = $	Boa Constrictor (55C03→) 2244 8= +178= 6 Chuen 7 Eb 8 Ben	2 3 4 6 6 7 8	а
3 $(53H03\rightarrow)$ 1388 1565 4 1211 1388 1565 5 $+178 =$ $+177 =$ $+177 =$ 6 13 8 8 Etz'nab Men E 7 1 9 O Cauac Cib Be 8 2 10 O Ahau Caban Caban Caban Caban 10 = $+177 =$ $+177 =$ $+177 =$ $-177 =$ 11 himm- reinigen erheben	Mond 5 1748 +183= +183	Anfang 1919 $171 = $	$7 = \begin{vmatrix} 2016 \\ 7 = \end{vmatrix} + 228 \\ Akbal \\ 2 \\ Kan \\ 3 \\ Chicchan \\ = \rightarrow) \\ = \rightarrow) \end{vmatrix}$	Constrictor (55C03→) 2244 8= +178= 6 Chuen 7 Eb 8 Ben	3 4 6 6 7 8	а
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+183= +183=	$(6 \text{ Cib} \rightarrow)$ 6 Cimi $(7 \text{ Caban} \rightarrow)$ 7 Manik $(8 \text{ Etz'nab} \rightarrow)$ 8 Lamat $(7 \text{ Chompson 1972:}$ $(7 \text{ Caban} \rightarrow)$ $(7 \text{ Caban} \rightarrow)$ $(8 \text{ Etz'nab} \rightarrow)$ $(8 \text{ Etz'nab} \rightarrow)$ $(7 \text{ Caban} \rightarrow)$ $(1 \text{ Caban} \rightarrow)$ $(2 \text{ Caban} \rightarrow)$ $(3 \text{ Caban} \rightarrow)$ $(4 \text{ Caban} $	$7 = \begin{vmatrix} +228 \\ Akbal \end{vmatrix}$ $\begin{vmatrix} 2 \\ Kan \end{vmatrix}$ $\begin{vmatrix} 3 \\ Chicchan \end{vmatrix}$ $= \rightarrow)$ $= \rightarrow)$	2244 8= +178= 6 Chuen 7 Eb 8 Ben	4 6 6 7 8	а
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+183= +183=	$(6 \text{ Cib} \rightarrow)$ 6 Cimi $(7 \text{ Caban} \rightarrow)$ 7 Manik $(8 \text{ Etz'nab} \rightarrow)$ 8 Lamat $(7 \text{ Chompson 1972:}$ $(7 \text{ Caban} \rightarrow)$ $(7 \text{ Caban} \rightarrow)$ $(8 \text{ Etz'nab} \rightarrow)$ $(8 \text{ Etz'nab} \rightarrow)$ $(7 \text{ Caban} \rightarrow)$ $(1 \text{ Caban} \rightarrow)$ $(2 \text{ Caban} \rightarrow)$ $(3 \text{ Caban} \rightarrow)$ $(4 \text{ Caban} $	$7 = \begin{vmatrix} +228 \\ Akbal \end{vmatrix}$ $\begin{vmatrix} 2 \\ Kan \end{vmatrix}$ $\begin{vmatrix} 3 \\ Chicchan \end{vmatrix}$ $= \rightarrow)$ $= \rightarrow)$	8= +178= 6 Chuen 7 Eb 8 Ben	6 6 7 8	а
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 11 Eb Muluc 4 12 en Oc 5 13 Ix Chuen (+44) (+36)	(6 Cib→) 6 Cimi (7 Caban→) 7 Manik (8 Etz'nab→) 8 Lamat (Thompson 1972: 115) 7 = →) (+307: 07= →) (+47=	1 Akbal 2 Kan 3 Chicchan = →)	6 Chuen 7 Eb 8 Ben	6 7 8	а
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eb Muluc 4 12 en Oc 5 13 Ix Chuen (+4:) (+36)	6 Cimi (7 Caban→) 7 Manik (8 Etz'nab→) 8 Lamat (Thompson 1972: 115) 7 = →) (+307: 07= →) (+47=	2 Kan 3 Chicchan = →) = →)	Chuen 7 Eb 8 Ben	7	a
Cauac Cib Be 8 $\frac{2}{8}$ $\frac{10}{10}$ Ahau Caban 9 $\frac{(53H09)}{+178}$ $\frac{10}{10}$ $\frac{11}{10}$ himm-reinigen erheben	en Oc 5 13 Ix Chuen (+4%) (+36)	7 Manik (8 Etz'nab \rightarrow) 8 Lamat (Thompson 1972: 115) 7 = \rightarrow) (+307: 07= \rightarrow) (+47 =	Kan 3 Chicchan = →) = →)	Eb 8 Ben	8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 13 Ix Chuen	8 Lamat (Thompson 1972: 115) $7 = \rightarrow$) (+307= $07 = \rightarrow$) (+47=	3 Chicchan = →) = →)	Ben		
$10 \begin{vmatrix} \rightarrow & \rightarrow & \\ +178 & +177 = \\ = & +177 = \\ 11 & \text{himm-} & \text{reinigen} & \text{erheben} \end{vmatrix}$	(+30	$ \begin{vmatrix} 115 \\ 7 = \rightarrow \end{vmatrix} (+307 = 3) $ $ (+47 = 3) $	= →) = →)	+178 -	9	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,	, ,	,	+178 -		
			, – 1170	(55C10	10	
		Unglück am Himmel	Unglück auf der Erde	die junge Sonne	11	
12 Regen Image Ima	Sonnen- finsternis	durch die Handlung	Mond- (scheibe)	Boa Constrictor	12	
13 (53G13→)		die erste Boa	Schaum	(→55A14)	13	
14		Constrictor	Schaum		14	
15 7972 8149 832 <i>6</i>	8474	der/des 1. Himmel(s)	Sonne(n-scheibe)	8651	15	
$\begin{vmatrix} 16 & +177 \\ b & = & +177 = & +177 = \end{vmatrix}$	+ 148 =	+12	77=	+177=	16	b
2 10	5 10 Ix Ik	Unterhalb eine bandes das spi	egel-	5 Cauac	17	
18 3 10	6 11	symmetrische Sonnenfinstern	nis; zwei	6	18	
	en Akbal 7 12	halbe Langkno bedecken dess Hälfte, zwisch	en linke	Ahau 7	19	
Ik Cauac C	ib Kan	die Glyphe <i>kin</i> hängt zusätzlic	. Ein Band	Imix		
20 (53G20)		bedeckt die he Hälfte des Syn	lle rechte		20	
21 +177= +177 = +177 =	+ 148 =	(Davoust 1997		+ 177 = (→ 55A21)	21	
		+ 17	1			
$A \mid B \mid C$	D 54 (33): Inter	E	F	G		

		55 (34): Transkription/Transliteration A B C D E F G												
	1	A	В		C				E		F	G		
	1	CHI'BIL KIN	CHI'BIL UH	I ah C	IM-al	HA'pe	o-p(o)	WA'-	la-h(a)		ં	ં	1	
	2	chi'bil kin YA'CAB(ba) ya' cab	chi'bil uh HA'KUL CA'AN(na) ha' kul ca'ar	ah ci CU cuy		ta UI ta uh	H	wa'-la YAX yax t	TAL		UH uh	OCHCAN ochcan	2	
	3	YA'CA'AN? ya' ca'an?	HA'KUL CAF an ha'kul cab-an	B- (8	→)	í	7		7		8	8	3	
	4	YA'WINIC(ci) ya' winic	YA'CAB(ba		<u>0</u> ?→)	3	3		12		3	12	4	
	5	YA' CUN (na) ya' cun	ya' cab YA'CA'AN' ya' ca'an ?	?	13	1	8		16		13	10	5	
a	6	ya cun	ya ca an :		2		-		-		-	-	6	а
	7				2 Iuluc		10 Cimi		5 Akbal		13 Ahau	8 Caban	7	
	8			10.	3 Oc		11 anik		6 Kan		1 Imix	Caban 9 Etz'nab	8	
	9				4 huen		12 amat	Chi	7 icchan		1 Ik	10 Cauac	9	
	10			-	8		3	CII	8		8	8	10	
	11				17	1	7		17		17	17	11	
	12	KIN pa-(lu) kin pal	HA'-al	HA'-al	?		mu-tz	z(e)	CH'A KIN-el ch'a kin-	el.	HUY CA'AN(na)		12	
	13	UH	ha'-al OCHCAN	ha'-al KULU	? CA (na	A'AN	PAWA OCH		CA'AN (na)		huy ca'an ta UH	ha'-al OCHCAN	13	
		uh	ochcan	kulu	ca		pawal Bacab		ca'an		ta uh	ochcan		
	14	1	1	1		1]	l	1		1	1	14	
	15	4	5	5		6	(5	6		7	7	15	
	16	9	0	9		0		3	17		8	15	16	
b	17	8	6	3		0	1	7	14		11	19	17	b
	18	13 Cib	9 Ix	Chue		12 amat	Chic	7 echan		2 Ik	10 Caua		18	
	19	1 Caban	10 Men	Е	5 b N	13 Iuluc		8 Cimi	Akb	3 al	1: Ahai		19	
	20	2 Etz'nab	11 Cib	Ве	6 n	1 Oc	M	9 Ianik	Ka	4 an	12 Imiz		20	
	21	8	8	8		8	8	3	8		8	7	21	
	22	17	17	17		17	1	7	17		17	8	22	
		A	В	С		D	1	Ξ	F		G	Н		
			=						sliterat	ion			1	
				55 (57	<i>,</i> . 110	a waren t	rioi/	1 i ait	Sucrat	vii	•		J	

	1	A Sonnen-	В	C									
	1	Sonnen-				Î	D		E	F	G		
		finsternis	Mond- finsternis	der Tod		Regen der M		ist/ erri	war chtet	٠.	٠	1	
	2	Unglück für die Erde	göttlicher Himmels- regen	die Eule		mit de Mond		die Anl	1. kunft	des Mondes	Boa Constrictor	2	
	3	Unglück für den Himmel	göttlicher Erdenregen	(3142	,	25	598		2776	2953	3130	3	
	4	Unglück für die	Unglück für die						2770	2,00	3130	4	
a	5	Menschen Unglück für das Maisfeld	Erde Unglück für den Himmel		[22] rstemann nompson	1901:1						5	a
	6		•	-			-		-	-	-	6	a
	7			Mı	2 uluc		10 Cimi		5 Akbal	13 Ahau	8 Caban	7	
,	8				3 Oc	N	11 Manik		6 Kan	1 Imix	9 Etz'nab	8	
	9			Ch	4 nuen	I	12 Lamat	C	7 hicchan	1 Ik	10 Cauac	9	
1	10											10	
1	11			17	7	1	77		177	177	177	11	
1.	12			Regen von/des	?		man trockne	t	Schrecken Angst	, Besuch des Himmels	Regen von/des	12	
1.	13		Boa Constrictor	Waschbär	Himm	el	PAWAI OCH Bacab	Н	Himmel	des Mondes	Boa Constrictor	13	
1	14	8828	9006	9183	936	50	953′	7	9714	9891	10039	14	
	15 16	[8829]	[9007]	[9184]		51] ompson	[953 8 1972:115		[9715]	[9892]	[10069]	15 16	
b 1	17								(Förste	emann 1901:123)	[10068]	17	b
1	18	13 Cib	9 Ix	4 Chuen	La	12 mat	Chiccl	7 nan		2 10 k <i>Cauac</i>		18	
1	19	1 Caban	10 Men	5 Eb	Mu	13 aluc	Ci	8 mi	Akba	3 11 Ahau		19	
2	20	2 Etz'nab	11 Cib	6 Ben		1 Oc	Mai	9		4 12	4	20	
2	21	Ltz nau	CIU	Deli			14141	111	IXa		Widiuc	21	
2.	22	177	177	177	17′	7	177		177	177	148	22	
	-	A	В	С	D	,	Е		F	G	Н		<u></u>
	-	А	D	C			E Transla	tio-		U	11		


					55 (3	34): I	nterpre	tatio	n						
		A	В	C			\overline{D}		E		F		G		
	1	Sonnen- finsternis	Mond- finsternis	der Tod	1	Rege der M	n über Iatte	ist/w erric			ં		ં	1	
	2	Unglück für die Erde	göttlicher Himmels- regen	die Eule	e	mit d Mond		die 1 Ank		des M	Iondes	Boa Con	strictor	2	
	3	Unglück für den Himmel	göttlicher Erdenregen	(54G03-	→)								(→56A03)	3	
	4	Unglück für die Menschen	Unglück für die Erde	242	22	2	598	2	2776	29	953	3	3130	4	
	5	Unglück für das Maisfeld	Unglück für den Himmel	+178=	+.	176=	+1	78=	+17	7=	+177	' =	+148=	5	
a	6	TT . 1 11			I		ļ		ļ]		I		6	а
	7	Unterhalb of Himmelsba			2		10		5		13		8	7	
	8	erscheint d Sonnengot		Mı	uluc 3		Cimi 11		Akbal 6		Ahau 1		Caban 9	8	
		einem Ring	g, der eine		Oc		Manik		Kan		Imix	j	Etz'nab	O	
	9	Sonnenfins symbolisie		Ch	4 nuen		12 Lamat	Cł	7 nicchan		1 Ik		10 Cauac	9	
	10	(Davoust 1			iucii		Lamai			I			Cauac	10	
	11	(54G09→) + 17	78 =	+	+ 177 =		+ 177	=	+ 17	77 =	+ 177	7 =	+148= (→ 56A10)	11	
	12	+ 178 = 12 neue Regen		degen on/des	?		man trockne	t	Schrecker Angst	de	esuch s mmels		egen n/des	12	
	13		Boa V Constrictor	Vaschbär	Himi	mel	PAWA OCH Bacab	Н	Himmel	de		Bo	oa onstrictor	13	
	14	(54G13→)					Васав						(→56C14)	14	
	15	8828	9006	9183	93	860	953	7	9714		9891	-	10039	15	
	16	+177= +17	78= +177	= +1	77=	+1	77=	+17	7= +	177=	+14	8=	+177=	16	
b	17													17	b
	18	13 Cib	9 Ix	4 Chuen	L	12 amat	Chiccl	7 han		2 Ik	10 Cauac		2 Manik	18	
	19	1	10	5		13		8		3	11		3	19	
	20	Caban 2	Men	Eb <u>6</u>	N	Iuluc 1	Ci	mi 9	Akb	al 4	Ahau 12	_	Lamat 4	20	
		Etz'nab	Cib	Ben		Oc	Ma	nik		ın	Imix		Muluc		
	21	(54G20 →) +177= ± 17	70 _ 177	_	77 –	, 1	77 -	, 17	7 = +	177 -	+148	o	+ 177 =	21	
	22	+1/	+177=		,	+ 1	//-	+ <i>1</i> /	/ - +·	1//=	+140	ا نــ د	(→ 56C21)	22	
		A	В	С	<u> </u>	D	E		F		G		Н	'	
					55 (3	34): I	nterpre	tatio	n						

	[): Abbildung				
		A	В	C	D	E	F		
	1 2 3 4 5 6 7 8 9 10		ラー・当人のカー・					1 2 3 4 5 6 7 8 9 10	а
b	12 13 14 15 16 17 18 19 20 21 22							12 13 14 15 16 17 18 19 20 21 22	b
		A	В	<i>C</i>	D	E	F		<u>l</u>
				56 (35): Abbildung				

		56 (35): Transkription/Transliteration A B C D E F										
		A		_			F					
	1	i	CHI'BIL KIN	CHI'BIL UH	WA CA'AN (na)	?-PEK	ં	1				
	2	OCHCAN	chi'bil kin U CA'AN (na)	chi'bil uh YAX TAL	wa' ca'an ta UH	?-pek HUH AHIN		2				
	2						ં	2				
	3	ochcan 9	u ca'an u CAB-an	yax tal PAWAH	ta uh	huh ahin 10	10	3				
				OCH		10	10					
	4	1	u cab-an WAC CA'AN	pawah och YA' PET-NAL	10	1	10	4				
	,	1	(na) wac ca'an	ya pet-nal	10	1	10	•				
	5	18	CHAC HA'	CAB CUN	15	12	9	5				
			chac ha'	cab cun								
a	6	-			-	-	-	6	a			
a									a			
	7	13			8	3	11	7				
		Chicchan			Ik	Cauac	Cib					
	8				9 41-11	4	12 Calara	8				
	9	Cimi 2			Akbal	Ahau 5	Caban 13	9				
	9	Manik			10 Kan	Imix	Etz'nab	9				
	10	7			8	8	8	10				
	10	,				O	O	10				
	11	8			17	17	17	11				
	12	AH CIM-al	u-ca-hi-(ya)		HA'-al	HA' YAX POP	CA'AN (na)	12				
	12			ં		ha'yax pop		12				
	13	ah cim-al TA HUN	u cah-i (a)AHAW P'IZ	HUB ?	ha'-al KULU	CA'AN (na)	ca'an YAX-un	13				
	13	CA'AN-al ta hun ca'an-al	CAB					13				
	14	CAN PAWAH	ahaw p'iz cab	hub ?	kulu 1	ca'an	yaxun 1	14				
	14	TUN	WINIC	1	1	1	1	14				
	15	can pawah tun ya-NAL NIC	can kuch winic HA' KUL AHAW	8	8	9	9	15				
	13	yan-al nic	TZ'AC ha' kul ahaw tz'ac	0	8	9	9	13				
	16	yan-ai nic	na kuranaw tz ac		1.5		1.5	16				
	16			6	15	6	15	16				
b	17			16	14	11	8	17	b			
	_,							_,				
	18			10	6	1	9	18				
				Kan	Ik	Cauac	Cib					
	19			11	7	2	10	19				
				Chicchan	Akbal	Ahau	Caban					
	20			12	8	3	11	20				
	2.7			Cimi	Kan	Imix	Etz'nab					
	21			8	8	8	8	21				
	22			17	17	17	17	22				
				± ,			± /					
-		A	В	C	D	E	F					
		56 (35): Transkription/Transliteration										

				56 (35): Tr	anslation				
		A	В	C	D	E	F		
	1	ં	Sonnen- finsternis	Mond- finsternis	d. Himmels- erscheinung	? - Hund	i	1	
	2	Boa Constrictor	der Himmel	neue Ankunft	mit dem Mond	der Ruf des Krokodils	i	2	
	3	3278	die Erde	der/des Pawah Och	3455	3632	3809	3	
	4		der/des 6. Himmels	Unglück für die Insel				4	
	5		großer Regen	auf dem Maisfeld				5	
a	6							6	а
	7	13 Chicchan			8 Ik	3 Cauac	11 Cib	7	
	8	l Cimi			9 Akbal	4 Ahau	12 Cahan	8	
	9	Cimi 2			10	Allau 5	Caban 13	9	
		Manik			Kan	Imix	Etz'nab		
	10	1.40			100	100	155	10	
	11	148			177	177	177	11	
	12	der Tod	während der Handlung	i	Regen	Regen über der neuen Matte	Himmel	12	
	13	der/des 1. Himmels	Herr der Feldvermessung?	Muschel	Waschbär	Himmel	Vogel (Cotinga)	13	
	14	4 Pawahtun	der (blut-)gierige Menschengeier	10216	10394	10571	10748	14	
	15	andere Blume der/des	Regen des göttlichen Herrn des Wandels	[10217]	[10395]	[10572]	[10749]	15	
	16				(Thompsor	n 1972:115)		16	
b	17							17	b
	18			10 Kan	6 Ik	1 Cawac	9 Cib	18	
	19			11 Chicchan	7 Akbal	2 Ahau	10 Caban	19	
	20			12	8	3	11	20	
	21			Cimi	Kan	Imix	Etz'nab	21	
	22			177	177	177	177	22	
		4	70			-	-		
		A	В	C 56 (25) T	D	E	F		
				56 (35): Tr	ansiation				

		56 (35): Interpretation										
		A	В	C		D		E		F		
	1	i	Sonnen- finsternis	Mond- finsternis		mmels- einung	? - H	und		ં	1	
	2	Boa Constrictor	der Himmel	neue Ankunft	mit d Mono		der R Krok	uf des odils		ં	2	
	3	(55G03→)	die Erde	der Gottheit N						(→57A03)	3	
	4	3278	der/des 6. Himmels	Unglück für die Insel	3	455	3	632		3809	4	
	5		großer Regen	auf dem Maisfeld							5	
a	6	+148=	+ 12	77 =	_	+ 17	7 =	+ 177	=	+177=	6	а
	7	13 Chicchan		es erscheint der		8 Ik		3 Cauac		11 Cib	7	
	8	1	Sonnengott (G zwei U-förmig			9		4		12	8	
	0	Cimi	gebildeten Rin Sonnenfinsterr	g, der eine		Akbal		Ahau		Caban	0	
	9	2 Manik	symbolisiert. R			10 Kan		5 Imix	,	13 Etz'nab	9	
	10	(55G10→)	Himmelsband Glyphe <i>kin</i> ver				ļ				10	
			(Davoust 1997			+ 17	7 –	+ 177	_	170		
	11	+148=	+ 17	77 =	_	1 17	7 –	1 1//	_	+178= (→ 57A09)	11	
	12	der Tod	während der Handlung	U		en	Reger der ne Matte		Hi	mmel	12	
	13	der/des 1. Himmels	Herr der Feldvermessung?	Muschel	Was	chbär	Him			ogel otinga)	13	
	14	vierfache Gottheit (N); Himmels-träger	der (blut-) gierige Menschengeier	(55G14→)						(→57A13)	14	
	15	andere Blume der/des	Regen des göttlichen Herrn des Wandels	10216	10)394	10)571	1	10748	15	
	16		nes Himmels-	+177= +	 178 =	+ 17	77 =	+ 177	=	+177=	16	
b	17	bandes das s symmetrisch Sonnenfinste	e Symbol der			l	 				17	b
	18	helle linke ur rechte Hälfte	nd dunkle	10 Kan		6 Ik		1 Cauac		9 Cib	18	
	19	gekreuzten L verziert sind	angknochen , in deren	11		7		2		10	19	
	20	Kreuzungspu Glyphe <i>kin</i> s	ınkt die teht. Darunter	Chicchan 12		Akbal 8		Ahau 3		Caban 11	20	
	20	reißt eine au	fgerichtete	Cimi		Kan		Imix		Etz'nab	20	
	21	Schlange ihr auf. (Davous									21	
	22	(55H21→)	77 =	+ 176	8 =	+ 177	=	+ 177 :	=	+ 177 = (→ 57A20)	22	
		A	В	C		\overline{D}		E		\overline{F}		
				56 (35): Int			I					

				57 (36): T	ranskr	iptior	/Trans	literat	ion			
		A	В	C			D		\boldsymbol{E}	F		•
	1	WA CA'AN	HUY CA'AN	N HA' POH		?-HA	,	CHI'B	IL KIN	CHI'BIL UH	1	
		(na) wa' ca'an	huy ca'an	па рор с	cuo	?-ha'		chi'bil	kin	chi'bil uh		
	2	ta UH	ta UH	ta-n(u)		ОСН	CAN	YA'ah	CIM-al	CAB(ba) NAL	2	
		ta uh	ta uh	tan		ochca	n			cab nal		
	3	11	11	12	2		12	YA' N		AHAW(wa) TZ'AC	3	
			1.0					ya' no	hol	ahaw tz'ac		
	4	1	10	1			8			YA'CAB (ba) CUN(na)	4	
	5	6	4	0			8	kak wi	nic	ya' cab cun	5	
a	3	6	4	U			8)	a
	6	7		2	10		2				6	
	O	Ix	Chue		Lamat		Cib					
	7	8		3	11		3				7	
		Men	E	b N	Iuluc		Caban					
	8	9		4	12		4				8	
		Cib	Be	n	Oc	Е	tz'nab					
	9	8	8	8			8				9	
	10	18	17	17	7		17				10	
									T -			
	11	ah o-n(a)	HA'-al	ZIH-an	EM E	K	ah CIM	-al	LOB- AKAB-(ba)	LOB- AKAB-(ba)	11	
	12	ah on UH	ha'-al YAX TAL	zih-an CA'AN	em ek		ah cim- u na-ch		lob akab ma-z(u)	lob akab MUT (ta)	12	
	12				TZ'A0	C		(u)			12	
	13	uh 1	yax tal	ca'an	ba-c(i)		u nach	o)	maz 1	mut 1	13	
	10	1	1	1	bac		ch'oc					
	14	10	10	11	KIN (1	ni)	HANAI		11	12	14	
					kin		hanal c	ab				
	15	6	15	4					13	4	15	
b	16	5	2	10	1				7	4	16	b
	1.7	4	10						1.0		1.7	
	17	4 Ben	12 Oc	4 Lamat					12 Mer		17	
	18	5	13	5					13		18	
	10	Ix	Chuen	Cauac					Cit		10	
	19	6	1	6					1	9	19	
		Men	Eb	Ahau	1				Cabar			
	20	8	8	7					8	8	20	
	21	17	17	8	1				17	17	21	
		A	В	С	I		H		F	G		<u> </u>
		,		57 (36): T	ranskr	iption	/Trans	literat	ion			

				5	7 (36).	: Tran	slation]	
		A	В	(7		D	E		F		1
	1	Himmels- erscheinun	Besuch des Himmel	Regen der Ma s Erde		? Re	gen	Sonnen finstern		ondfinsternis	1	
	2	mit dem Mond	des Mondes	des Mittelp der Un		Boa Cons	trictor	Unglüc und To		der Erde	2	
	3	3986	4164			4	488	Unglüc im Süde		r des Wandels ronfolge ?)	3	
	4	[3987]	[4163	[43	41]	[4	489]	Mensch des Feu		glück für das isfeld	4	
a	5	(Thompson 1972:115)	(Förstema 1901:123		Thompson	1972:11	5)		•		5	a
	6	I		en I	10 Lamat		2 Cib				6	
	7	Me			11 Muluc		Caban				7	
	8	Ci	9 b B	4 en	Oc	Е	tz'nab				8	
	9	178	177	17	17	1	77				9	
	10										10	
	11	dasjenige stimmt überein	Regen	geboren	Unter der V		der Tod der/des		glück :/bei Nacht	Unglück der/bei Nacht	11	
	12	des Mondes	Neubeginn	des Himmels	Herr of Wand (Thronf	els	ergreift	Zw	verg(in)	Vogel	12	
	13	10925	11102	11250	der Gefan		Kind		11427	11604	13	
	14	[10926]	[11103]	[11251]	die So der Ta		Nahrung der Erde	ė	[11428]	[11605]	14	
$\begin{vmatrix} b \end{vmatrix}$	15 16	(1	Thompson 1972:	115)					(1nompso	on 1972:115)	15 16	b
	17	4	12	4	-			<u> </u>	12	7	17	
	18	Ben 5	Oc 13	Lamat 5					Men 13 Cib	Eb 8	18	
	19	Ix 6 Men	Chuen 1 Eb	Cauac 6 Ahau					Cib 1 Caban	Ben 9 Ix	19	
	20	177	177	148					177	177	20	
	21	111	111	110					111	1,,,	21	
		A	В	С	1	D	E		F	G		
		1		5	7 (36).	: Tran	slation	•				

		57 (36): Interpretation												
		A	В			\overline{C}	D			E		F		
	1	Himmels- erschei- nung	Besuch Himmel		Regen der Ma	atte	? Rege	en	Sonne finste		Mond	lfinsternis	1	
	2	mit dem Mond	des Mor	ndes	des M punkts der Ur	ittel-	Boa Constri	ctor	Ungli und T		auf de	er Erde	2	
	3	(56F03→)			der or	iiwcit			Ungli im Sü			les Wandels nfolge ?)	3	
	4	3986	4164	4	43	340	448	38	Mens des Fe		Ungli Maist	ück für das feld	4	
а	5	+178	+178 =	+.	176 =	+ 1	48 =		+ 17	7 =		(→58A03)	5	а
	6	7 Ix		2 uen	I	10 Lamat		2 Cib		rhalb ei nelsban		efindet sich	6	
	7	Mer		3 Eb	l	11 Muluc	C	3 aban	Symb		Sonner	trisches nfinsternis,	7	
	8	9 Cib		4 Ben		12 Oc	Etz	4 z'nab	Hiero	ssen ivn oglyphe oust 199	steht		8	
	9	(56F10 →)											9	
	10	+178 =	+177 =	+ .	177 =	+ 1	48 =		+ 17	7 =		(→58A09)	10	
	11	dasjenige stimmt überein	Regen	ge	eboren		tergang Venus	der T der/d		Unglüc der/bei Nacht	k	Unglück der/bei Nacht	11	
	12	des Mondes	Neubeginn		es immels	Wa	rr des indels ronfolge?)	ergrei	ift	Zwerg(in)	Vogel	12	
	13	(56F14→)				der Get	fangene	Kind				(→58A13)	13	
	14	10925	11102		11250		Sonne/ Tag	Nahrı der E		114	27	11604	14	
b	15	+177=	+177=	+ 14	48 =		+ 17	77 =		+	177 =	+177=	15	b
	16					Hin	terhalb ein nmelsband	des das					16	
	17	4 Ben	12 O	c 4	Lamat– Etz'na	ab Syr	egelsymme nbol der S sternis, des	onnen-]	12 Men	7 Eb	17	
	18	5 Ix	1; Chue		Caua	5 link	ke und dun lften durch eroglyphe	ıkle recl ı die	nte		13 Cib	8 Ben	18	
	19	6 Men	E	1 b	Aha	6 sind	d. Darunte gerichtete en Rachen	r reißt e Schlang	ine	Ca	1 aban	9 Ix	19	
	20	(56F21 →)	100	_			woust 199	7:211)			1.5-5	+ 177 =	20	
	21			+ 14		Т		77 =			177 =	58A20)	21	
		A	В		<u>C</u>	7 (0.5)	D		E	F		G		
	57 (36): Interpretation													

			T): Abbildung		1		
		A	В	С	D	E	F		
	1			に記		المارة المارة		1	
	2		产进		3	刘重是		2	
	3		*			9710		3	
	4		=:	兰兰:			To the second	4	
<i>a</i>	5		r	•	=6			5	a
a	6		MOL	O C	100 2			6	а
	7		194	0:01	06	追記		7	
	8		10:10	9:0 :	181 6	31 101	7	8	
	9			****	- 18	(a)	1	9	
	10					200		10	
	11		SE	28:				11	
	12		墨芒	心图引		25		12	
	13		20.00	9)	13	
	14		100 000	THE SHIP		20		14	
	15 16					- ==		15 16	
b	17		ORE	TA LEGI		P =		17	b
	18		696					18	
	19		下四 四	图				19	
	20 21		order and		WI			20 21	
		A	В	C	D	E	F]
				58 (37)	D): Abbildung		1		

			58	(37): Transkri	ption/Translit	eration						
		A	В	C	D	E	F					
	1	i	i	NAH CA'AN (na) nah ca'an	WA' CA'AN (na) wa' ca'an	13 Muluc	ં	1				
	2	i	KUL OC	ta UH	ta UH	WA'-la-h(a)	UY AHAW XIB	2				
			kul oc	ta uh	ta uh	wa'-lah	uy ahaw xib					
	3	12	13	13	14	ba-ya-h(a) bay-ah	u ha-c(a) u hac	3				
	4	17	8	17	7	KAK kak	XIB xib	4				
	5	5	2	0	17	?YA' ch'o-c(o)	?	5				
a						?ya' ch'oc	?		a			
a	6	10	5	1	9	OC (ci)	KAK TZ'UL	6				
		Ben	Oc	Lamat	Chicchan	oc	kak tz'ul					
	7	7	11	6	2	10	ba-ya-h(a)	u (to) TOK	7			
				Ix	Chuen	Muluc	Cimi	bay-ah	u tok			
	8	12	7	3	11	u-mu-c(a) u muc	-	8				
	_	Men	Eb	Oc	Manik			_				
	9	8	8	8	8	ah TZ'UL ah tz'ul	9	9				
	10	177	17	177	177		10	10				
	10	17	17	17	17	u-bu-c(a) u buc	18	10				
	11	HA' POP	CH'A OC	EM EK	OX LAHUN	ZAC ta-ma(n)	2	11				
		CA'AN	.1. '	7	TUN	zac taman						
	12	ha' pop ca'an HA' POP CAB	ch'a oc KAWIL	em ek YA' POP CUN	ox lahun tun YA' AHAW	XUL KIN	2	12				
	12				TZ'AM	HAAB	2	12				
		ha' pop cab	kawil	ya' pop cun	ya ahaw tz'am	xul kin haab						
	13	1	1	CHI'BIL KIN chi'bil kin	CHI'BIL UH chi'bil uh	-	0	13				
	14	12	13	TA HUN CA'AN-al	(a) AHAW TZUC	-	? Muluc	14				
				ta hun ca'an-al	ahaw tzuc							
	15	13	3	HUN KATUN	KAL OC	-	9	15				
h				hun katun	kal oc				b			
	16	1	18		nut ee	1	12	16				
	17	2.	10			12.	11	17				
	1,					12		1,				
	18					7	11	18				
	10					,		10				
	19	4				((11))	0	19				
						((//						
	20	8	8			4	13	20				
							Muluc					
	21	17	17			8	?	21				
					T				<u> </u>			
		A			D	E	F					
b 16 1 18 1 12 16 17 2 10 12 11 17 18 3 11 7 11 18 19 4 12 ((11)) 0 19 19 4 12 ((11)) 0 19 20 8 8 4 13 20 Ahau Muluc 21 17 17 8 ? 21 Cumku Zac?												

				, ,	Translation				
	1	A	В	C	D	E	F		1
	1	ં	i	der/des 1. Himmel(s)	Himmels- erscheinung	13 Muluc	ં	1	
	2	i	göttliche/ himmlische Erscheinung	der/des Mond(es)	der/des Mond(es)	ist/war errichtet	sein/ihr Mensch/Herr	2	
	3	4665	4842	5020	5197	ist/war bedeckt	(ab-)fallend	3	
	4	[4666]	[4843]	[5021]	[5198]	Feuer	schrecklich	4	
	5	[1000]		n 1972:115)	[3130]	Unglück für die Jugend	?	5	
a	6	10 Ben	5 Oc	1 Lamat	9 Chicchan	Anfang von	fremdes Feuer	6	a
	7	11 Ix	6 Chuen	2 Muluc	10 Cimi	ist/war bedeckt	der Feuerstein	7	
	8	12 Men	7 Eb	3 Oc	11 Manik	im Versteck	-	8	
	9					Fremde(r)		9	
	10	177	177	177	177	seine/ihre Kleidung	1426360	10	
	11	Regen auf/über der Himmels- matte	folgt	Untergang der Venus	13. Jahr/ 13 Jahre	aus weißer Baumwolle		11	
	12	Regen auf/über der Erdmatte	Kawil	Unglück der Matte, für die Herrschaft	Unglück für den Thron des Herrn	Ende der Tage und der Jahre		12	
	13	11781	11958	Sonnen- finsternis	Mond- finsternis			13	
	14	[11782]	[11960]	des 1. Himmels	Herr der Teilung		? Muluc	14	
b	15		972:115-16) erste 20 Jahre/ einmal 20 Jahre		(ver-)binden, anschließen	511		15	b
	16			June	L	12	1386580	16	
	17	2 Muluc	10 Cimi			[251]		17	
	18	3 Oc	11 Manik			(Förstemann 190 (Thompson 1972		18	
	19	4 Chuen	12 Lamat					19	
	20					4 Ahau	13 Muluc	20	
	21	177	177			8 Cumku	? Zac?	21	
	[Λ	D	C	D		F		<u> </u>
		A	В		Translation	E	Γ		
				30 (37):	1 ranstation				

		58 (37): Interpretation										
		Α	В		C		D	Е	F			
	1	į	ં	der/des Himme			mmels- cheinung	13 Muluc	i	1		
	2	göttliche/ himmlische		der/des Mond(r/des ond(es)	ist/war errichtet	sein/ihr Mensch/Herr	2		
	3	(57D3→)	Erscheinung				(→51A19)	ist/war bedeckt	(ab-)fallend	3		
	4	4665	4842	50	5020		5197	Feuer	schrecklich	4		
	5	+177= + .	177 = +	1 178 =	+ 177	I ' =	+177=	Unglück für die Jugend	?	5		
a	6	10 Ben	O		1 Lamat		9 Chicchan	Anfang von	fremdes Feuer	6	a	
	7	11 Ix	Chuer	;	2 Muluc		10 Cimi	ist/war bedeckt	der Feuerstein	7		
	8	12 Men	Et		3 Oc		11 Manik	im Versteck	-	8		
	9	(→57D09)		¹ 77→)		I	(→51A25)	Fremde(r)	1426360	9		
	10	+ 177 =		178 =	+177		+177=	seine/ihre Kleidung	= 5486 · 260	10		
	11	Regen folgt auf/über der Himmels- matte			Untergang der Venus 13. Jahr/ 13 Jahre		aus weißer Baumwolle		11			
	12	Regen auf/über der Erdmatte	Gott K	Matte,	Unglück der Matte, für die Herrschaft		glück für den ron des Herrn	Ende der Tage und der Jahre		12		
	13	11781 11958			Sonnen- finsternis		ond- sternis			13		
	14			des 1. Himme	des 1. Herr der Himmels Teilung erste 20 Jahre oder: einmal 20 Jahre				? Muluc	14		
b	15			oder: e			511	1386580	15	b		
	16	1	Unter	Unterhalb eines Himmelsbandes befinden			12	= 5333 · 260	16			
	17	2 Muluc	1(Cim	sich z	wei spi	iege				17		
	18	3 Oc	11 Manik	Sonne der H	enfinste iero-gly	ernis ypho	s, jedes mit e <i>kin</i> .			18		
	19	4 Chuen	hängt		hro	Darunter pomorphes			19			
	20	(57G20→)	durch		erog	glyphe der	4 Ahau	13 Muluc	20			
	21	+ 177 =	+ 177 =		ckt wird		Davoust	8 Cumku	? Zac?	21		
	<u> </u>	A	В		\overline{C}		D	E	F			
		Л	<u> </u>			nto	rpretation	<u> </u>	<u> </u>			
				20	(37). 1	iici	Picianon					

Anhang 2.3: Seite p. 59

Die Seite p. 58 ist in (\rightarrow) Anhang 2.2 dargestellt.

Das Datenmaterial für die statistischen Analysen der ausgewählten Teile des numerischen Korpus dieser Seiten ist der nachfolgenden Darstellung zu entnehmen und in Anhang 4.3 tabellarisch zusammengestellt.

In Seite p. 59 (38): Interpretation (1) (Zeilen 1, 7 und 17) sind die Originalzahlen des C.D. als Vielfache der synodischen Umlaufperiode des Planeten Mars ($U_{syn}(Mars) = 779,94d$) dargestellt – statt als Vielfache des durch die statistische Analyse ermittelten Teilers 780 –, um die Genauigkeit der Originalzahlen im Vergleich mit den astronomischen Tatsachen zu zeigen.

In Seite *p. 59 (38): Interpretation (2)* (Elemente *G01*, *H07*, *E16*) sind – zusätzlich zu den durch die statistische Analyse ermittelten Teilern – die ganzzahligen Vielfachen von 364 *kursiv* eingetragen.

				59 (3	8): Trans	kription/I	Fransliter	ation				
		A	В	C	D	E	F	G	Н	I		1
	1	1	-	-	-	-	-	-	-	-	1	
	2	0	19	19	18	18	16	14	15	10	2	
	3	0	10	5	12	10	9	8	12	5	3	
	4	15	0	12	12	9	6	3	0	15	4	
	5	0	0	0	0	0	0	0	0	0	5	
	6	13 Mulus	13 Mulus	13 Muluc	13 Muluc	13 Mulua	13 Muluc	13 Muluc	13 Mulua	13 Mulus	6	
	7	Muluc 6	Muluc 4	2	1	Muluc 1	1	1	Muluc 1	Muluc 1	7	
		U	7	2	1	1	1	1	1	1	/	
	8	3	2	1	19	16	14	12	10	8	8	
	9	9	6	3	0	15	12	9	6	3	9	
	10	0	0	0	0	0	0	0	0	0	10	
	11	13 Muluc	13 Muluc	11								
	12	9 Kan	9 Cimi	9 Lamat	9 Oc	9 Eb	9 Ix	9 Cib	9 Etz'nab	9 Ahau	12	
a	13	1	-	-	-	-	-	-	6	2	13	a
	14	1	1	-	-	-	-	-	-	-	14	
	15	6	-	19	17	15	13	10	8	6	15	
	16	3	1	-	-	-	-	-	-	-	16	
	17	0	-	-	-	-	-	-	9	3	17	
	18	15	12	9	6	3	13	15	13	9	18	
	19	0 0	0	0	0	0	0	0	0 0	0 0	19	
	20	13 Muluc	13 Muluc	20								
	21	1	1	1	1	1	15	11	7	3	21	
	22	17	13	9	5	1	-	-	-	-	22	
	23	2	4	6	8	10	12	14	16	18	23	
	24	13	13	13	13	13	13	13	13	13	24	
	24	Chuen	Ben	Men	Caban	Cauac	Imix	Akbal	Chicchan	Manik	24	
		A	В	<i>C</i>	D	E	F	G	Н	I		
				59 (3	8): Trans	kription/I	Transliter	ation				

		59 (38): Translation										
	1	A	В	С	D	E	F	G	Н	I	1	
	1										1	
	2										2	
	3	144300	140400	138840	134160	133380	118560	103740	112320	74100	3	
	4								[88920]		4	
									(Thompson 1	1072-116)		
	5								(Thompson	1972.110)	5	
	6	13 Muluc	13 Muluc	13 Muluc	13 Muluc	13 Muluc	13 Muluc	13 Muluc	13 Muluc	13 Muluc	6	
	7	Williac	Williac	Withte	Williac	Williac	Williac	Williac	Muluc	Withtie	7	
	8	44460	29640	14820	14040	13260	12480	11700	10920	10140	8	
	O	44400	29040	14820	14040	13200	12400	11700	10920	10140	o	
	9										9	
	10										10	
	11	13	13	13	13	13	13	13	13	13	11	
	11	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	11	
	12	9 Kan	9 Cimi	9 Lamat	9 Oa	9 Eb	9 Ix	9 Cib	9 Etz'nab	9 Ahau	12	
a	13	9360	CIIII	Lamat	Oc	EU	1X	CIO	2340	780	13	a
	14										14	
	14										14	
	15										15	
	16										16	
	17	8580	7800	7020	6240	5460	4940	3900	3140	2340	17	
	17	8380	7800	7020	0240	3400	4240	3700	3140		17	
	18						[4680]		[3120]	[1560]	18	
	19						(Förs	stemann 1901:			19	
	20	13	13	13	13	13	13	(Thompsor	1972:116)	13	20	
	20	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	20	
	21										21	
	22	702	624	546	468	390	312	234	156	78	22	ļ
	22										22	
	23										23	
	24	13 Chuan	13 Pan	13 Man	13 Caban	13	13 Imiy	13	13 Chicchan	13 Manik	24	
		Chuen A	Ben B	Men C	Caban D	Cauac E	Imix F	Akbal G	H	Manik I		
				-		8): Transi		_	I			

					59 (38):	Interpreta	tion (1)					
	1	\boldsymbol{A}	В	C	D	E	F	G	Н	I	1	
	1	144300	140400	138840	134160	133380	118560	103740	112320	74100	1	
	2	$= 185,01$ $U_{syn}(Mars)$	=180,01 U _{syn} (Mars)	=178,01 U _{syn} (Mars)	=172,01 U _{syn} (Mars)	=171,01 U _{syn} (Mars)	=152,01 U _{syn} (Mars)	=133,01 U _{syn} (Mars)	=144,01 U _{syn} (Mars)	=95,01 U _{syn} (Mars)	2	
	3	= 370 · 390	= 360 · 390	= 356 · 390	= 344 · 390	= 342 · 390	= 304 · 390	= 266 · 390	= 288 · 390	= 190 · 390	3	
	4	= 555 · 260	= 540 · 260	= 534 · 260	= 516 · 260	= 513 · 260	= 456 · 260	= 399 · 260	= 432 · 260	= 285 · 260	4	
	5										5	
	6	+ = 13 Muluc	+=13 Muluc	+=13 Muluc	+ = 13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+ = 13 Muluc	6	
	7	44460	29640	14820	14040	13260	12480	11700	10920	10140	7	
	8	$= 57,00$ $U_{syn}(Mars)$	= 38,00 U _{syn} (Mars)	= 19,00 U _{syn} (Mars)	= 18,00 U _{syn} (Mars)	$= 17,00$ $U_{syn}(Mars)$	$= 16,00$ $U_{syn}(Mars)$	= 15,00 U _{syn} (Mars)	$= 14,00$ $U_{syn}(Mars)$	= 13,00 U _{syn} (Mars)	8	
	9	= 114 · 390	= 76 · 390	= 38	= 36	= 34	= 32 · 390	= 30 · 390	= 28	= 26 · 390	9	
	10	= 171	= 114	= 57	= 54	= 51	= 48	= 45	= 42	= 39	10	
		• 260	· 260	· 260	· 260	· 260	• 260	• 260	• 260	• 260		
	11	+ = 13 Muluc	+ = 13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	11	
	12	9	9	9	9	9	9	9	9	9	12	
		Kan	Cimi	Lamat	Oc	Eb	Ix	Cib	Etz'nab	Ahau		
		+78 mod 2	$260 = \begin{array}{c} +78 \\ mod 2 \end{array}$	$260 = \begin{vmatrix} +78 \\ mod 2 \end{vmatrix}$	$260 = \begin{array}{c} +78 \\ mod 2 \end{array}$	$260 = \begin{vmatrix} +78 \\ mod \ 2 \end{vmatrix}$	$260 = \begin{array}{c} +78 \\ mod \end{array}$	$260 = \begin{array}{c} +78 \\ mod \end{array}$		260=		
a	13	9360							2340	780	13	a
	14	$=12 \cdot 780$ $=24 \cdot 390$							$= 3 \cdot 780$ $= 6 \cdot 390$	$= 2 \cdot 390$	14	
	15	$=36 \cdot 260$							$=9\cdot 260$	$= 3 \cdot 260$	15	
	16	8580	7800	7020	6240	5460	4940	3900	3140	2340	16	
	17	$= 11,\!00$ $U_{syn}(Mars)$	$= 10,00$ $U_{syn}(Mars)$	= 9,00 U _{syn} (Mars)	= 8,00 U _{syn} (Mars)	$= 7.00$ $U_{syn}(Mars)$	$= 6.33$ $U_{syn}(Mars)$	$= 5.00$ $U_{\text{syn}}(\text{Mars})$	$= 4.03$ $U_{syn}(Mars)$	$= 3,00$ $U_{syn}(Mars)$	17	
	18	=22 ·390	=20 ·390	=18 ·390	=16 ·390	=14 ·390		=10 ·390		$=6\cdot 390$	18	
	19	=33 ·260	=30 ·260	=27 ·260	=24 ·260	=21 ·260	=19 ·260	=15 ·260		$=9\cdot 260$	19	
	20	+ = 13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+=13 Muluc	+ = 13 Muluc	20	
	21	702	624	546	468	390	312	234	156	78	21	
	22	$=9 \cdot 78$	=8 · 78	$=7 \cdot 78$	$=6 \cdot 78$	$=5 \cdot 78$	= 4 · 78	$=3 \cdot 78$	$=2 \cdot 78$	Null-	22	
	23									punkt: 13 Muluc	23	
	24	+=13 Chuen	+=13 Ben	+=13 Men	+=13 Caban	+=13 Cauac	+=13 Imix	+=13 Akbal	+=13 Chicchan	+=13 <i>Manik</i>	24	
		A	В	С	D	E	F	G	Н	I		
					59 (38):	Interpreta	tion (1)					

					59 (38):	Interpreta	tion (2)					
		A	В	C	D	E	F	G	Н	I		
	1	144300	140400	138840	134160	133380	118560	103740	112320	74100	1	
	2		= 1200			= 1140		= 285	= 960		2	
			• 117			• 117		• 364	• 117			
	3		= 240 · 585			= 228 · 585			= 192 · 585		3	
	4		363			363			363		4	
	5										5	
	6	+=13	+=13	+=13	+=13	+=13	+=13	+=13		+=13	6	
	-	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	_	
	7	44460	29640	14820	14040	13260	12480	11700	10920	10140	7	
	8	= 380			= 120			= 100	= 30		8	
	9	· 117 = 76			· 117 = 24			· 117 = 20	• 364		9	
	9	- 70 · 585			· 585			- 20 · 585			9	
	10										10	
	11	+=13	+=13	+=13	+=13	+=13	+=13	+=13	+=13	+=13	11	
		Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc	Muluc		
	12	9	9	9	9	9	9	9	9	9	12	
		Kan	Cimi +78	Lamat +78	Oc +78	Eb +78	Ix +78	Cib +78	Etz'nab +78			
		mod 2								! 260=		
a	13	9360	I	<u> </u>	1	<u> </u>	<u> </u>		2340	780	13	a
	14	= 80							= 20		14	
	14	• 117							• 117		14	
	15	= 16							= 4		15	
	16	• 585	7900	7020	6240	5460	4040	2000	· 585	2240	16	
	16	8580	7800	7020	6240	5460	4940	3900	3140	2340	16	
	17			= 60		= 15				= 20	17	
	18			· 117 = 12		• 364				· 117	18	
	10			· 585						• 585	10	
	19										19	
	20	+=13	+=13	+=13	+=13	+=13	+=13	+=13	+=13	+ = 13	20	
	20	Huluc Muluc	+=13 Muluc	Huluc Muluc	+=13 Muluc	Muluc	Huluc Muluc	+=13 Muluc	Muluc	Muluc	20	
	21	702	624	546	468	390	312	234	156	78	21	
	22	= 6			= 4			= 2			22	
		• 117			• 117			• 117		Null- punkt:		
	23									13 Muluc	23	
	24	+=13	+=13	+=13	+=13	+=13	+=13	+=13	+=13	+=13	24	
		Chuen	Ben	Men	Caban	Cauac	Imix	Akbal	Chicchan	Manik		
		A	В	С	D	E	F	G	Н	I		
					59 (38):	Interpreta	tion (2)					

Anhang 2.4: Seiten p. 43-44

Das Datenmaterial für die statistischen Analysen der ausgewählten Teile des numerischen Korpus dieser Seiten ist der nachfolgenden Darstellung zu entnehmen und in Anhang 4.4 tabellarisch zusammengestellt.

In Seite *p. 43 (76): Interpretation* (Elemente D09, E09, F09) sind – zusätzlich zu den durch die statistische Analyse ermittelten Teilern – die ganzzahligen Vielfachen von 364 *kursiv* eingetragen.

In Seite p. 43 (76): Interpretation (Interpretation der Bilder des piktoralen Korpus)

- p. 43a: Davoust 1997:282
- p. 43b: Davoust 1997:299
- p. 43c: Davoust 1997:314
- p. 44a: Davoust 1997:283
- p. 44b: Davoust 1997:319
- p. 44c: Davoust 1997:315

						Abbildung	7				
		A	В	C	D	E	F	G	Н		
	1		行		The state of the s	Testa.		45		1	
	2		1	3			A. T.			2	
	3		法			1. 1.6	da			3	
a	4		4	5.1	3		162			4	а
	5		で気を							5	
	6		(3)	D CA		3 #				6	
	7 8		23년	No.		** ****				7 8	
						- 0					
	9							33		9	
b	10 11		000	93						10 11	b
	12 13		CA		-	9				12 13	
	14 15			阿尔		90	90	200		14 15	
	16			自於	0	90	0 0	8		16	
	17		· E		:(0):			(1)		17	
	18			1==		2 2 2 2		-		18	
	19		3				T M			19	
c	20		E	3	(06		学》			20	C
	21		E		TO TO	E THE	1/68	80		21	С
	22		:6:	了酒		100				22	
	23		适		N.	12		5		23	
	24		72		0		a de la companya de l	- 13		24	
		A	В		C	D	E	\overline{F}	G		
			•	•	43 (76):	Abbildung	7	1			

				43	(76):	Transki	ript	tion/Tra	nslite	ratio	\overline{n}			
		A	В		C	D		E		F	G	Н		
	1	(a)AYAN- aw	ta WAY		-	(a)AYAN aw	N-	ં		-	ં	ં	1	
		ayan-aw	ta way EK			ayan-av		KAN						
	2	chi-KIN	CHAHC		-	NOHOI		CHAHC ci		-	i	i	2	
	3	chikin zu-cu-c(u)	ek chahc u ZIH		_	nohol WAH PA		kan chah u ZIH	c		ya-WAH	u ZIH	3	
	3	zucuc			_	TAL wah pat-				_				
	4	2	u zih 7		_	6		<i>u zih</i> 13			ya wah	u zih	4	
a	,		•									_		а
					-					-				
					_					_				
	5												5	
					-	1				-				
											_			
					-					-				
	6	ah OL ah <i>ah olah</i>	CHAHC ci chahc	4 L	amat	15		18		10	9	4	6	
	7	CHAC	WAH	A)	HIN	3		4		2	13	5	7	
		CHEL chac chel	HA' hi wah ha'											
	8	CAN	u ZIH		9	6		0		4	6	17	8	
	9	can 6	u zih		19	0		0		0	0	0	9	
	9	U	U			U		0		0	U	U	9	
	10				8	3 Lam	at	3 Lama	t 3	Lama	t 3 Lamat	3 Lamat	10	
b	11				15	1		-		-	-	-	11	b
	12				0	1		10		9	6	4	12	
	13				amat	0					-	-	13	
	14				17	6		15		7	9	6	14	
	15				12))	0		0		0	0	0	15	
													1	
	16			4 <i>P</i>	Ahau	3 Lam	at	3 Lama	t 3	Lama	t 3 Lamat	3 Lamat	16	
	17	4	13		7			2	10		5	13	17	
	10	Chicchar			Im			uluc	Cab		Chicchan	Ben	10	
	18	17	8	i	8			8	8		8	8	18	
	19	la-KIN ni lakin	CAN	C	! ! !	L		I		ı			19	
	20	KUL OC ci	WINI can w		15 CA	· · · · · · · · · · · · · · · · · · ·						HUH	20	
c		kul oc			WINI	С						WAH		
	21	CHAHC ci chahc			15 ca winic							huh wah	21	C
	22	3 wi'il			1	'						'	22	
		ox wi'il												
	23	hu- CUN NA hucun nal											23	
	24	KA' WAH HA ka' wah ha											24	
	1	A	E	}	(D	Е	'	F	G		
			1					tion/Tra				1		
					. ,		•						_	

							43 (7	76):	Translati	on		_		
		A	В		C		D		E	F	G	Н		
	1	befindet sich	in de Ceno		-		befindet sich	İ	ં	-	ં	ં	1	
	2	im Westen	schwa Chac		-		im Süden		gelber Chac	-	ં	i	2	
	3	schwarze Tamale	ist sei Gesch		-		geformt Tortilla	e	ist sein Geschenk	-	die Tortilla ?	ist sein Geschenk	3	
	4	2	7	,	-		6		13	-	2	2	4	
а					-					-				а
	5				-					-			5	
					-					-				
					-					-				
	6	war ersehnt	Chac		4 Lar		10920	00	131040	72800	69600	30940	6	
	7 8	Chac Chel Schlange	Tortil u. Wa seine	ısser	Kroko	odil ——				[72540]	[62400] (Aveni	[31200]	7 8	
		_	Gabe	n							1980:197) (Thompson	n 1972: 115)		
	9	6	6		1.405				0.7	· ·	rstemann 1901		9	
h	10				14359	980	3 Lam		3 Lamat	3 Lamat	3 Lamat	3 Lamat	10	b
b	11 12						15132	20	3900	3380	2340	1560	11 12	
	13	[12 L	amat]	$ \rightarrow $	3 Lar	nat	[15288	80]		[3120]			13	
	14	(Aveni	1980:	197)	25	2	(Thomp 1972:24		<u> </u>	(Förstemanı	1901:91)		14	
	15				- 35						1972:24,107)		15	
	16				4 Ah	au	3 Lam	at	3 Lamat	3 Lamat	3 Lamat	3 Lamat	16	
	17	4 Chiech	ıan		12 Ben	I	7 mix		2 Muluc	10 Caban	5 Chicchan	13 Ben	17	
	18	17			8		8		8	8	8	8	18	
	19	(im) Os		4 · 2							,		19	
-	20	göttlich Anfang	er	= 80		15 - 2 · 2	20					Iguana und	20	
С	21	Chac				= 5	5				! ! ! !	Tortilla	21	c
	22	Nahrung überfluß					_						22	
	23	bedeckt Mais											23	
	24	viele Tortil und Wasse											24	
_	_ ,	A			В		C		D	\boldsymbol{E}	\boldsymbol{F}	G		_
							43 (7	76):	Translati	on]	

					43 (76)): Int	erpretatio	n				
		A	B	C	D		E	F	G	Н		
	1	befand sich	in dem Cenote	für 42A2:	befand sich	i	i	für 42A2:	ં	i	1	
	2	im Westen	schwarzer Gott (B) des Regens	Caban Muluc	im Süden		gelber Gott (B) des Regens	Akbal Men	ં	i	2	
	3	schwarze Tamale	ist sein Geschenk	Imix Ben Chicchan	geform Tortilla		ist sein Geschenk	Manik Cauac Chuen	die Tortilla ?	ist sein Geschenk	3	
	4	+ 2 =	7	Chicenan	+ 6	i =	13	Citien	+ 2 =	2	4	
а	5	Der Regeng Chahc (Go hockt in de	tt B) r Nähe	für 42B2: Akbal	(Gott einer]	B) hoo Bank u	ott <i>Chahc</i> ekt auf and hält	für 42B2: Muluc	42A2:Chicchan Kab'an Muluk Imix Ben	42B2: Chuen Ak'b'al Men Manik Kawak	5	а
		einer Wass (Cenote) ur eine Axt in rechten Har	nd hält der	Men Manik Cauac Chuen	Hand.		der linken	Imix Ben Chicchan Caban	kauert (theit (M?) auf einer bhe?)		
	6	war	Regen-	4 Lamat	+ 109	200	+ 131040	+72800	+ 69600	+ 30940	6	
	7	Göttin	gott (B) Tortilla u. Wasser	Krokodil	=140 =280		=168·780 =336·390	=93 · 780 + 260	= 89 · 780 + 180	$=39 \cdot 780$ + 2 · 260	7	
	8	Schlange	seine Gaben	+ 1435980			=504.260	=280 ·260	=267·260 +180	=119 ·260	8	
	9	+ 6 =	6	= 1841.78		• 364	=360·364	=200 ·364			9	
b	10		Muluk Imix	= 3682.39 $= 5523.26$	2T .	amat	=3Lamat	=3Lamat	=3Lamat	=3Lamat	10	b
ν	11		Ben Chicchan Kab'an	=3945.36	+ 151	320	+ 3900	+3380	+2340	+ 1560	11	
	12	Die Göttir	n <i>Chac</i>		=194 =388		$= 5 \cdot 780$ $= 10 \cdot 390$	=4 · 780 +260	$=3 \cdot 780$ $=6 \cdot 390$	$=2 \cdot 780$ $=4 \cdot 390$	12	
	13	Chel (O) s		=3 Lama			=15 · 260	=13 · 260	=9 · 260	=6 · 260	13	
	14 15	Tätigkeit o Entleerens		- 352	=120 · 12, =6240	,61					14 15	
	16	Bechergef	äßes.	4 Ahau	$\begin{array}{c} -0.24 \\ \cdot 0.24 \\ = 3 \text{La} \end{array}$	425	= <mark>3</mark> Lamat	=3Lamat	=3Lamat	=3Lamat	15 16	
	17	(42G15→)	4	12	7	7	2	10	5	13	17	
	18	. 17	Chicch	·	. 1		Muluc		Chicchan	Ben	18	
	19	+ 17 =			+ 8 =	+ 8 :	= + 8 =	+ 8 =	+ 8 =	(→44A15)	19	
	20	göttlicher	= 80	15	+ ;				[-	Iguana	20	
c	21	Anfang Gott B		2 · : = 5	20	Der l	Regengott	<i>Chahc</i> (Got	t B) sitzt	und Tortilla	21	c
	22	(Regen) Überfluß ai	n				elnd in ein	em Kanu, a ogel auf ein	n dessen		22	
	23	Nahrung bedeckter	_			V		n Bündel h			23	
	24	Mais viele Tortillas									24	
	∠ 4	und Wasser							<u>.</u>		<i>24</i>	
		A	В	?	C		D	E	\boldsymbol{F}	G		
					43 (76): Int	erpretatio	n				

					4 (77): A	bbildung					
		A	В	C	D	E	F	G	Н		1
	1					NAME OF	72			1	
	2		1			运动	376	D.M.C.		2	
	<i>3 4</i>	· ·			صيا	P 語				<i>3 4</i>	
a	7			33	OI	回回	The second			7	a
	5							可是		5	
	6		100	*	•	PUIDA	19915			6	
	7			_==	-	=-	PO			7	
	8 9				waee 			100		8 9	
b	10 11		96	90	96					10 11	b
	12 13		*		<u></u>			5		12 13	
	14		10 6	3 3	Ö	3 3	#	e. (14	
	15		(0)		10:	@ II	न ।			15	
	16									16	
	17		9	THE	394	183				17	
	18		(2)	320	5 1		450	SOLE!		18	0
c	19		圖	300		· 100	TPS	题		19	c
	20			PA	學	A.A.	鸣	T.		20	
	21			月天	唐水	ENT.	W.	(人)		21	
	22	1		18	C		J.K.			22	
		A	В	C	D (77) A	E	F	G	Н		
				4	4 (//): A	bbildung					

a	1 2 3 4	<i>A i i i</i>	B i u ZIH		D ¿	E ¿	<i>F</i>	G (a)AYAN-	H ¿	1	
a	2 3	i i	i			ં	_		,	1	
a	3	i		-				aw ayan-aw		•	
a			u ZIH		CHAHC chahc	CAY cay	-	YAX CHAHC yax chahc	KA' WAH HA' ka' wah ha'	2	
a	4			-	hu-ba-c(i)	u ZIH	-	CAN T'UL NAL can t'ul nal	u ZIH	3	
а		?	u zih	-	hub-ac 2	u zih	-	7	u zih 11	4	
							_				a
1 1			<u>.</u>					_			
	5		-							5	
			_	-			-				
				-			-				
	6	2	1	1	1	1	1	ch'a-ca-ha ch'ac-ah	AHIN ahin	6	
	7	3	16	17	13	9	5	AKAB KIN	MUC CAB ba	7	
	8	6	2	-	-	-	-	akab kin xa-hu-li-ya xah-ul-i	muc cab OL CUN NAL	8	
	9	0	0	2	4	6	8		ol cun nal	9	
,		3	3	3	3	3	3	_			1
b	10	Lamat	Lamat	Oc	Eb	Ix	Cib			10	b
	11	2	1	15	11	7	3			11	
	12	3	1	-	-	-	-			12	
	13	0	10	12	14	16	18			13	
	14	3 Lamat	3 Etz'nab	3 Ahau	3 Ik	3 Kan	3 Cimi	19	≥ 7	14	
	15	4	1	2	7	2	10	5	?	15	
	16	Oc 17	Etz'na 8	8	imi [Ix B	1k 8	Oc 8	Etz'nab 8	16	
	17	WA'-ah			16 (17	
	18	wa'-ah na NAL	4		1	NIC can				18	
c	19	nal KUL OC ci	-			nic				19	c
		kul oc CHAHC ci	_		cı	ıtz					
	20	chahc			•	AY ay				20	
	21	ah NAL <i>ah nal</i>								21	
	22	KA' WAH HA' ka' wah ha'	1							22	
<u>, l</u>		\overline{A}	В	C	1)	E	F	G		

					(77): Tr			.	_		
		A	В	C	D	E	F	G	Н		Ī
	1	ં	ં	-	ં	ં	-	befand sich	ં	1	
	2	i	i	-	Chac	der Fisch	-	neue o. blaugrüne Chac	viele Tortillas u. Wasser	2	
	3	ં	war Geschenk	-	zerlegt	war Geschen	k -	starkes Kaninchen	war Geschenk	3	
а	4	?	4	-	2	6	-	7	11	4	а
и				-			-				и
	5			-			-			5	
				-			-				
				-			-				
	6	15600	13000	702	624	546	468	macht Übergang	Krokodil	6	
	7							lichtlose Licht/Tag	bedeckt die Erde	7	
	8		[13260]	(Förstema	nn 1901:9	1)		war dornig	das Herz des Mais	8	
	9		[7800] [12740]		on 1972:24 on 1972:10				ı	9	
b	10	3 Lamat	3 Lamat	3 Oc	3 Eb		3 x Ci	3 ih		10	b
	11	780	390	312	234	156	78			11	
	12									12	
	13									13	
	14	3 Lamat	3 Etz'nab	3 Ahau	3 Ik	Ka	3 n Cin	3 19	≥ 7	14	
	15	4	1	.2	7	2	10	5	?	15	
	16	Oc 17	Etz'na	ab C: 8	imi	1x 8	8 Ik	Oc 8	Etz'nab	16	
	17	war			16 +	- :				17	
	18	errichtet (im)	-		4 · : = 96	20				18	
С	19	Norden göttlicher	-		Tru	thahn				19	С
	20	Anfang Chahc	-			sch				20	
	21	(junger)	-							21	
	22	Maisgott viele Tortillas	-							22	
		und Wasser							~		
		A	В	<u>C</u>		D	E	F	G		

					(77): In	terpretatio	on				
		A	В	С	D	Ε	F	G	Н		
	1	ં	ં	für 42A2:	i	i	für 42A2:	befand sich	ં	1	
	2	i	ં	Manik Cauac Chuen	Gott des Regens (B)	der Fisch	Muluc Imix Ben	neue Gott d. Regens (B)	viele Tortillas und Wasser	2	
	3	ં	war Geschenk	Akbal Men	zerlegt	war Geschenk	Chicchan Caban	starkes Kaninchen	war Geschenk	3	
a	4	+ 2 =	4	-	+ 2 =	6	•	+ 7 =	13	4	a
a	5	Gottheit H unbekannt) Regengott von hinten Haarschop	ergreift der Chahc (B) am	für 42B2: Ben Chicchan Caban Muluc Imix		Gott B) uf einer ha' r) und hält sch in der	für 42B2: Men Manik Cauac Chuen Akbal	(Gott I verschräi	lk lx Cimi Etz'nab Oc engott Chahc B) sitzt mit nkten Armen m Tempel.	5	a
	6	+ 15600	+ 13000	+702	+ 624	+ 546	+468	macht Übergang	Krokodil	6	
	7	$=20 \cdot 780$ =40 · 390	$=16^{2/3} \cdot 780$	= 0 , 9 · 780	= 0,8 · 780	= 0,7 · 780	= 0,6 · 780	lichtlose Licht/Tag	bedeckt die Erde	7	
	8	=60 · 260	= 50 · 260		, , ,	, , ,		war dormig	das Herz des Mais	8	
	9							E.	1 36 1	9	
b	10	=3 Lamat	= 3 Lamat	= 3 Ok	= 3 Eb	= 3 Ix	= 3 Cib	wesen mit	norphes Misch- Krokodilrachen ad Vorderläufen	10	b
	11	+ 780	+390	+312	+234	+ 156	+ 78	←	eines Hirschwildes	11	
	12	$=1 \cdot 780$ $=2 \cdot 390$	$=0.5 \cdot 780$ =1 \cdot 390	= 0 , 4 · 780	= 0,3 · 780	= 0,2 · 780	= 0 , 1 · 780	3 Lamat (=Nullpunkt)	hängt von einem Himmels-	12	
	13	=3 · 260						↓ ↓	band herab.	13	
	14	=3 Lamat	=3 Etz'nab	=3Ahau	= 3 Ik	= 3 Kan	=3 Cimi	+ 19 =	9 (→45A17) Manik	14	
	15	(43G18→)	4 Oc Etz'		7 Cimi	2 Ix	10 Ik	5 Oc	13 Etz'nab	15	
	16	+ 17 =	+ 8 =	+ 8 =	+ 8 =	+ 8 =	+ 8 =	1 '	(→45A18)	16	
	17	war errichtet			16 + 4 · 2					17	
C	18	(im) Norden			= 96					18	0
С	19	göttlicher Anfang			Trut	hahn				19	С
	20	Gott B (Regen)		t W (Name nnt) in der		sch				20	
	21	Gott E	Mas	ske des ottes <i>Chah</i>			der Rege ahc (Gott			21	
	22	(Mais) viele Tortillas und Wasser	(Gott B	hält eine nur	ül		anc (Gott enfalls eine hält.			22	
		A	B	C			E Hait.	F	G		<u> </u>
						terpretatio					

Anhang 2.5: Seiten p. 69-73

Anhang 2.5 enthält die Darstellung der in der statistischen Analyse separat behandelten Abschnitte p. 69-73 mit dem Ausgangspunkt 9 Ix sowie p. 69-73 mit dem Ausgangspunkt 4 Eb.

Das Datenmaterial für die statistischen Analysen der ausgewählten Teile des numerischen Korpus mit dem Ausgangspunkt 9 Ix dieser Seiten ist der nachfolgenden Darstellung zu entnehmen und in Anhang 4.5 tabellarisch zusammengestellt.

Das Datenmaterial für die statistischen Analysen der ausgewählten Teile des numerischen Korpus mit dem Ausgangspunkt 4 Eb dieser Seiten ist der nachfolgenden Darstellung zu entnehmen und in Anhang 4.6 tabellarisch zusammengestellt.

				9): Transkript			г		
ı		A	В	C	D	E	F		_
	1	13	i	i	ં	i	i	1	
	2	i	i	3 ta-l(u) 3 tal	ah KUL ah kul	OCHCAN ochcan	(na) NAL nal	2	
	3	i	CHAHC ci	PAT(ta)-ah pat-ah	?-?-? ?-?-?	CHAC che- l(e) chac chel	NA' TUN(ni) na' tun	3	
	4	TAL ba	3 WI'IL MUC	WAXAC LAHUN	PIH pih	9 Kan	12 Kayab	4	
		tal ba	3 wi'il muc	waxac lahun	-				
	5	2	3	PAWAH CIZIN pawah cizin	PAWAH T'UL pawah t'ul			5	
а	6		L	ka-TUN katun	8 Tun 8 tun			6	
	7			WAC LAHUN wac lahun	yo-ON KIN (ni)			7	
	8			PAT(ta)-ah	yon kin ah WINIC (ci)			8	
	9			<i>pat-ah</i> BOLON LAHUN	ah winic KIN (ni) kin			9	
	10			bolon lahun 4 Ahau	8 Cumku			10	
	11	2	13	5 ta-l(u) 5 tal	ta-b(a) tab	4	4	11	
	12	(a) AYAN(na)	ta he-m(e)	OCH HUN ?	OCH OX WINIC (ci)	5	6	12	
	13	ayan CHAHC	ta hem 3 WI'IL	OCH HUN KIN(ni)	och ox winic PAT(ta)-ah	19	1	13	
	14	chahc ca-be-l(i)	3 wi'il u ZIH	och hun kin 15 ka-TUN	pat-ah 9 TUN	13	0	14	
b		(wa)WAH cab-el wah	u zih	15 katun	9 tun				
	15	13	13	4 WINIC(ci) 4 winic	4 KIN (ni) 4 kin	12	13	15	
	16			9 Kan	12 Kayab	8	10	16	
	17			13 Mac	WA'-la-h(a) wa'-lah	4 Eb	9 Ix	17	
	18			KUL OC(ci) kul oc	i	i	i	18	
		A	В	C	D	E	F		1
		А	69 (4 ₁	L	ν	E	Γ]	

			,	(49): Translati					
	,	A	В	C	D	E	F		1
	1	(68F01 →) + 13 =	3 Cib (→ 65A5)	i	ં	ં	i	1	
	2	į	i	3. Ankunft	der Gottheit	die Boa	des Nordens	2	
	3	i	Regengott (B)	wurde erschaffen	der Piktun	die Mond- göttin (O)	Frau des Tun	3	
	4	ankommend	Überfluß an Nahrung verborgen	18	Baktun	9 Kan	12 Kayab	4	
a	5	(68F05 →) + 2 =	3 Manik	Bacab der Todes- gottheit (A)	Kaninchen- Bacab			5	a
	6			Katun (20 Jahre)	8 Tun (8 Jahre)	Der schwarz Chahc (Gott	B) mit dem	6	
	7	Der Regeng (Gott B) sitz	ott <i>Chahc</i> et, eine Axt in	16. Erscheinung	der Sonne	Kopfschr Opossums Speer und e	sitzt, einen	7	
	8	auf einem B	and haltend, aum (<i>Ceiba</i>),	wurde erschaffen	der Mensch,	haltend, i aufgerissen	iber dem en Rachen	8	
	9	deren Wurze eines Kroko (Davoust 19	dilkopfes hat	19	der Monat Tage	einer aufg Schlange 1997	(Davoust	9	
	10	(Buroust 1)	, , , , , , , , , , , , , , , , , , ,	4 Ahau	8 Cumku	1997	.242)	10	
	11	(68F07 →) + 2 =	$ \begin{array}{c} 13 Ix \\ (\rightarrow 65A11) \end{array} $	5. Ankunft	der Nabel- schnur	12381728	12391470	11	
	12	ist	im Tal	Nahrung des Piktun (8000 Jahre)	Nahrung des 3. Menschen (Monats)		= 105910 · 260	12	
	13	Gott B (Regen)	Überfluß an Nahrung	Nahrung des	wurde erschaffen	= 33900,02 · 365,2425	= 31773 · 390	13	
b	14	Honig und Tortilla	sind seine Gabe	1. Tages (15 · 20 =) 300 Tun	9 Tun (9 Jahre)		= 21182 · 585	14	b
	15	(68F11 →) + 13 =	13	4 Monate	4 Tage			15	
	16	Der Regeng	Chicchan ott Chahc	9 Kan	12 Kayab			16	
	17	(Gott B) sitz Hieroglyphe	t auf einer (mit der	13 Mac	wurde	4 Eb	9 Ix	17	
	18	Bedeutung Teinen Vogel auf dem Arr		der	errichtet	ં	i	18	
	10	(Davoust 19		göttliche Anfang	6			10	
		\boldsymbol{A}	В	C	D	E	F		

A & WA'-la-h(a) wa'-lah CHAC che- l(e) chac chel 9 13 12 10 0 9 Ix 1 12 ((6))	B KUL OC(ci) kul oc NA' TUN(ni) na' tun 9 19 11 13 0 9 Ix 4	C & S Cumku WA'-la-h(a) wa'-lah KUL OC(ci) kul oc CHAC che-l(e) chac chel - 10 17 13 12 12 12 9 Ix 13 Pax	## B Cumku S Cumku WA'-la-h(a)	E 1 19 oder 3 0 oder 8 0 9 Ix 9 15 0 9 Ix 13	F 1 9 oder 1 5 oder 9 0 9 Ix 7 16 0 9 Ix 11	1 2 3 4 5 6 7 8 9 10 11 12
WA'-la-h(a) wa'-lah CHAC che- l(e) chac chel 9 13 12 10 9 Ix 1 12	KUL OC(ci) kul oc NA' TUN(ni) na' tun 9	8 Cumku WA'-la-h(a) wa'-lah KUL OC(ci) kul oc CHAC che-l(e) chac chel - 10 17 13 12 12 9 Ix	8 Cumku WA'-la-h(a) wa'-lah KUL OC(ci) kul oc EK CHAHC(ci) ek chahc - 10 11 3 18 14	19 oder 3 0 oder 8 0 9 Ix 9 15 0 9 Ix	9 oder 1 5 oder 9 0 0 9 Ix 7 16 0 9 Ix	2 3 4 5 6 7 8 9 10
wa'-lah CHAC che- l(e) chac chel 9 13 12 10 0 9 Ix 1 12	kul oc NA' TUN(ni) na' tun 9 19 11 13 0 9 Ix 4	WA'-la-h(a) wa'-lah KUL OC(ci) kul oc CHAC che-l(e) chac chel - 10 17 13 12 12 12 9 Ix	WA'-la-h(a) wa'-lah KUL OC(ci) kul oc EK CHAHC(ci) ek chahc - 10 11 3 18 14	0 oder 8 0 0 9 Ix 9 15 0 9 Ix	5 oder 9 0 0 9 Ix 7 16 0 9 Ix	3 4 5 6 7 8 9 10
CHAC che- l(e) chac chel 9 13 12 10 0 9 Ix 1 12	NA' TUN(ni) na' tun 9 19 11 13 0 9 Ix 4	wa'-lah KUL OC(ci) kul oc CHAC che-l(e) chac chel - 10 17 13 12 12 9 Ix	wa'-lah KUL OC(ci) kul oc EK CHAHC(ci) ek chahc - 10 11 3 18 14 9 Ix	0 9 Ix 9 15 0 0 9 Ix	0 0 9 Ix 7 16 0 0 9 Ix	4 5 6 7 8 9 10
1(e) chac chel 9 13 12 10 0 9 Ix 1 12	na' tun 9 19 11 13 0 9 Ix	kul oc CHAC che-l(e) chac chel -	kul oc EK CHAHC(ci) ek chahc -	0 9 Ix 9 15 0 0 9 Ix	0 9 Ix 7 16 0 9 Ix	5 6 7 8 9 10
chac chel 9 13 12 10 0 9 Ix 1	9 19 11 13 0 9 Ix 4	CHAC che-l(e) chac chel - 10 17 13 12 12 9 Ix	EK CHAHC(ci) ek chahc - 10 11 3 18 14	9 Ix 9 15 0 0 9 Ix	9 Ix 7 16 0 0 9 Ix	6 7 8 9 10
13 12 10 0 9 Ix 1 12	19 11 13 0 9 Ix 4	17 13 12 12 12 9 Ix	11 3 18 14 9 Ix	9 15 0 0 9 Ix	7 16 0 0 9 Ix	7 8 9 10 11
12 10 0 9 Ix 1	11 13 0 9 Ix 4	17 13 12 12 12 9 Ix	11 3 18 14 9 Ix	15 0 0 9 Ix	16 0 0 9 Ix	8 9 10 11
10 0 9 Ix 1 12	13 0 9 Ix 4	13 12 12 12 9 Ix	3 18 14 9 Ix	0 0 9 Ix	0 0 9 Ix	9 10 11
0 9 Ix 1 12	0 9 Ix 4	12 12 4 9 Ix	18 14 9 Ix	0 9 Ix	0 9 Ix	10 11
9 Ix 1 12	9 Ix	12 4 9 Ix	14 9 Ix	9 Ix	9 Ix	11
1 12	4	9 Ix	9 Ix			
12		9 Ix		13	11	12
	10					12
((6))			0 Pop	11	12	13
	((6))	7 10 Ahau	13 Yaxkin	14	12	14
4 Ahau	4 Ahau	10 PIH 10 pih	OCH ta-b(a) och tab	9 Lamat	9 Cimi	15
8 Cumku	8 Cumku	KAL kal	1 P'IZ (wi)WINIC(ci) 1 p'iz winic	1	8	16
9 Ix	4 Eb	(lo) LOK-y(i)	14	0	-	17
8	8	lok-i	15	12	1	18
6	16	YAX BALAM	2	3	10	19
16	19	yax balam	9	0	0	20
12	10	OCH ka- TUN	16	4 Eb	4 Eb	21
0	0	och katun	15	6	5	22
4	10	OCH ?	12	1	1	23
((6))	((8))	och ?	14	6	2	24
4 Ahau	3 Ahau	ОСН НААВ	9 Ix	0	0	25
8 Cumku	8 Cumku	och haab	12 Pop	4 Eb	4 Eb	26
		<i>C</i>	D	E	F	-
	6 16 12 0 4 ((6)) 4 Ahau 8 Cumku	6 16 16 19 12 10 0 0 4 10 ((6)) ((8)) 4 Ahau 3 Ahau 8 Cumku 8 Cumku	6 16 YAX BALAM BALAM yax balam 16 19 OCH ka-TUN OCH ka-TUN OCH katun 0 0 OCH ? ((6)) ((8)) OCH ? 4 Ahau 3 Ahau OCH HAAB 8 Cumku 8 Cumku Och haab	6 16 YAX BALAM BALAM yax balam 9 12 10 OCH ka-TUN Och katun 15 4 10 OCH ? 12 ((6)) ((8)) och ? 14 4 Ahau 3 Ahau OCH HAAB 9 Ix 8 Cumku 8 Cumku och haab 12 Pop	6 16 YAX BALAM BALAM yax balam 2 3 16 19 OCH ka-TUN Och katun 16 4 Eb 0 0 Och katun 15 6 4 10 OCH ? 12 1 ((6)) ((8)) Och ? 14 6 4 Ahau 3 Ahau OCH HAAB 9 Ix 0 8 Cumku 8 Cumku Och haab 12 Pop 4 Eb	6 16 YAX BALAM BALAM 9 2 3 10 16 19 yax balam 9 0 0 12 10 OCH ka-TUN och katun 15 6 5 4 10 OCH ? 12 1 1 ((6)) ((8)) och ? 14 6 2 4 Ahau 3 Ahau OCH HAAB 9 Ix 0 0 8 Cumku 8 Cumku och haab 12 Pop 4 Eb 4 Eb

		70 (50): Translation A B C D E F						
-		A	В	C	D			
	1	ં	ં	ં	ં	280800	210600	
	2	wurde	der göttliche	8 Cumku	8 Cumku	[168480]	[154440]	2
	3	errichtet	Anfang	wurde errichtet	wurde errichtet	(Förstemann	1901:164)	3
	4	rote	Frau des	der göttliche Anfang	der göttliche Anfang	(Thompson	1972:85)	4
	5	Chel	Tun	rote Gottheit	schwarze Gottheit			5
	6	1.394.120	1.437.020	-	-	9 Ix	9 Ix	6
	7			1.567.332	1.520.654			7
	8					70200	56160	8
	9							9
	10		0.7			0.7		10
	11	9 Ix	9 Ix			9 Ix	9 Ix	11
	12			9 Ix	9 Ix			12
а	13	- 606	- 1646	13 Pax	0 Pop	4914	4212	13
	14			7 10 Ahau	13 Yaxkin			14
	15	4 Ahau	4 Ahau	10. Baktun	Nabel- schnur	9 Lamat	9 Cimi	15
	16	8 Cumku	8 Cumku	umgeben?	der 1. Mensch	148380	58160	16
	17	9 Ix	4 Eb	war	101852	[7443]	[58240]	17
	18	1.201.200	1.274.240	entstanden	[101812]	(Förstemanı	n 1901:164)	18
	19		[1.202.240]	der 1.	(Förstemann 1901:166)	[145600]	(Thompson 1972:24, 85)	19
	20	(Först	emann 1901:166)	Jaguar		(Thompson 1972:24, 85)		20
	21	(TT)	[1.274.260]	der Katun	444	4 Eb	4 Eb	21
	22	(Thomp	son 1972:85,116)	der Nahrung	111554	12690	26400	22
	23 24	- 86	- 208	Nahrung der/des ?		43680	36400	23
	25	4 Ahau	3 Ahau	der/des :	9 Ix			25
	26	8 Cumku	8 Cumku	Jahr der Nahrung	12 Pop	4 Eb	4 Eb	$\begin{vmatrix} 25 \\ 26 \end{vmatrix}$
	-	A	В	C	D	E	F	
	-		1		ranslation		1	1

				70 (50): Inter	rpretation (1)				
	1	A	В	С	D	E	F		•
	1	ં	ં	i	i	280800	210600	1	
	2			8 Cumku	8 Cumku	$= 360 \cdot 780$ $= 720 \cdot 390$	$= 270 \cdot 780$ $= 540 \cdot 390$	2	
	2	wurde	der göttliche	o Culliku	o Culliku	$= 1080 \cdot 260$	$= 810 \cdot 260$	2	
	3	errichtet	Anfang	wurde	wurde	oder	oder	3	
	4	die rote		errichtet der göttliche	errichtet der göttliche	[1604001	[154440]	1	
	4	Mond-	Frau des	Anfang	Anfang	[168480] = 216 · 780	[154440] = $198 \cdot 780$	4	
	5	göttin (O)	Tun	rote Gott-	schwarze	$= 432 \cdot 390$	$= 396 \cdot 390$	5	
				heit (O)	Gottheit (B)	= 648 · 260	= 594 · 260		
	6	1394120	1437020	-	-	9 Ix	9 Ix	6	
	7			1567332	1520654	70200	56160	7	
	8	= 5362 · 260	= 5527 · 260	$= 6028 \cdot 260 \\ + 52$	= 5848 ·260 + 174	= 90 · 780	= 72 · 780	8	
	9	= 3830 ·364	= 3947 · 364 + 312	= 4305 ·364 + 312	= 4177 ·364 + 226	= 180 · 390	= 144 · 390	9	
	10	= 3816,97 · 365,2425	= 3937 · 365 + 15	= 4294 ·365 + 22	= 4166 · 365 + 64	= 270 · 260	= 216 · 260	10	
	11	9 Ix	9 Ix			9 Ix	9 Ix	11	
	12			4		4914	4212	12	
a		-0-		9 Ix	9 Ix			10	a
	13	- 606	- 1646	13 Pax	0 Pop			13	Ci
	14			7				14	
				10 Ahau	13 Yaxkin				
	15	4 Ahau	4 Ahau	10. Baktun	Nabel- schnur	9 Lamat	9 Cimi	15	
	16	8 Cumku	8 Cumku	umgeben?	der 1. Mensch	148380	58160	16	
	17	9 Ix	4 Eb		101852			17	
	18	1201200	1274240	war entstanden				18	
	19	= 4620 ·260	= 4900 ·260		= 420000.			19	
	20	= 3080 ·390	+240	der 1. Jaguar	. 0,2425			20	
	21	= 1540.780		- 28-41	111554	4 Eb	4 Eb	21	
	22	$= 3300 \cdot 364$	= 3500 · 364	der Katun der Nahrung	111337	43680	36400	22	
	22	= 3300 · 304	$= 3300 \cdot 304 + 240$	der ivalliung		$= 168 \cdot 260$	$= 140 \cdot 260$	22	
	23			NT. 1		$= 120 \cdot 364$	$= 100 \cdot 364$	23	
	24	- 86	- 208	Nahrung der/des ?		= 112 · 390		24	
	25	4 Ahau	3 Ahau	Jahr	9 Ix	= 56 · 780		25	
	26	8 Cumku	8 Cumku	der Nahrung	12 Pop	4 Eb	4 Eb	26	
		A	В	С	D	E	F		
				70 (50): Inter	rpretation (1)				

			T	70 (50): Inter	` '	T	1		
	_	A	В	C	D	E	F	_	
	1	ં	ં	ં	ં	$ 280800 \\ = 480 \cdot 585 $	= 360.585	1	
	2	wurde	der göttliche	8 Cumku	8 Cumku	$= 2400 \cdot 117 \\ (= 400 \cdot 702)$	$=1800 \cdot 117$ $(=300 \cdot 702)$	2	
	3	errichtet	Anfang	wurde errichtet	wurde errichtet	oder	oder	3	
	4	die rote	Enou do s	der göttliche Anfang	der göttliche Anfang	[168480] = 288 · 585	[154440] = 264 ·585	4	
	5	Mond- göttin (O)	Frau des Tun	rote Gott-	schwarze	=1440 · 117	=1320 ·117	5	
	6	1394120	1437020	heit (O)	Gottheit (B)	$(= 240 \cdot 702)$ 9 Ix	(= 220.702) 9 Ix	6	
	7	≈ 3495,09	≈ 12400,93	1567332	1520654	70200	56160	7	
	8	$U_{syn}(Jupiter)$	$U_{syn}(Merkur)$ $\approx 2460,99$ $U_{syn}(Venus)$			= 120 · 585	= 96 · 585	8	
	9		O _{syn} (venus)		$pprox 175,99$ $U_{syn}(Jupiter)$	$= 600 \cdot 117$	= 480 · 117	9	
	10				$pprox 90,01$ $U_{syn}(Mars)$	(= 100 · 702)	$(=80 \cdot 702)$	10	
	11	9 Ix	9 Ix		- Syn(9 Ix	9 Ix	11	
	12			9 Ix	9 Ix	4914	4212	12	
a	13	- 606	- 1646	13 Pax	0 Pop	= 42 · 117	= 36 · 117	13	a
	14			7	12 V1-:	$(= 7 \cdot 702)$	$(= 6 \cdot 702)$	14	
	15	4 Ahau	4 Ahau	10 Ahau 10. Baktun	13 Yaxkin Nabel-	9 Lamat	9 Cimi	15	
	16	8 Cumku	8 Cumku	umgeben ?	schnur der 1.	148380	58160	16	
	17	9 Ix	4 Eb		Mensch 101852			17	
	18	1201200	1274240	war entstanden				18	
	19				111554			19	
	20			der 1. Jaguar				20	
	21			don Votere		4 Eb	4 Eb	21	
	22			der Katun der Nahrung		12.505	0.510.5	22	
	23			N. 1		43680	36400	23	
	24	- 86	- 208	Nahrung der/des ?				24	
	25	4 Ahau	3 Ahau	Jahr	9 Ix			25	
	26	8 Cumku	8 Cumku	der Nahrung	12 Pop	4 Eb	4 Eb	26	
		A	В	С	D	Е	F		
				70 (50): Inter	pretation (2)				

				71 (51): Tra	anskription/	Transliteratio	on			
	•	A	В	С	D	E	F	G		
	1	19	17	15	13	11	i	ં	1	
	2	10	11	12	13	14	CH'AC AHIN ch'ac ahin	EK POP CAB ek pop cab	2	
	3	0	0	0	0	0	YA' KUL KIN ya' kul kin	HOL-ba hol-ba	3	
	4	0	0	0	0	0	YA' CAB (ba) CUN (na) ya' cab cun	NAH tze- NAL nah tzen-al	4	
	5	9 Ix	9 Ix	9 Ix	9 Ix	9 Ix	2	5	5	
	6	5	3	19	17	15	14	8	6	
	7	17	18	9	9	10	((11))	((13))	7	
	8	0	0	0	18	16	-	-	8	
	9	0	0	-	-	-	-	-	9	
	10	9 Ix	9 Ix	9 Ix	9 Eb	9 Oc	HA' POP CAB ha' pop cab	KIN-TUN- HAAB-il kin tun haab-il	10	
	11	9	7	5	3	1	yi-to-l(i) y-it-ol	KIN AKAB kin akab	11	
	12	13	14	15	16	$(15 \rightarrow) 17$	yi-chi-l(i) y-ich-il	CUN NAL cun nal	12	
a	13	10	8	6	4	2	2	2	13	a
	14	9 Kan	9 Ik	9 Ahau	9 Etz'nab	9 Cib	9	6	14	
	15	-	-	10	-	-	10	5	15	
	16	15	13	12	9	7	4 Ik	4 Caban	16	
	17	3	2	2	2	1	HA' CA'AN	KIN AKAB	17	
	18	-	-	2	0	10	ha' ca'an	kin akab	18	
	19	6	16	4	-	-	CAN KULU	CHAC HA'- al	19	
	20	0	0	12	0	0	can kulu	chac ha'- al	20	
	21	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	(na) NAL	CAB(ba) CUN(na)	21	
	22	4	3	2	-	-	nal	cab cun	22	
	23	0	0	0	15	10	5	4	23	
	24	16	12	8	3	2	1	15	24	
	25	0	0	0	0	0	0	15	25	
	26	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	4 Manik	26	
		A	В	<i>C</i>	<i>D</i>	E	F	G		
						Transliteratio				

					51): Transla		I	1		
	-	A	В	С	D	E	F	G		
	1						ં	ં	1	
	2	140400	126360	112320	98280	84240	überquert das Krokodil	Venus über der Erd(matt)e	2	
	3						Unheil der göttlichen Sonne	Eintritt	3	
	4						des Unheils der Milpa	der 1. Nahrung	4	
	5	9 Ix	9 Ix	9 Ix	9 Ix	9 Ix	54	108	5	
	6								6	
	7	42120	28080	7020	6318	5616	- 11	- 13	7	
	8 9								8	
	10	9 Ix	9 Ix	9 Ix	9 Eb	9 Oc	Regen über der irdischen Matte	Dürre	10	
	11						sein (Amts)sitz	dunkle Tage	11	
	12	3510	2808	2106	1404	662 702	sein Gesicht	über dem Maisfeld	12	
a	13					(Förstemann 1 (Thompson 19			13	a
	14	9 Kan	9 Ik	9 Ahau	9 Etz'nab	9 Cib	910	845	14	
	15	109200	94640	3644	65520	50960			15	
	16			[72800]			4 Ik	4 Caban	16	
	17			(Förstemann 19 (Thompson 19			himmlischer	dunklen	17	
	18			4372			Regen	Tagen	18	
	19			[87360]	072.24 95)		starker	starker	19	
	20	4 EL	4 F1-	(Thompson 19	·	4 151-	Waschbär	Regen	20	
	21 22	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	im Norden	über der Milpa	21	
	23	29120	21840	14560	5460	3640	1820	1755	23	
	24	27120	210 10	11500	2100	3010	1020	1755	24	
	25								25	
	26	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	4 Manik	26	
		A	В	С	D	E	F	G		
				71 (.	51): Transla	tion]	

				71 (51)	: Interpreta	tion (1)			
		A	В	С	D	E	F	G	.
	1	140400	126360	112320	98280	84240	i	ં	1
	2	=180 ·780	=162 · 780	=144 .780	=126 ·780	=108 ·780	überquert das Krokodil	Venus über der Erd(matt)e	2
	3	=360 ·390	=324 ·390	=288 ·390	=252 ·390	=216 ·390	Unheil der göttlichen Sonne	Eintritt	3
	4	=540 ·260	=486 ·260	=432 ·260	=378 ·260	=324 ·260	des Unheils der Milpa	der 1. Nahrung	4
	5	9 Ix	9 Ix	9 Ix	9 Ix	9 Ix	54	108	5
	6	42120	28080	7020	6318	5616			6
	7	= 54 .780	= 36.780	= 9.780	$(=9 \cdot 702)$	(= 8 · 702)	- 11	- 13	7
	8	=108 ·390	= 72 ·390	= 18 ·390					8
	9	=162 ·260	=108 ·260	= 27 ·260					9
	10	9 Ix	9 Ix	9 Ix	9 Eb	9 Oc	Regen über der irdischen Matte	Dürre	10
	11	3510	2808	2106	1404	702	sein (Amts)sitz	dunkle Tage	11
	12	$(=5\cdot702)$	$(=4\cdot702)$	$(=3\cdot702)$	$(=2\cdot 702)$	$(=1\cdot 702)$	sein Gesicht	über dem Maisfeld	12
a	13	= 9 · 390					910	845	13 a
	14	9 Kan	9 Ik	9 Ahau	9 Etz'nob	9 Cib	$=14\cdot 65$	= 13 .65	14
	15	109200	94640	3644	Etz'nab 65520	50960			15
	16	=420 ·260	=364 ·260		=252 ·260	=196 ·260	4 Ik	4 Caban	16
	17	=300 ·364	=260 ·364		=180 ·364	=140 ·364	himmlischer	dunkle	17
	18	=280 ·390		4372	=168 ·390		Regen	Tage	18
	19	=140 ·780			= 84 ·780		starker	starker	19
	20						Waschbär	Regen	20
	21	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	im	über der	21
	22	29120	21840	14560	5460	3640	Norden	Milpa	22
	23						1820	1755	23
	24	=112 ·260	= 84 ·260	= 56 ·260	= 21 ·260	= 14 ·260	= 7.260		24
	25	= 80 ·364	= 60.364 = 56.390 = 28.780	= 40 ·364	= 15.364 = 14.390 = 7.780	= 10 ·364	= 5.364 $= 28.65$	= 27 .65	25
	26	4 Eb	= 28 · /80 4 Eb	4 Eb	= 7.780 4 Eb	4 Eb	4 Eb	4 Manik	26
		A	В	С	D	E	F	G	,
				71 (51)	: Interpreta	tion (1)			

				71 (51).	: Interpretat	ion (2)				
		A	В	C	D	E	F	G		
	1	140400	126360	112320	98280	84240	ં	ં	1	
	2	(=200·702)	(=180·702)	(=160·702)	(=140·702)	(=120·702)	überquert das Krokodil	Venus über der Erd(matt)e	2	
	3	=240 ·585	=216 ·585	=192 ·585	=168 ·585	=144 ·585	Unheil der göttlichen Sonne	Eintritt	3	
	4	=1200·11	=1080·117	=960 ·117	=840 ·117	=720 ·117	des Unheils der Milpa	der 1. Nahrung	4	
	5	9 Ix	9 Ix	9 Ix	9 Ix	9 Ix	54	108	5	
	6	42120	28080	7020	6318	5616		= 2 · 54	6	
	7	(= 60 ·702)	(=40.702)	(= 10 · 702)	(= 9·702)	(= 8 · 702)	- 11	- 13	7	
	8	= 72 · 585	= 48 · 585	= 12 ·585					8	
	9	=360 ·117	=240 ·117	= 60 ·117	= 54 ·117	= 48 ·117			9	
	10	9 Ix	9 Ix	9 Ix	9 Eb	9 Oc	Regen über d. irdischen Matte	Dürre	10	
	11	3510	2808	2106	1404	702	sein (Amts)sitz	dunkle Tage	11	
	12	(= 5.702) $= 6.585$	(= 4.702)	(= 3·702)	(= 2 · 702)	(= 1 ·702)	sein Gesicht	über dem Maisfeld	12	
	13	= 30 ·117	= 24 ·117	= 18 ·117	= 12 ·117	= 6.117	910	845	13	
a	14	9 Kan	9 Ik	9 Ahau	9 Etz'nab	9 Cib	$=14\cdot65$	= 13 .65	14	a
	15	109200	94640	3644	65520	50960			15	
	16	=420 ·260	=364 ·260		=252 ·260	=196 ·260	4 Ik	4 Caban	16	
	17	=300 ·364	=260 ·364		=180 ·364	=140 ·364	himmlischer	dunklen	17	
	18	=280 ·390		4352	=168 ·390		Regen	Tagen	18	
	19	=140 .780			= 84 .780		starker	starker	19	
	20						Waschbär	Regen	20	
	21	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	im	über der	21	
	22	29120	21840	14560	5460	3640	Norden	Milpa	22	
	23						1820	1755	23	
	24	=112.260 = 80.364	= 84.260 = 60.364	= 56.260 = 40.364	= 21.260 = 15.364	= 14.260 = 10.364	= 7.260 $= 5.364$		24	
	25	- 50 504	= 56.390 = 28.780	— 10 304	= 13.304 = 14.390 = 7.780	- 10 304	$= 28 \cdot 65$	= 27 .65	25	
	26	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	4 Eb	4 Manik	26	
		A	В	С	D	E	F	G		
				71 (51).	: Interpretat	ion (2)				

1				1 -	7	72 (52): Abbil	dung		~		
2 3 4 4 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			A	В	C	D	E	F	G		
3 a 4 5 6 7 8 8 8 8 8 9 9 10 10 11 11 11 12 13 13 14 14 14 15 15 16 16 17 17 18 18 C 19 20 20 21 22 22 22 22		1								1	
a 4 5 6 7 8 9 10 11 11 b 12 13 14 15 16 17 18 c 19 20 21 22 22		2			B	600				2	
5 6 7 8 8 8 8 9 9 10 10 11 11 12 13 13 14 14 14 15 15 16 16 17 18 18 C 19 20 21 22 22 22 22 22		3		13			见这	KE-1		3	
8 8 9 10 11 11 12 13 14 14 15 15 16 17 18 18 C 19 20 21 22 22 22 22 22 22 22 22 22 22 22 22	a	<i>4 5</i>						位为			a
8		6				11	<u> </u>	出			
8		7		陸	TIPO A	ED ED	西京市			7	
10 11 11 12 13 14 15 16 17 18 18 19 20 21 22 A B C D E F G		8								8	
11 b 12 13 14 14 15 15 16 16 17 17 18 c 19 20 20 21 22 A B C D E F G		9		鄙	gre.	黑明	335	1:00		9	
b 12 13 14 14 15 16 16 17 18 18 19 20 21 22 22 22 22 22 22		10					DO	12		10	
12 13 14 15 15 16 17 18 C 19 20 21 22 22 A B C D E F G	h	11		0000	الياد	DES	Ľö			11	b
15 16 16 17 17 18 C 19 20 20 20 21 22 A B C D E F G		12 13		1		≝ ≟:	<u></u>				D
16		14			===	=-				14	
17		15			0	00	06			15	
18 c 19 20 20 21 22 A B C D E F G						图题					
c 19 20 21 22 22 A B C D E F G											
20 21 22 A B C D E F G	c							Stauce P			c
22				#			•••				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21		Z.						21	
A B C D E F G		22		0	0	9 6	06			22	
A B C D E F G											
72 (52): Abhildung			A	В	C	D 72 (52): Abbil	dung	F	G		

			72	2 (52): Tran	skription/Tro	ansliteratio	n			
		A	В	С	D	E	F	G		1
	1	i	i	i	i	i	i	i	1	
	2	ં	KAK ah-an kak ah-an	HA' CA'AN ha' ca'an	i	ં	i	i	2	
	3	KAK ah-an	CIM-al HAAB-il	NAH OCH KIN WINIC	CH'AC AHIN	CHAC HA'- al	4 KULU	KIN AKAB	3	
		kak ah-an	cim-al haab-il	nah och kin winic	ch'ac ahin	chac ha'-al	4 kulu	kin akab		
	4	KIN-TUN- HAAB-il kintun haab-il	YA' KUL	HOL-ba	YA' CAB	EL-ah NAL	ZAC HA' WAH(hi)	i	4	
a	5	- -	ya' kul -	hol-ba -	ya' cab -	el-ah nal	zac ha' wah	1	5	а
	6	8	10	13	16	0	3	6	6	
	7	2	16	10	4	18	12	6	7	
	8	((2))	((4))	((6))	((8))	((10))	((12))	((1))	8	
	9	EL-ah NAL	ta-b(a) HA'	YA' WINIC (ci)	to-z(a) HA'	tze-NAL	ka-z(a) HA'	HA' CA'AN	9	
	10	el-ah nal	tab ha'	ya' winic	toz ha'	tzen-al	kaz ha'	ha' ca'an	7.0	
	10	KIN AKAB	KIN(ni)-al	hu-z(u) NAL		MUC-ac	CHAHC(ci)	KULU	10	
	11	kin akab CHAC HA'-	kin-al YA' NAL	huz nal KA' WAH	hun nal yu-tzi-l(i)	muc-ac mu-mu-c(a)	chahc KA' WAH	kulu (na) NAL	11	
	11	al		HA'		, ,	HA'		11	
b	12	chac ha'-al 2	ya' nal 1	ka' wah ha'	y-utz-il	<i>титис</i> 1	ka' wah ha'	nal	12	b
	12	<i>_</i>	1	1		1	1		12	
	13	3	17	14	11	8	4	19	13	
	14	0	15	10	5	0	15	10	14	
	15	4 Eb	4 Manik	4 Ik	4 Caban	4 Eb	4 Manik	4 Muluc	15	
	16	KA'-ab	mu-c(u)-NAL	KIN TUN HAAB-il	3 EL NAL	ah WI'IL	ZAC NAL	HA' CA'AN	16	
		ka'-ab	muc nal	kin tun haab- il	ox el nal	ah wi'il	zac nal	ha' ca'an		
	17	tze-NAL	(mu)mu-c(a)	ZAC HA' WAH(hi)	HAAB-il	YA' CUN NAL	CUN NAL	KULU	17	
		tzen-al	тис	zac ha' wah	haab-il	ya' cun nal	cun nal	kulu		
	18	HAAB-il	ah NAL	u mu-c(a)	KIN TUN (ni)	yu-tzi-l(i)	mu-c(a) HAAB-il	(na) NAL	18	
		haab-il	ah nal	и тис	kin tun	y-utz-il	muc HAAB-il	nal		
С	19	4	4	4	4	3	3	3	19	С
	20	12	9	6	2	17	14	11	20	
	21	10	5	0	15	10	5	0 ?	21	
	22	4 Ik	4 Caban	4 Eb	4 Manik	4 Ik	4 Caban	4 Eb	22	
		A	В	C	D	E	F	G		1
			72	2 (52): Tran	skription/Tro	ansliteratio	n			

a	1 2 3 4 5 6 7	A im Feuer geboren Dürre, Trockenheit 162	im Feuer geboren Jahr des Todes Unheil der Gottheit 216	der himmlische Regen der 1. Mensch des Westens trat ein	D iberschreitet das Krokodil Unheil der	E i starker Regen	F i starker Waschbär	G i dunkle Tage	1 2 3	
a	2 3 4 5 6	im Feuer geboren Dürre, Trockenheit	im Feuer geboren Jahr des Todes Unheil der Gottheit	der himmlische Regen der 1. Mensch des Westens trat ein	überschreitet das Krokodil Unheil der	¿ starker Regen	č starker	ં	2	
a .	3 4 5 6	im Feuer geboren Dürre, Trockenheit	Jahr des Todes Unheil der Gottheit	himmlische Regen der 1. Mensch des Westens trat ein	überschreitet das Krokodil Unheil der	starker Regen	starker			
a .	<i>4 5 6</i>	geboren Dürre, Trockenheit	Todes Unheil der Gottheit	der 1. Mensch des Westens trat ein	das Krokodil Unheil der	Regen		dunkle Tage	3	
a .	5 6	Trockenheit	Gottheit			4				
	6	162	216		Erde	war der Mais trocken	Atole vom Mais	ં	4	
				270	324	378	432	486	5	а
	<i>7</i> I								6	
			4		0	10	10	1	7	
	8	- 2	- 4	- 6	- 8	- 10	- 12	- 1	8	
	9	war der Mais vertrocknet	wenig Regen	Unheil für die Menschen	wenig Regen für	die Nahrung der/des	schädlicher Regen	himmlischer Regen	9	
	10	dunkle Tage	Wärme, Hitze	vergrabener Mais	den ersten Mais	Ver- storbenen	Chahc	Waschbär	10	
	11	starker Regen	Unheil für den Mais	viele Tortillas und Wasser	ist gut	überstürzt	viele Tortillas und Wasser	im Norden	11	
	12								12	b
	13	780	715	650	585	520	455	390	13	
	14								14	
1.	15	4 Eb	4 Manik	4 Ik	4 Caban	4 Eb	4 Manik	4 Muluc	15	
10	16	Überfluß	das Grab	Dürre	viel vertrockneter Mais	der Ernährer	der weiße Mais	himmlischer Regen	16	
	17	an Nahrung	verbarg, (enthielt)	Atole und Tortilla	(im) Jahr	Unheil für das Maisfeld	(vom) Maisfeld	Waschbär	17	
10	18	im Jahr	Maisgott	verborgen	(der) Dürre	ist gut	(im) verborgenen Jahr	(im) Norden	18	
	19	_							19	c
	20	1690	1625	1560	1495	1430	1365	1300	20	
	22	4 Ik	4 Caban	4 Eb	4 Manik	4 Ik	4 Caban	4 Eb	21	
		→ 11 <i>x</i>							22	
		\boldsymbol{A}	В	C	D 52): Transla	E	F	G		

A B C D E F G C C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G C D E F G G C D E F G G C D E F G G C D E F G G C D E F G G C D E F G G C D E F G G C D E F G G C D E F G G C D E F G G C D E F G G G G G G G G G G G G G G G G G G					72 (5	2): Interpret	ation				
2 \$\frac{1}{6}\$ \$\frac{1}{9}\$ \$\frac{1}{6}\$ \$1			A	В	С	D	Ε	F	G		
1		1	ં	i	i	i	ં	i	i	1	
3 im Feuer Jahr des Gebernen Todes Mensch des Myestens Mensch des Myestens Mais		2	i		himmlische	i	i	i	i	2	
4 Dürre, Trockenheit Unheit der Erde Mais Mais Mais Cottoen		3			der 1. Mensch des				dunkle Tage	3	
a 5 162 216 270 324 378 432 486 5 6 = 3 · 54 = 4 · 54 = 5 · 54 = 6 · 54 = 7 · 54 = 8 · 54 = 9 · 54 6 7 8 - 2 - 4 - 6 - 8 - 10 - 12 - 1 8 9 war der Mais Warme, Mais Regen Wertrocknet Unheil für Menschen Mais Wertrocknet Ver- Gort B Regen Regen Regen Regen Regen Mais Storbenen Waschbär (Regen) 10 Waschbär 10 10 11 starker Regen Hitze Unheil für Verlockneter Mais Wasser Storbenen Mais Storbenen Regen Re		4					Mais		i	4	
7	a	5	162	216	270	324		432	486	5	a
S		6	= 3 · 54	$=4\cdot 54$	= 5 · 54	$=6\cdot 54$	= 7 · 54	= 8 · 54	= 9 · 54	6	
9		7								7	
Mais vertrocknet Menschen 10 Menschen 10 Menschen Me		8	- 2	- 4	- 6	- 8	- 10	- 12	- 1	8	
Tage		9	Mais		die		Nahrung			9	
Regen den Mais Tortillas und Wasser		10							Waschbär	10	
b 12 780 715 650 585 520 455 390 12 13 = 12 \cdot 65 = 11 \cdot 65 = 10 \cdot 65 = 9 \cdot 65 = 8 \cdot 65 = 7 \cdot 65 = 6 \cdot 65 13 14 = 3 \cdot 260		11			Tortillas und	ist gut	überstürzt	Tortillas		11	
14 = 3 · 260	b	12	780	715		585	520		390	12	b
15		13	= 12 · 65	= 11 · 65	= 10 · 65	= 9 · 65	= 8 · 65	= 7 · 65	$=6\cdot65$	13	
16		14	= 3 · 260				= 2 · 260			14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15	4 Eb	4 Manik	4 Ik	4 Caban	4 Eb	4 Manik	4 Muluc	15	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		16	Überfluß	das Grab	Dürre	vertrockneter				16	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		17	an Nahrung				das		Waschbär	17	
c 19 1690 1625 1560 1495 1430 1365 1300 19 20 = $26 \cdot 65$ = $25 \cdot 65$ = $24 \cdot 65$ = $23 \cdot 65$ = $22 \cdot 65$ = $21 \cdot 65$ = $20 \cdot 65$ <td< td=""><td></td><td>18</td><td>im Jahr</td><td></td><td>verborgen</td><td>(der) Dürre</td><td></td><td>verborgenen</td><td>(im) Norden</td><td>18</td><td></td></td<>		18	im Jahr		verborgen	(der) Dürre		verborgenen	(im) Norden	18	
	c	19	1690	1625	1560	1495	1430		1300	19	c
22 4 Ik 4 Caban 4 Eb 4 Manik 4 Ik 4 Caban 4 Eb 22		20	= 26 · 65	= 25 · 65		= 23 · 65	= 22 · 65	= 21 · 65		20	
		21								21	
		22	4 Ik	4 Caban	4 Eb	4 Manik	4 Ik	4 Caban	4 Eb	22	
A B C D E F G			A	В	С	D	E	F	G		

			1	73	(53): Abbila	lung				
		A	В	С	D	E	F	G		
	1								1	
	2			Cur.	T. he	na	A STATE OF THE PARTY OF THE PAR		2	
	3				MG	BOR			3	
a	<i>4</i> <i>5</i>		通	MAG C		Jee	39.5		<i>4 5</i>	a
	6		1		11 =	=			6	
	7		1	== ;	10				7	
	8		1						8	
	9		2705-29	2020		TILL CONTRACTOR			9	
	10				TO CE	國心			10	
	11			6		TICAL PROPERTY OF THE PARTY OF			11	
b	12			المثق	Tin		y		12	b
	13				1. 传说		·13		13	
	14					7	• •		14	
	15	,			90	9.0			15	
	16		To the	18	知规				16	
	17		1				00		17	
	18			5000	926	de			18	
c	19		N. S	14		3.3			19	c
	20			18	-		TO		20	
	21		Harris and the same of the sam	1.15					21	
	22		100		O L	16	The state of the s		22	
		A	В	C	D	E	F	G		
				73	(53): Abbila	lung				

			73(5	3): Transkripti	ion/Transliter	ration			
		A	В	C	D	E	F		
	1	ં	ં	i	ં	i	i	1	
	2	ં	ં	i	ં	OCH ta-b(a) och tab	i	2	
	3	ં	(mu) mu-c(a) muc	CHAC HA'-al chac ha'-al	WINIC (ci) winic	(lo) LOK-y(i) lok-i	HA' OTOCH CAB ha' otoch cab	3	
	4	CUN NAL cun nal	? TUN/HAAB ? tun/haab	CAB(ba)CUN(na) cab cun	ta HA' ta ha'	OCH ka-TUN och katun	LOB AKAB-al lob akab-al	4	
a	5	1	1	1	11	4	(na) NAL nal	5	6
	6	9	11	14	11	16	-	6	
	7	0	14	8	15	8	1	7	
	8	-	-	-	14	12	- - 19	8	
	9	((3))	((5))	((7))	9 Ix	9 Eb	-	9	
	10	3 EL (le) NAL 3 el nal	EL (le) NAL el nal	KIN(ni)-ich kin-ich	HUH HAAB huh haab	KAK KUCH kak kuch	19	10	
	11	HAAB haab	u-x(i) NAL ux nal	KIN AKAB kin akab	YA' CUN NAL ya' cun nal	ta HAAB-il ta haab-il	0	11	
b	12	mu-c(a)	3 WI'IL	CUN NAL	YA' CAB (ba)	YAX XUL MEN yax xul men	0	12	b
	13	тис 16	3 wi'il 13	cun nal 9	ya' cab 6	3	9 Ix	13	
	14	5	0	15	10	5	1	14	
	15	4 Caban	4 Eb	4 Manik	4 Ik	4 Caban	-	15	
	16	tze-NAL	HA' POP CA'AN	u XIK NAL	HA' POP HA'	KIN AKAB	17	16	
	17	tzen-al CAB (ba) cab	ha' pop ca'an KULU kulu	u xik nal KAK NAL kak nal	ha' pop ha' CHAHC chahc	kin akab ta-b(a) HA' tab ha'	2	17	
	18	CUN (na)	(na) NAL	(mu) mu-c(a)	KA' HA' WAH	ta CAB(ha)	2	18	
c	19	cun 3	nal 3	<i>muc</i> 3	ka' ha' wah	ta cab	14	19	6
	20	7	4	1	16	12	-	20	
	21	15	10	5	0	15	-	21	
	22	4 Manik	4 Ik	4 Caban	4 Eb	4 Manik	((9))	22	
		A	B	Caban	D D	E	F	18 19 20 21	Щ

				73(53): Ti	ranslation				
		A	В	С	D	Е	F		
	1	i	i	i	i	i	i	1	
	2	ં	i	i	i	Nabelschnur	i	2	
	3	i	verborgen	starker Regen über	Mensch	war erschienen	Regen über dem irdischen Haus	3	
	4	Maisfeld	? Jahr	der Milpa	im Regen	der Katun der Nahrung	Unheil der Dunkelheit	4	
a	5						(im) Norden	5	a
	6	540	594	648				6	
	7				83474	34732		7	
	8							8	
	9	- 3	- 5	- 7	9 Ix	9 Eb	14040	9	
	10	viel vertrockneter Mais	vertrockneter Mais	wurde regiert von	Jahr der Iguanas	Feuergeier		10	
	11	(im) Jahr	Maisernte	dunkle Tage über	Unheil für das Maisfeld	(im) Jahr		11	
b	12	der Begräbnisse	Überfluß an Nahrung	dem Maisfeld	Unheil für Erde (Feld)	das neue Ende des Schöpfers		12	b
	13	325	260	195	130	65	9 Ix	13	
	14							14	
	15	4	4	4	4	4		15	
	1.6	Caban Nahrung	Eb Regen über	Manik (er, sie, es)	Ik Regen über	Caban dunkle Tage	702	1.6	
	16	(von)	der Himmelsmatte	entweicht	der Wassermatte		702	16	
	17	Erde, Feld	Waschbär	die Seuche	Gott B (Regen)	wenig Regen		17	
	18	der Milpa	(im) Norden	verborgen	viele Tortillas und Wasser	über der Erde		18	
c	19						54	19	c
	20	1235	1170	1105	1040	975		20	
	21							21	
	22	4 Manik	4 Ik	4 Caban	4 Eb	4 Manik	- 9	22	
		A	В	С	D	Е	F		

Vertrockneter Mais Von Iguanas					73(53): Int	erpretation				
2 \$\frac{1}{6}\$ \$\frac{7}{2}\cdot \frac{1}{6}\$ \$\frac{1}{6}\$ \$			A	В	С	D	E	F		ı
Second Starker Regen über		1	i	ં	ં	ં	ં	ં	1	
Regen fiber Regen fiber		2	ં	?-?-?	i	i	Nabelschnur	i	2	
der Nahrung		3	į	verborgen		Mensch			3	
6 540		4	Maisfeld	? Jahr	der Milpa	im Regen			4	
10		5				83474	34732	(im) Norden	5	а
S		6	540	594	648			14040	6	
9		7	= 10 · 54	= 11 · 54	= 12 · 54			= 18 · 780	7	
10		8						= 36 · 390	8	
Vertrockneter Mais Von Iguanas Von		9	- 3	- 5	- 7	9 Ix	9 Eb	= 54 · 260	9	
11		10	vertrockneter		_		Feuergeier	= 20 · 702	10	
Begräbnisse Nahrung Maisfeld Erde (Feld) Ende des Schöpfers 13 325 260 195 130 65 9 Ix 14 $= 5 \cdot 65$ $= 4 \cdot 65$ $= 3 \cdot 65$ $= 2 \cdot 65$ $= 1 \cdot 65$ 15 4 4 4 4 4 Caban Eb Manik Ik Caban 16 Nahrung (von) Regen über der Himmelsmatte Regen über der Wassermatte Jercente Wassermatte $= 9 \cdot 78$ 17 Erde, Feld Waschbär die Seuche Gott B (Regen) wenig Regen $= 9 \cdot 78$ 18 der Milpa (im) Norden verborgen viele Tortillas und Wasser über der Erde 19 1235 1170 1105 1040 975 54 20 $= 19 \cdot 65$ $= 18 \cdot 65$ $= 17 \cdot 65$ $= 16 \cdot 65$ $= 15 \cdot 65$ 21 $= 4 \cdot 260$ $= 4 \cdot 260$ $= 4 \cdot 260$		11	(im) Jahr	Maisernte			(im) Jahr	= 24 · 585	11	
13 325 260 195 130 65 9 Ix 14 $= 5 \cdot 65$ $= 4 \cdot 65$ $= 3 \cdot 65$ $= 2 \cdot 65$ $= 1 \cdot 65$ 15 4 4 4 4 4 Caban Caban Regen über der Himmelsmatte Sie entweicht entwe		12					Ende des	=120 · 117	12	b
15 4 4 4 4 4 4 A A A A A A A A A A A A A A A A Caban B Caban Ik Caban		13	325	260	195	130		9 Ix	13	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14	$= 5 \cdot 65$	$=4\cdot65$	$=3\cdot65$	$=2\cdot 65$	$=1\cdot 65$		14	
		15	-	=		=			15	
17 Erde, Feld Waschbär die Seuche Gott B (Regen) wenig Regen = $9 \cdot 78$ 18 der Milpa (im) Norden verborgen viele Tortillas und Wasser über der Erde 20 19 1235 1170 1105 1040 975 54 20 = $19 \cdot 65$ = $18 \cdot 65$ = $17 \cdot 65$ = $16 \cdot 65$ = $15 \cdot 65$ 21 = $4 \cdot 260$ 22 22 4 4 4 4 -9		16		der		der	dunkle Tage	702	16	
c 19 1235 1170 1105 1040 975 54 20 = $19 \cdot 65$ = $18 \cdot 65$ = $17 \cdot 65$ = $16 \cdot 65$ = $15 \cdot 65$ 21 = $4 \cdot 260$ 22 22 4 4 4 4 -9		17	Erde, Feld		die Seuche	Gott B	wenig Regen	= 9 · 78	17	
		18	der Milpa	(im) Norden	verborgen		über der Erde		18	
		19	1235	1170	1105	1040	975	54	19	c
22 4 4 4 4 -9		20	= 19 · 65	= 18 · 65	= 17 · 65	= 16 · 65	= 15 · 65		20	
=-		21				$=4\cdot 260$			21	
I I Manik I Ik Cahan Eh Manik I		22	4 Manik	4 Ik	4 Caban	4 Eb	4 Manik	- 9	22	
A B C D E F	<u> </u>							F		

Anhang 2.6: Seiten p. 31-32

Das Datenmaterial für die statistischen Analysen der ausgewählten Teile des numerischen Korpus dieser Seiten ist der nachfolgenden Darstellung zu entnehmen und in Anhang 4.7 tabellarisch zusammengestellt.

Tiefgestellte Indices an Zahlen kennzeichnen ihre Reihenfolge in einer sequentiellen Berechnung, Beispiel p. 31: $9_1, ..., 4_7$:

9 ist erster, 4 ist siebter Summand (→ p. 31 *Translation*, E 22, ..., D 13) einer sequentiellen Berechnung, die auf dem Blatt *Interpretation* angegeben ist.

					31 (64):	Abbildung]	
		A	В	C	D	E	F	G	Н		
а	1 2 3 4 5 6 7 8 9 10 11 12		A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		影と対象と					1 2 3 4 5 6 7 8 9 10 11 12	а
	13		F		7	ال المناد	TEN	The same		13	
b	14 15 16 17 18 19 20 21 22 23 24		四世四 二回					が 1000 1000 1000 1000 1000 1000 1000 10		14 15 16 17 18 19 20 21 22 23 24	b
	25		1091	n Cal	or C	(2)	ENCA	638		25	
	26			OCE		600 F	月回於	OHO.		26	
	27		-		-		-			27	
c	28		で記念を							28	c
	<u> </u>	A	В		<i>C</i>	D		E	F		<u> </u>
					31 (64):	Abbildung]	

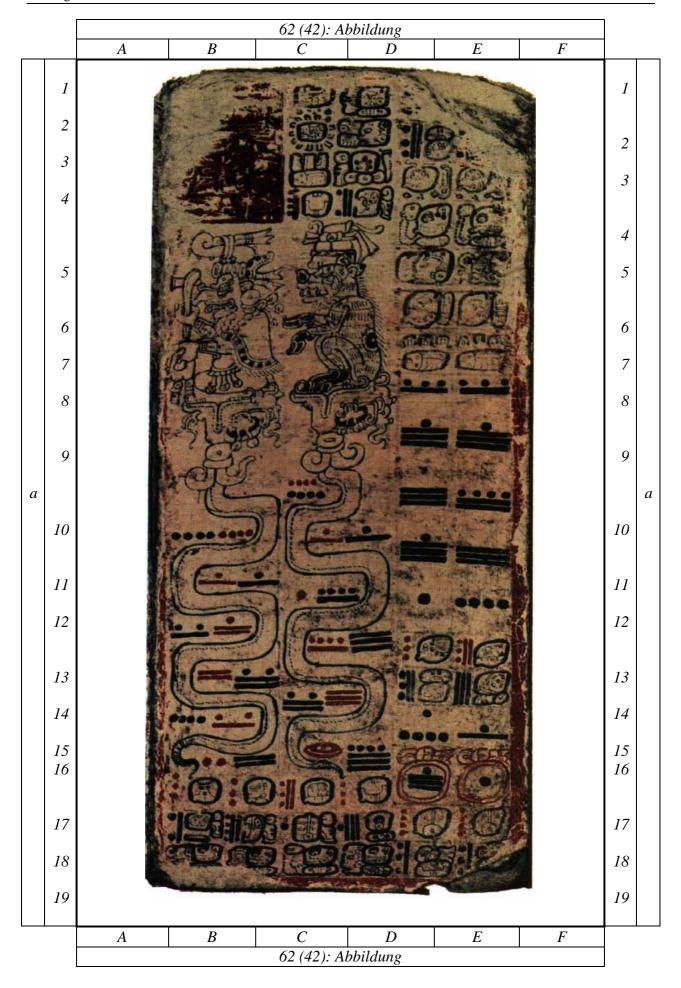
				31 (64	1): Transkrip	tion/Transli	teration				
		A	В	C	D	E	F	G	Н		1
	1	ં	ં	ં	ં	ં	ં	ં	ં	1	
	2				≥ 7 - ?	≥ 10 - ?	≥ 10	OCH ta-b(a	, 6	2	
	3				8	8	13	OC (ci)	i	3	
	4	1			16	16	3	u LOK-y(i u lok-i	1 10	4	
a	5		!		14	3	13	OCH kaTUN	≥ 13 - ?	5	a
	6				15	13	2	och katur	15	6	
	7				4	0	13Akbal	19	3	7	
	8	0			13Akbal	13Akbal	7	9	0	8	
	9		•		((6))	((0))	2 0	9	≥ 2	9	
	10	13			((1))	((17))	14	3	0	10	
	11		I		4 Ahau	4 Ahau	5	0	≥ 10	11	
	12				Cumku	Cumku	4 Ahau	13Akba	ıl ≥8	12	
	13	chi- KIN(ni)	WA'-la- h(a)	NOHOL	4	9	la-KIN(ni)	WA'-la- h(a)	KIN TUN HAAB-il	13	
	14	chikin	wa'-lah	nohol	4	13	lakin	wa'-lah	haab-il	14	
	15	CHAHC (ci)	KAN XIB	CHAHC (ci)	Cauac	Men	OC (co)	CHAHC (ci)	KAK che- TUN	15	
	16	chahc	kan xib	chahc	-	4	oc	chahc	kak chetun	16	
b	17	WAH /wa-h(i)/	CAY CI'	ah WAH (hi	4	13		l		17	b
	18	wah	cay ci'	ah wah	Cimi	Muluc				18	\cup
	19	ZIH	YAX (wa)WAH	u ZIH	2	9				19	
	20	zih	yax wah	u zih	11	2				20	
	21	8	3	8	Ahau	Chuen				21	
	22	Ahau	5	Chicchai	n 9	9				22	
	23	-	-	-	6	10				23	
	24	-	-	-	Ik	Ben				24	
	25	AYAN-(na)-		IAHC (ci) chahc	UY AYAN-aw uy ayan-aw	CHAHC (ci) chahc	(a) AYA		CHAHC (ci) chahc	25	
	26	ZAC HAA		na) NAL nal	EK TE' ek te'	chi-KIN (ni)	ta KAN		NOHOL nohol	26	
	27	13		11	13	11	13	3	11	27	
						<u> </u>					
C	28									28	C
		A		В	С	D	E	7	F		<u> </u>
					t): Transkrip			<u> </u>			

						31 (64): T	ranslation					
		A	В	(,	D	E	F	G	Н		
	1	ં	ં	i	1	ં	ં	i	ં	ં	1	
	2					≥7 - ?	≥ 10 - ?		Nabe schnu	ır	2	
	3								Anfan	ig ¿	3	
	4	1	! ! ! !			1272544	1268540	1534942	war en stande		4	
a	5		•						Katur der		5	a
	6	(För	steman	n 1901:67	und T	hompson 1972	2:94,115) →	[1538342]	Nahru		6	
	7							13 Akbal		3	7	
	8	0	<u>}</u>			13 Akbal	13 Akbal	51405		0	8	
	9		<u>.</u>			- 121	- 17		28041	00 ≥2	9	
	10	13	7 ! !							0	10	
	11		!		1)	4 Ahau	4 Ahau	[51419] ¹⁾		≥ 10	11	
	12	T		emann 190 on 1972:94		Cumku	Cumku	4 Ahau	13 Akba	≥ 8 -?	12	
	13	(im)	war e	r- (ir	n)	4 ₇	96	(im)	war e	r- Dürre	13	
	14	Westen	richte	`				Osten	richte		14	
	15					4 Cauac	13 Men			plötz-	15	
	16	Chahc	gelbe Mense		thc		45	Anfang (Fuß)	Chah	c liches Unheil	16	
						_	75	(1 015)		Cimen		
b	17 18	die licher die			4 Cimi	13 Muluc				17 18	b	
	19					24	93				19	
	20	seine Gabe	frisch Tortil			-					20	
	21		10101			11 Ahau	2 Chuen				21	
		8	65	8			0					
	22	Ahau		Chico	chan	92	91				22	
	23	-	-	-		6 Ik	10 Ben				23	
	24	-	-	_							24	
	25	befand s	ich	Chahc	b	efand sich	Chahc	befanc	l sich	Chahc	25	
	26	auf der weißen Ba		(im) Norden	sch	auf dem warzen Baum	(im) Westen	auf d		(im) Süden	26	
	27	13		11		13	11	13		11	27	
С	weißen Baum (Nord), in der linken Hand eine Axt		sitz Ba Ha	r Regengott C et auf einem so um (West), in nd eine Axt ha avoust 1997:3	chwarzen der linken altend	B) sitzt Baum (Hand ei	auf eine		28	С		
		A		В		C	D	E		F		
						31 (64): T	ranslation					

						31 (64): Int	terpretation	<u> </u>				
		A	В	C		D	E	F	G	Н		T
	1	ં	ં	ં		ં	ં	ં	ં	ં	1	
	2					≥7 - ?	≥ 10 - ?		Nabel-	ં	2	
	3		Der Reg	rengott		1272544	1268540	1534942	schnur Anfang	ં	3	
	4	1	Chahc (12/2544	1200340		es war ent-		4	
	4	1	schreite				= 4879		standen	10	4	
	5		links, Woder Wa	_	e		· 260		Katun der	≥13-?	5	
a	6		beiden I			= 3496	= 3485		Nahrung	15	6	a
	7		haltend			· 364	· 364	13Akbal		3	7	
	8	0	(Davous			13 Akbal	13 Akbal		2804100	0	8	
	9		1997:26	18)					_ 10795	≥ 2	9	
	10	13				- 121	- 17	51405	= 10785 $\cdot 260$	0	10	
	11					4 Ahau	4 Ahau	21102	200	≥ 10	11	
	12					Cumku	Cumku	4 Ahau	13 Akbal	≥ <mark>8</mark> -?	12	
	13										13	
		(im)	war er-	(im)		(→	32B27)	(im)	war er-	Dürre		
	14	Westen	richtet	Süde	n	4 Cauac		Osten	richtet		14	
	15	G D	11		_	= 4 ₇ +	['] ← ['] ↑		G T	plötz-	15	
	16	Gott B (Regen)	gelber Mensch	Gott (Rege) ₆ =	Anfang (Fuß)	Gott B (Regen)	liches Unheil	16	
		(Regen)		(Rege	11)			(Tuis)	(Regen)	Cimen		
b	17	die	köst- licher	die		4 Cimi	13 Muluc				17	b
	18	Tortilla	Fisch	Tortil	la	= 4 ₅ +	←	Dan Dan	on cott Clo	L = (C att	18	
	19						$2_4 =$		engott <i>Cha</i> em Kopfsc		19	
	20	seine Gabe	frische Tortilla	seine Gabe		11 Ahau			heit N schr		20	
		Gabe	Tortina	Gabi					d hält dabei			
	21	8	. 65 –	8		$= 9_3 +$	←		Hand einen beres Ende		21	
	22	Ahau	+ 65 =	Chiccl	nan	+ 9	$O_2 =$		nd gebildet		22	
	23			30C12		6 Ik	10 Ben	(Davous	t 1997:288)	23	
	24					= 9 ₁ +	 ₋				24	
			1 .		-				1			
	25	befand sich	. C1	hahc	be	efand sich	Chahc	befar	d sich	Chahc	25	
	26	auf dem	. (im)		auf dem	(im)	auf	dem	(im)	26	
		weißen Baum	,	orden		warzen Baum	Westen		n Baum	Süden		
	27	+ 13 =	<u> </u>	11		+ 13 =	11	+ 1	.3 =	11	27	
		30C14: Ci		l: Chuen	30C		30D14: Kai		Eb 30D			
		Aki	bal	Lamat	300	Cib	Imi	ix	Muluc	Ix		
c		Ah Cab	an	Chicchan Ik		Ben Oc	Etz'na Me	rn	Cimi Akbal	Chuen Lamat		С
	28	30E14: C	Ix Sib 30F14	Cauac : Imix	30E	Manik 14: Muluc	30F14: I	<i>x</i> 30E14:	Ahau Ik 30F	Chicchan 14: Manik	28	
		E	Ben	Etz'nab	JUL	Cimi	Chue	rn	Cauac	Kan		
		Ma	1	Men Eb		Akbal Ahau	Lame Chicccha	ın	Cib Ben	Imix Etz'nab		
		A	an	Muluc B		Caban C	D	Ik	Oc E	Men F		<u> </u>
		А		D			terpretation		ك	Г		
						51 (07). IIII	erpretation	,			J	

	32 (65): Abbildung A B C D E F G H I		
1 2 3 4 5 6 a 7 8 9 10 11 12 13 14 15		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	а
16 17 18 19 20 21 b 22 23 24 25 26 27		16 17 18 19 20 21 22 23 24 25 26 27	b
28 29 30 c 31		28 29 30 31	c
	A B C D E F 32 (65): Abbildung		

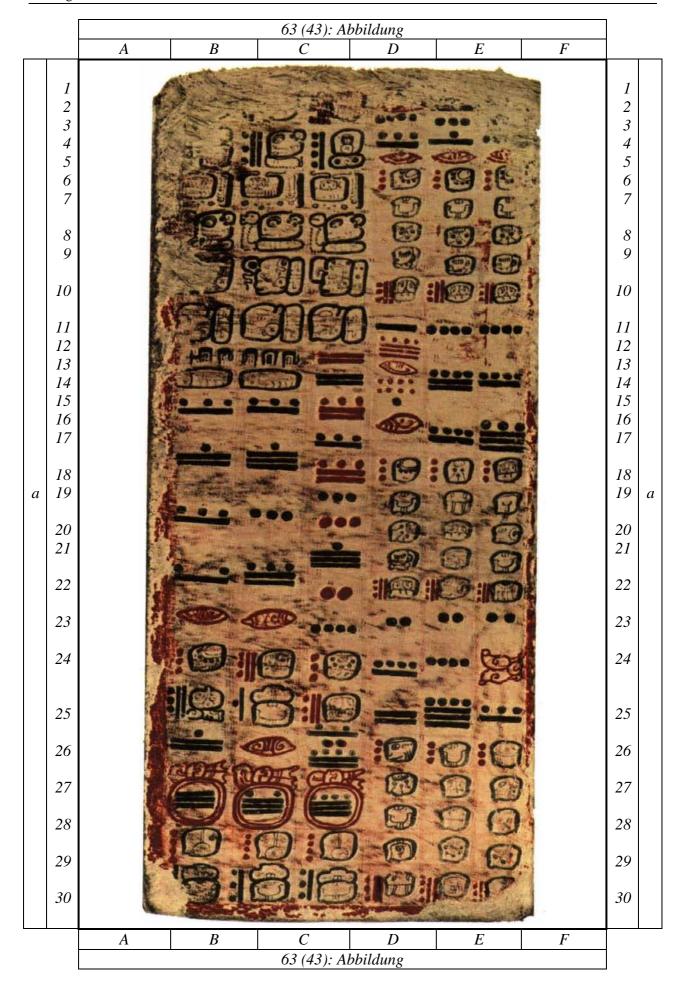
A B C D E F G H I					32	(65):	Tran	skripi	tio	n/Tran	slite	ratio	n						
2 2 2 2 0 7 7 4 13 9 a-b(a) XiB 4 4 2 0 7 7 4 13 9 a-b(a) XiB 4 4 5 2 0 7 7 4 13 9 a-b(a) XiB 4 4 5 2 0 7 7 4 13 9 a-b(a) XiB 5 5 6 0 4 10 19 17 6 ab XiB 5 6 12 8 0 Ben Ahau 11 6 ab XiB 5 6 12 8 0 Ben Ahau 11 6 ab XiB 5 6 12 8 0 15 13 2 11 1 1 6 ab XiB 6 6 6 6 6 6 6 6 6			A	В										F	I	Î	I		ı
3 \$\frac{1}{\cupec} \frac{1}{\cupec} \frac{1}{\cupecc} \frac{1}{\cupecc} \frac{1}{\cupecc} \frac{1}{\cupecc} \frac{1}{\c			ં			i	,	ં		-			-			ta k	ζŪ,		
A			ં			-		-											
S S C O A 10 19 17 6 ab ab chahc cha														wa'-	-lah				
A		4	ં											a-b	(a)			4	
A		5	ં	0	4	10	0	19		17		(5	a	b			5	
S - 0 4 4 13 9 4 9 10 5 0 15 13 12 11 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 11 13 11 14 10 15 15 15 15 15 15 15		6				Ве	en			Aha	1				1	1			
10	a	-	Akbal																a
10																			
17																			
12 2 - 2 Chuen Ahau Muluc Etz'nab 12 13 14 8 0 1 14 Men Kan Ben Ik 13 11 14 14																			
13				Akbal															
14																			
15																			
16									ıt										
17				Manik	Kan	Akl						C)c		te -	wał	ı ?		
17		16				ш	4			9							-	16	
18		17				_	4			13			,	*			-	17	
A B C D E F				1117						_					e	l			
19		18				(ba)	Ka	n	P	Ahau			ZA	С			-	18	
A B C D E F		10				_												10	
C C C C C C C C C C		19	cnanc				-			-	0	c			an	nai	-	19	
Description Description		20		correct,	, 01.		4			4			C. F. C.				-	20	
22 9 - 22 - 23 - 24 - 24 - 25 - 25 - 26 - 26 - 26 - 26 - 26 - 26 - 26 - 26 - 27 - 27 - 27 - 26 - 26 - 26 - 26 - 27 - 27 - 28 UY AYAN-aw CHAHC (ci) UY AYAN-aw	,	21				F	Chu	en	13	Manik							-	21	,
Chicchan Cib - 24	b	22					2			9							-	22	b
25		23					11			2							-	23	
26		24				(Chicc	han		Cib							-	24	
27		25				F	9			9							-	25	
28		26					6			10							-	26	
c 31 ab KUL ah ku!		27		19	:	F	Man	ik	E	tznab							-	27	
29		28																28	
c 31 A B C D E F		20																20	
c 31 A B C D E F		29										'						29	
31 A B C D E F		30	13		11		1	.3		1			13			11		30	
31 A B C D E F																			
31 A B C D E F																			C
A B C D E F		31																31	
		_					_												
32 (65): Transkription/Transliteration			\overline{A}													\overline{F}			
					32	(65):	Tran	ıskript	tio	n/Tran	slite	ratio	n						


					32 (<u>(65</u>):	Tro	anslatio	n								
		A	В	C	D	E	E	F		C	j	Н	7	I			
	1	i	ં	ં	i	ં	•					war		im		1	
	2	ં	ં	0	-	-	•					rich	tet	Nes	t	2	
	<i>3 4</i>		2	0	7 ?	4		637		54	6					<i>3 4</i>	
	<i>4</i> 5	: :	0	4	10	19		037		34	.0	da: Net		d. ro Mens		<i>4 5</i>	
	6	12	8	0	Ben	1,		Ahaı	1			1101		1	CII	6	
	7	Akbal	Akbal	Akbal												7	
а	8				455	27	13	182		9:	1					8	a
	9	202	101	1456								Ein r ident				9	
	10				13	1.	3	13		13	3	1		morphe	es	10	
	11	Akbal	Akbal	Akbal	Manik	Ci	ib	Chicch	an	Ix	ζ.			Gottheit		11	
	12				Chuen	Ah	au	Mulu	c	Etz'	nab	uber te' w		Glyphe	en	12	
	13	728	20	1001	Men	Ka	an	Ben		Iŀ] ,,				13	
	14				Cauac	Lan		Caba		Ciı						14	
	15	Chuen	Manik		Akbal	Е	b	Imix		O	С					15	
	16	war nach-	sein	ist seine	4 ₇			9 ₆	(ir	n)	wı	ırde	I	Herr	-	16	
	17	gebildet	Stein						Nor	′	erri	chtet	de	er/des	-	17	
	18		das 1		4 Ka	n	13	Ahau							_	18	
		Chahc	Wasse	r für die					di			eißer		Iais-			
	19		des Herrr	Milpa	-			-	Ba	SIS	Ch	nahc		gott	-	19	
	20		<u>l</u>	<u> </u>				45							-	20	
	21				4 Chu	en -	13	Manik							_	21	
b	22				24			9 ₃							_	22	b
					24			73									
	23				11			2							-	23	
	24				Chicch	nan		Cib							-	24	
	25				92			91							-	25	
	26															26	
			,	,	6 Man	nik	10	Etz'nab							_		
	27		19												-	27	
	28	befan	d	Chahc	befand	sich		Chah	ıc	be	fand	sich		Chahc		28	
		sich															
	29	?		die Cotthoit	im Hin	nmel		die Gott	theit	i	m Le	eib	,	die		29	
	20	12		Gottheit	12		\perp	1.1			12			Gotthei	ι	20	
	30	13		11	13			11			13			11		30	
		Der Rege	engott (hahc	Der Rege	ngott	· Chi	ahc (Gott	B)	De	r Rec	rengoti	t Ch	ahc (Go	off		
С		(Gott B)	schreite	t durch	sitzt auf e	einem	Poc	dest, das 1	mit	B)	sitzt	auf eir	ner A	Agave, i	n		c
	31	eine Sen			Symbole									ne Axt		31	
		Hand ein rechten e		nd in der 3 haltend	verziert i				ınd			ler recl <i>ha'</i> (W					
		(Davous			1997:302		(*							1997:30)2)		
		A		В	C			D			Е			\overline{F}			<u> </u>
						(65):	Tro	anslatio	n			ļ					
	l				,												

					32 (6	55): Inte	erpretati	on						
		A	В	C	D	E	F		G	Н	I		1	1
	1	[72800]	[36400]	[29120]	[910]	[819]				war er-	1		1	
	2		(77)	405						richtet	Nes	st	2	
	3	5010401		pson 197	2:115)								3	
	4	[21840]	[14560]	[7280]			637		546	das	d. ro		4	
	5	(Th	1070	0.115)	D		A 1			Netz	Mens		5	
	6		pson 1972	•	Ben		Ahau			+11=	11 Ix (33D	03→)	6	
a	7	Akbal 202	Akbal 101	Akbal 1456	155	273	182		91	T (A	Ausgangspu	nkt)	7 8	a
	8 9	[3640]	[1820]	=4·364	455	213	182		91		13 Ak'b'	al	8 9	
	-	(Förstema			13	13	13		13		$x = 91 + \epsilon$			
	10	,	ann 1901: on 1972:1	,		91 +	= 91 +	= <i>91</i>		← 13 13 	$x = 91 + \epsilon$		10	
	11	Akbal	Akbal	Akbal	<u>←)</u> Manik	Cib	Chiccha	n]	Ix	(Partor	ı 2001:48-	4 9)	11	
	12	728	20	1001	Chuen	Ahau	Muluc		Etz'nab'	= 91 +	(←D:		12	
	13	=2.364	[364]	1001	Men	Kan	Ben		Ik	= 91 +	(←D		13	
	13 14		mann 190	01:67)	Cauac	Lamat	Caban		Cimi	= 91 +	(←D		13 14	
		(Thom	pson 1972	2:115)						_				
	15	Chuen	Manik	Kan	Akbal	Eb	Imix		Oc	= 91 +	(←D	14)	15	
	16	war nach-	sein	ist seine		(→ 33	BB16)	(ir	m) w	urde	Herr	-	16	
	17	gebildet	Stein	Gabe		an I	3 Ahau	1			der/des	-	17	
	18		das 1.			 4 ₇ + ←			W	eißer			18	
	10	Gott B	Wasser		e			d			Gott E	_	10	
	19	(Regen)	des Herrn	Milpa	ı	+ 9 ₆ =	:	Ba	sis (R	egen)	(Mais)	-	19	
	20		Helli		4 Chu	ien 1	3 Manik					_	20	
	21					4 ₅ + ←					-	_	21	
	22	Der Reg				+ 2 ₄ =			Regenge				22	
b		(Gott B) links, in			11				ott B) sch ks, in der			_		b
	23	eine Axt					2 Cib		e Fackel			-	23	
	24	einen we				$9_3 + \leftarrow$			ken eine		-	-	24	
	25	haltend (.		+ 9 ₂ =	I :	(Da	voust 19	97:289)	F	-	25	
	26	1997:28	8)		6 Ma) Etz'nab				ŀ	_	26	
	27	(21014)	. 10	(. 20.00		= 9 ₁ + •					}	_	27	
				(→32E2				<u></u>	1, . 6 1	al al	C-44 F	<u>-</u>		
	28	befand sich		lott B legen)	befand	sich	Gott E (Reger		befand	sich	Gott E (Regen		28	
	29	?		Gottheit	im Him	mel	die Gottl		im L	eib	die Gotth		29	
		, 12												
	30	+ 13 =		11	+ 13		11		+ 13		11		30	
		30C14: Chi	icchan 30 Ik	D14: Oc Manik	30C14: E	tz'nab . Men		Akbal Ahau	30C14:	Chuen . Lamat	30D14:	Cib Ben		
	2.7	(Cauac Cib	Kan		Eb Muluc		Caban Ix	Ch	iicchan	1.4	Oc	2.1	
c	31		Ben	Imix Etz'nab		Cimi		Chuen	1	Ik Cauac		anik Kan	31	c
		30E14:	Men 30 Eb	F14: Ahau Caban	30E14: CF	Lamat . nicchan	30F14:	Ben Oc	30E14:	Imix . Etz'nab		Cimi kbal		
		1	Muluc Cimi	Ix Chuen		Ik Cauac	1	Manik Kan		Men Eb	Α	hau aban		
			Akbal	Lamat		Cauac Cib		Kan Imix		Muluc		lban Ix		
		A		В	<i>C</i>		D		E		F			
					32 (6	55): Inte	erpretatio	on						

Anhang 2.7: Seiten p. 62-64

Das Datenmaterial für die statistischen Analysen der ausgewählten Teile des numerischen Korpus mit dem Ausgangspunkt 9 Ix dieser Seiten ist der nachfolgenden Darstellung zu entnehmen und in Anhang 4.8 tabellarisch zusammengestellt.


63 F24 und 64 D19 enthalten je eine, aber voneinander verschiedene, besondere Form der 0.

11 4 4 4 4 16 15 12 6 6 6 1 4 13 7 11 1 9 3 13 Chicchan Akbal 14 10 12 9 15 13 Zip 15 Pop 15 4 7 12 15 1 - 16 2 10 0 19 4 6 17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((11)) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau				2): Transkripti	on/Translitero]
1		A	В			Е	F	
2 \$\frac{1}{4}	1	i	i		CHAHC(ci)	i	i	1
3	2	i	i	?	chi-ba(l) NA'	13 Yax	i	2
4	3	i	i		wa-n(i) bu- y(u)			3
A	4	i	i	9 Kan		(ci)	(ci)	4
7 8 10 tzo-l(e) tzol (e) t	5				L		(ci)	5
a 10 11 4 4 4 4 4 16 15 12 6 6 6 1 4 4 13 7 11 1 9 3 13 Chicchan Akbal 14 10 12 9 15 13 Zip 15 Pop 15 4 7 12 15 1 - 16 2 10 0 19 4 6 17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((11)) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	6						CHAHC (ci)	6
a 10 16 16 16 16 16 16 16 16 16 16 15 14 11 12 14 16 15 15 15 15 15 15 16 15 16 16 15 13 13 13 13 13 13 13 15 10 10	7							7
a 10 15 14 11 4 4 4 16 15 12 6 6 6 1 4 13 7 11 1 9 3 13 Chicchan Akbal 14 10 12 9 15 13 Zip 15 Pop 15 4 7 12 15 1 - 16 2 10 0 19 4 6 17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((1) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	8					8	8	8
10 11 4 4 4 4 16 15 12 6 6 6 6 1 4 13 7 11 1 9 3 13 Chicchan Akbal 14 10 12 9 15 13 Zip 15 Pop 15 4 7 12 15 1 - 16 2 10 0 19 4 6 17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((11)) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	9					16	16	9
12 6 6 6 1 4 13 7 11 1 9 3 13 Chicchan Akbal 14 10 12 9 15 13 Zip 15 Pop 15 4 7 12 15 1 - 16 2 10 0 19 4 6 17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((11)) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	a 10					15	14	10 a
13 7 11 1 9 3 Chicchan Akbal 13 Zip 15 Pop 14 10 12 9 15 13 Zip 15 Pop 15 4 7 12 15 1 - 16 2 10 0 19 4 6 17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((11)) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	11	4	4	4	4	16	15	11
Chicchan Akbal 14	12	6	6	6	6	1	4	12
15 4 7 12 15 1 - - 16 2 10 0 19 4 6 17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((11)) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	13	7	11	1	9	_		13
16 2 10 0 19 4 6 17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((1 1)) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	14	10	12	9	15	13 Zip	15 Pop	14
17 3 Ix 3 Cimi 13 Akbal 3 Kan ((16)) ((1)) 18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	15	4	7	12	15	1	-	15
18 7 Tzec 14 Kayab 1 Kankin 16 Uo 4 Ahau 4 Ahau	16	2	10	0	19	4	6	16
	17	3 Ix	3 Cimi	13 Akbal	3 Kan	((16))	((1))	17
19 CHEL OC CHEL OC KUL OC CHEL OC 8 Cumku 8 Cumku .	18	7 Tzec	14 Kayab	1 Kankin	16 Uo	4 Ahau	4 Ahau	18
chel oc chel oc chel oc	19					8 Cumku	8 Cumku	19
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	1	A	В	С	D	Е	F	

			1	62 (42): Tr					
		A	В	C	D	Е	F		1
	1	i	i	Regen	neuer Chac	i	i	1	
	2	i	i	?	Mond- finsternis	13 Yax	i	2	
	3	i	i	Chel	Liane gepflanzt	war errichtet	war errichtet	3	
	4	i	i	9 Kan	12 Kayab	göttlicher Anfang	göttlicher Anfang	4	
	5					Zerstörer	Mond- göttin	5	
	6					Chac	Chac	6	
	7					Ordnung (Gliederung, Reihenfolge)	Ordnung (Gliederung, Reihenfolge)	7	
	8					1.272.921	1.272.544	8	
	9							9	
a	10		T		T			10	a
	11							11	
	12	12.438.810	12.466.942	12.454.459	12.394.740			12	
	13					3 Chicchan	13 Akbal	13	
	14					13 Zip	15 Pop	14	
	15							15	
	16					- 456	- 121	16	
	17	3 Ix	3 Cimi	13 Akbal	3 Kan			17	
	18	7 Tzec	14 Kayab	1 Kankin	16 Uo	4 Ahau	4 Ahau	18	
	19	Chel betritt	Chel betritt	die Gottheit betritt	Chel betritt	8 Cumku	8 Cumku	19	
		A	В	С	D	Е	F		Щ
				62 (42): Tr		<u> </u>	<u>-</u>		

				62 (42): Inte	erpretation				
2 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6 6 6		1	I						
	1	ં	i	Regen		ં	ં	1	
	2	i	i	?		13 Yax	ં	2	
	3	į	i	Chel				3	
	4	i	i	9 Kan	12 Kayab			4	
	5					Zerstörer		5	
	6	0 0						6	
	7	Kopfschmuc	k eines	dem Kopfsch	muck eines	(Gliederung,	(Gliederung,	7	
	8	aufgerissener einer aufgeric	n Rachen chteten	aufgerissener einer aufgeri	n Rachen chteten			8	
	9			_	_			9	
a	10							10	а
	11	12438810	12466942	12454459	12394740			11	
	12							12	
	13					_		13	
	14					13 Zip	15 Pop	14	
	15							15	
	16					- 456	- 121	16	
	17	3 Ix	3 Cimi	13 Akbal	3 Kan			17	
	18	7 Tzec	14 Kayab	1 Kankin	16 Uo	4 Ahau	4 Ahau	18	
	19					8 Cumku	8 Cumku	19	
		Λ	R	C	D	F	E		

		63 (43): Transkription/Transliteration									
		A	В	С	D	E	F				
	1	ં	ં	13 Imix	1	-	-	1			
	2				0	15	10	2			
	3	ં	13 Xul	9 Uo	4	3	2	3			
	4				8	6	4	4			
	5	WA'-la-h(a)	WA'-la-h(a)	WA'-la-h(a)	0	0	0	5			
	6	wa'-lah	wa'-lah	wa'-lah	3 Chicchan	3 Chicchan	3 Chicchan	6			
	7	KUL OC (ci)	KUL OC (ci)	KUL OC (ci)	Kan	Kan	Kan	7			
	8	kul oc	kul oc	kul oc	Ix	Ix	Ix	8			
	9	UH IXIC (ci)	UH IXIC (ci)	mu-XIB (be)	Cimi	Cimi	Cimi	9			
	10	uh ixic	uh ixic	muxib	13 Akbal	13 Akbal	13 Akbal	10			
	11	CHAHC (ci)	CHAHC (ci)	CHAHC (ci)	5	4	4	11			
	12	chahc	chahc	chahc	19	-	-	12			
	13	tzo-l(e)	tzo-l(e)	10	0	-	-	13			
	14	tzol	tzol	10	4	14	9	14			
	15	-	-	13	4	-	-	15			
а	16	-	-	8	1	-	-	16	a		
	17	-	-	13	0	9	18	17			
	18	8	8	3	3 Chicchan	3 Ix	3 Akbal	18			
	19	11	16	3	Kan	Ben	Ik	19			
	20	8	3	16	Ix	Akbal	Eb	20			
	21	7	13	2	Cimi	Men	Kan	21			
	22	0	0	4	13 Akbal	13 Eb	13 Imix	22			
	23	3 Chiashan	13	3 Chiashan	2	2	2	23			
	24	Chicchan 13 Kankin	Akbal 6 Cumku	Chicchan 13 Akbal	9	4	0	24			
	25	-	-	7	10	19	8	25			
	26	-	-	2	3 Men	3 Kan	3 Ben	26			
	27	11	0	14	Ix	Akbal	Eb	27			
	28	((15))	((17))	((19))	Kan	Ben	Ik	28			
	29	4 Ahau	4 Ahau	4 Ahau	Cib	Chicchan	Ix	29			
	30	8 Cumku	8 Cumku	8 Cumku	13 Ben	13 Ik	13 Chuen	30			
		A B C D E F									
		A	1	C 3): Transkript			F				

	63 (43): Translation							
1	A	В	С	D	Е	F		
1	ં	i	13 Imix	145600	109200	72800		
2								
3	ં	13 Xul	9 Uo					
4								
5								
6	war errichtet	war errichtet	war errichtet	3 Chicchan	3 Chicchan	3 Chicchan		
7	göttlicher	göttlicher	göttlicher	Kan	Kan	Kan		
8	Anfang	Anfang	Anfang	Ix	Ix	Ix		
9	Mond-	Mond-	Zerstörer	Cimi	Cimi	Cimi		
10	göttin	göttin		13 Akbal	13 Akbal	13 Akbal		
11	Chahc	Chahc	Chahc	1820	1729	1638		
12								
13	Ordnung	Ordnung	1538342	136884				
14	(Gliederung, Reihenfolge)	(Gliederung, Reihenfolge)		[136864]	(Förstemann 1901:140)			
15	-	-		[138320]	(Thompson 1972:116)			
16	-	-	1499004		1772.110)			
17	-	-	[1535004]					
18	1234220	1268540	(Förstemann 1901:141)	3 Chicchan	3 Ix	3 Akbal		
19			(Thompson 1972:116)	Kan	Ben	Ik		
20			17,2.110)	Ix	Akbal	Eb		
21				Cimi	Men	Kan		
22				13 Akbal	13 Eb	13 Imix		
23	3	13	3					
24	Chicchan 13 Kankin	Akbal 6 Cumku	Chicchan 13 Akbal	910	819	728		
25	13 Kankin	0 Culliku	13 Akuai	910	019	728		
26				3 Men	3 Kan	3 Ben		
27				Ix	Akbal	Eb		
	225	17	£1.410					
28	- 235	- 17	- 51419	Kan	Ben	Ik		
29	4 Ahau	4 Ahau	4 Ahau	Cib	Chicchan	Ix		
30	8 Cumku	8 Cumku	8 Cumku	13 Ben	13 Ik	13 Chuen		
	A	В	C	Translation	E	F		

	63 (43): Interpretation								
	A	В	С	D	E	F			
1	ં	ં	13 Imix				1		
2							2		
3	ં	13 Xul	9 Uo	145600	109200	72800	3		
4				= 560 · 260	= 420 · 260	= 280 · 260	4		
5	war	war	war	$=400\cdot 364$	= 300 · 364	= 200 · 364	5		
6	errichtet	errichtet	errichtet	3 Chicchan	3 Chicchan	3 Chicchan	6		
7	göttlicher	göttlicher	göttlicher	Kan	Kan	Kan	7		
8	Anfang	Anfang	Anfang	Ix	Ix	Ix	8		
9	Mond-	Mond-	Zerstörer	Cimi	Cimi	Cimi	9		
10	göttin	göttin		13 Akbal	13 Akbal	13 Akbal	10		
11	Gott B	Gott B	Gott B	136884			11		
12	(Regen)	(Regen)	(Regen)				12		
13	Ordnung	Ordnung	1538342				13		
14	(Gliederung, Reihenfolge)	(Gliederung, Reihenfolge)	= 81,00 · 18992,61	1820	1729	1638	14		
15	-	-		= 20 · 91	= 19 · 91	= 18 · 91	15		
a 16	-	-					16		
17	-	-					17		
18	1234220	1268540	1499004	3 Chicchan	3 Ix	3 Akbal	18		
19	= 4747 ·260	= 4879·260		Kan	Ben	Ik	19		
20		= 3485.364		Ix	Akbal	Eb	20		
21				Cimi	Men	Kan	21		
22				13 Akbal	13 Eb	13 Imix	22		
23	3	13	3				23		
24	Chicchan 13 Kankin	Akbal 6 Cumku	Chicchan 13 Akbal	910	819	728	24		
25		Cumu	- Inoui	$= 10 \cdot 91$	$=9\cdot91$	$= 8 \cdot 91$	25		
26				3 Men	3 Kan	3 Ben	26		
27				Ix	Akbal	Eb	27		
28	- 235	- 17	- 51419	Kan	Ben	Ik	28		
29	4 Ahau	4 Ahau	4 Ahau	Cib	Chicchan	Ix	29		
30	8 Cumku	8 Cumku	8 Cumku	13 Ben	13 Ik	13 Chuen	30		
•	A	В	С	D terpretation	Е	F			

	A	R	64 ((44): Abbi	ldung F	F	G		
1 2 3 4 5 6 7 8 9 10 11 12 a 13 14 15 16 17 18 19 20 21 22 23	A						G	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	a
23		00							
24 25		HO	DIC					2425	
	A	В	C 64 (D (44): Abbi	E ldung	F	G		

		64 (44): Transkription/Transliteration											
		A	В	C	\hat{D}	Ε	F	G					
	1	5	4	3	2	1	-	-	1				
	2	1	0	0	0	0	10	5	2				
	3	2	16	12	8	4	3	1	3				
	4	0	0	0	0	0	0	0	4				
	5	3	3	3	3	3	3	3	5				
		Chicchan	Chicchan	Chicchan	Chicchan	Chicchan	Chicchan	Chicchan					
	6	Kan	Kan	Kan	Kan	Kan	Kan	Kan	6				
	7	Ix	Ix	Ix	Ix	Ix	Ix	Ix	7				
	8	Cimi	Cimi	Cimi	Cimi	Cimi	Cimi	Cimi	8				
	9	13	13	13	13	13	13	13	9				
		Akbal	Akbal	Akbal	Akbal	Akbal	Akbal	Akbal					
	10	4	4	3	3	3	3	2	10				
	11	5	0	14	9	5	0	14	11				
	12	7	16	5	14	3	12	1	12				
a	13	3	3	3	3	3	3	3	13	a			
		Eb	Imix	Oc	Cauac	Lamat	Caban	Cimi					
	14	Chuen	Ahau	Muluc	Etz'nab	Manik	Cib	Chicchan	14				
	15	Imix	Men	Cauac	Lamat	Caban	Cimi	Men	15				
	16	Ben	Ik	Chuen	Ahau	Muluc	Etz'nab	Manik	16				
	17	13	13	13	13	13	13	13	17				
	10	Oc	Cauac	Lamat	Caban	Cimi	Men	Kan					
	18	1	1	1	1	13	9	4	18				
	19	13	9	4	0	-	-	-	19				
	20	17	6	15	4	13	2	11	20				
	21	3	3 Chuan	3 A hou	3 Mulua	3 Etz'nah	3 Manile	3 Cib	21				
	22	Ik Imix	Chuen Ok	Ahau Cauac	Muluc Lamat	Etz'nab Caban	Manik Cimi	Cib Men	22				
	23	Chuen	Ahau	Muluc	Etz'nab	Manik	Cib	Chicchan	23				
	24	Akbal	Eb	Imix	Oc	Cauac	Lamat	Caban	24				
	25	12	12	12	12	10	12	12	25				
	25	13 Ahau	13 Muluc	13 Etz'nab	13 Manik	13 Cib	13 Chicchan	13 Ix	25				
	1	A	B	C	D	E	F	G					
		/1		_									
	64 (44): Transkription/Transliteration												

		64 (44): Translation/Interpretation									
		A	В	С	D	E	F	G			
	1	36400	29120	21840	14560	7280	3660	1820	1		
	2	=140 · 260	=112·260	= 84 ·260	= 56 ·260	= 28 · 260	$= 14 \cdot 260 \\ + 20$	= 7 · 260	2		
	3	=100 ·364	= 80.364	=60 ·364	=40 ·364	= 20 · 364	[3640]	$= 5 \cdot 364$	3		
	4						(Förstemann (Thompson	1901:140) 1972:81)	4		
	5	3 Chicchan	3 Chicchan	3 Chicchan	3 Chicchan	3 Chicchan	3 Chicchan	3 Chicchan	5		
	6	Kan	Kan	Kan	Kan	Kan	Kan	Kan	6		
	7	Ix	Ix	Ix	Ix	Ix	Ix	Ix	7		
	8	Cimi	Cimi	Cimi	Cimi	Cimi	Cimi	Cimi	8		
	9	13	13	13	13	13	13	13	9		
		Akbal	Akbal	Akbal	Akbal	Akbal	Akbal	Akbal			
	10	1547	1456	1365	1274	1183	1092	1001	10		
	11		= 4 · 364				$=3\cdot364$		11		
	12	=17 · 91		=15 · 91	=14 · 91	=13 · 91		=11 · 91	12		
a	13	3 Eb	3 Imix	3 Oc	3 Cauac	3 Lamat	3 Caban	3 Cimi	13	a	
	14	Chuen	Ahau	Muluc	Etz'nab	Manik	Cib	Chicchan	14		
	15	Imix	Men	Cauac	Lamat	Caban	Cimi	Men	15		
	16	Ben	Ik	Chuen	Ahau	Muluc	Etz'nab	Manik	16		
	17	13	13	13	13	13	13	13	17		
	10	Oc	Cauac	Lamat	Caban	Cimi	Men	Kan	10		
	18	637	546	455	364	273	182	91	18		
	19				= 1 · 364				19		
	20	=7 · 91	=6 · 91	=5 · 91		=3 · 91	=2 · 91	=1 · 91	20		
	21	3 Ik	3 Chuen	3 Ahau	3 Muluc	3 Etz'nab	3 Manik	3 Cib	21		
	22	Imix	Oc	Cauac	Lamat	Caban	Cimi	Men	22		
	23	Chuen	Ahau	Muluc	Etz'nab	Manik	Cib	Chicchan	23		
	24	Akbal	Eb	Imix	Oc	Cauac	Lamat	Caban	24		
	25	13	13	13	13	13	13	13	25		
		Ahau	Muluc	Etz'nab	Manik	Cib	Chicchan	Ix			
		A	В	C	D	E	F	G			
				64 (44): Tre	anslation/In	iterpretation	!				

Anhang 3:	Modifikationen von Daten in acht ausgewählten Abschnitten

Anhang 3.1: Modifikationen in E.W. Förstemann (1901)

Codex		E.W. Försten	nann (1901)	
Dresden	Position	Lesung	Modifikation	Seite
24 D 23	24	1.12. 5 .0 [= 11.620]	1.12. 8 .0 [= 11.680]	48
51 A 12	51a	10.19.6. 0 .8 [= 1.578.968]	10.19.6. 1 .8 [= 1.578.988]	120
52 E 03	52a	9.19. 8 .7.8 [= 1.435.828]	9.19. 5 .7.8 [= 1.434.748]	119
52 E 09	52a	9.16.4. 10 .18 [= 1.412.858]	9.16.4. 11 .18 [= 1.412.8 7 8]	119
51 A 06	51a	8.16.4. 11 .0 [= 1.268.860]	8.16.4. 8 .0 [= 1.268.800]	120
51 D 03	51a-52a	2.11. 10.11 .0 [= 371.020]	2.11. 9.16 .0 [= 370.760]	119
51 E 06	51a-52a	9.19. 12. 0 [= 71.880]	9.19. 6 .0 [= 71.760]	119
52 A 03	51a-52a	4.19. 11 .0 [= 35.860]	4.19. 12 .0 [= 35.880]	119
52 C 03	51a-52a	1. 18.5 .0 [= 13.780]	1. 13.4 .0 [= 11.960]	119
55 H 14	51-58	1.7. 15.19 [= 10.039]	1.7. 17.8 [= 10.068]	123
57 B 03	51-58	11.10.4 [= 4.164]	11.10. 3 [= 4.163]	123
55 D 03	51-58	7.3. 18 [= 2.598]	7.3. 19 [= 2.599]	123
55 C 03	51-58	8 .13.2 [= 3.142]	6 .13.2 [= 2.422]	123
54 G 03	51-58	6.3.4 [= 2.224]	6. 4 .4 [= 2.244]	123
54 F 03	51-58	5. 10 .16 [= 2.016]	5. 14 .16 [= 2.096]	123
54 D 03	51-58	4.15. 8 [= 1.748]	4.15. 2 [= 1.742]	123
53 H 03	51-58	2.15. 13 [= 1.033]	2.15. 14 [= 1.034]	123
53 F 03	51-58	1.15. 14 [= 674]	1.15. 19 [= 679]	123
53 B 03	51-58	17. 13 [= 353]	17. 14 [= 354]	123
53 A 03	51-58	7 .17 [= 157]	8 .17 [= 177]	123
59 F 17	58-59	13. 13 .0 [= 4.940]	13. 0 .0 [= 4.680]	133
59 H 17	58-59	8. 13 .0 [= 3.140]	8. 12 .0 [= 3.120]	133
43 F 06	43b-44b	10. 2.4 .0 [= 72.800]	10. 1.9 .0 [= 72.540]	91
43 G 06	43b-44b	9 .13.6.0 [= 69.600]	8 .13.6.0 [= 62.400]	91
43 H 06	43b-44b	4. 5.17 .0 [= 30.940]	4. 6.12 .0 [= 31.200]	91
44 B 06	43b-44b	1.16. 2 .0 [= 13.000]	1.16. 15 .0 [= 13.260]	91
43 F 11	43b-44b	9.7 .0 [= 3.380]	8.12 .0 [= 3.120]	91
70 D 17	69-73	14.2. 16 .12 [= 101.852]	14.2. 14 .12 [= 101.812]	166
71 E 11	69-73	1. 15 .2 [= 662]	1. 17 .2 [= 702]	163
70 B 18	69-73	8. 16 .19.10.0 [= 1.274.240]	8. 6 .19.10.0 [= 1.202.240]	166
71 C 15	69-73	10.2.4 [= 3.644]	10.2.4. 0 [= 72.800]	164
70 F 16	69-73	8.1. 10 .0 [= 58.160]	8.1. 14 .0 [= 58.240]	164
70 E 16	69-73	1.0.12.3. 0 [= 148.380]	1.0.12.3 [= 7.443]	164
31 F 03	31a-32a	10.13. 3 .13.2 [= 1.534.942]	10.13. 13 .3.2 [= 1.538.342]	67, 68
31 F 08	31a-32a	7.2.14. 5 [= 51.405]	7.2.14. 19 [= 51.419]	67, 68
32 A 08	31a-32a	10.2 [= 202]	10.2.0 [= 3.640]	67
32 C 01	31a-32a	(4).(0).16 [= 1.456]	(4).(0).16. 0 [= 29.120]	67
32 B 08	31a-32a	0.5.1 [= 101]	5.1.0 [= 1.820]	67
32 B 12	31a-32a	1.0 [= 20]	1.0.4 [= 364]	67
63 C 16	61-64	10. 8 .3.16.4 [= 1.499.004]	10. 13 .3.16.4 [= 1.535.004]	140, 141
63 D 13	61-64	19.0. 4 .4 [= 136.884]	19.0. 3 .4 [= 136.864]	140
64 F 01	61-64	10.3.0 [= 3.660]	10. 2 .0 [= 3.640]	140

Anhang 3.2: Modifikationen in J.E.S. Thompson (1972)

Codex		J.E.S. Thompson	n (1972)	
Dresden	Codex Dresden	Lesung	Modifikation	Seite
24 D 23	24e Col. D	1.12 .5 .0 [= 11.620]	1.12. 8 .0 [=11.680]	115
24 G 07	24b Col. G	1. 5.5 .0 [= 9.100]	1. 6.0 .0 [= 9.360]	63, 115
52 E 03	52a Col. E red	9.19. 8 .7.8 [= 1.435.828]	9.19. 7 .7.8 [= 1.435.468]	71, 115
52 E 09	52a Col. E black	9.16.4. 10 .18 [= 1.412.858]	9.16.4. 11 .18 [= 1.412.878]	71, 115
51 A 06	51a Col. A	8 .16.4.10.0 [= 1.268.840]	9 .16.4.10.0 [= 1.412.840]	71, 115
51 D 03	51a Col. D red	2.11. 10.11 .0 [= 371.020]	2.11. 9.16 .0 [= 370.760]	71, 115
51 E 06	51a Col. E red	9.19. 12 .0 [= 71.880]	9.19. 6 .0 [= 71.760]	115
52 A 03	52 A black	4.9. 11 .0 [= 35.860]	4.9. 12 .0 [= 35.880]	71
52 C 03	52a Col. C black	1. 18.5 .0.[= 13.780]	1. 13.4 .0 [= 11.960]	115
58 B 13	Lunar table (general)	1.13. 3.18 [= 11.958]	1.13. 4.0 [= 11.960]	116
58 A 13	"Error persists	1.12.13. 1 [= 11.781]	1.12.13. 2 [= 11.782]	115
57 G 13	to end of multiple	1.12.4. 4 [= 11.604]	1.12.4. 5 [= 11.605]	115
57 F 13	almanac at T 69"	1.11.13. 7 [= 11.427]	1.11.13. 8 [= 11.428]	115
57 C 13	(Thompson 1901:	1.11.4. 10 [= 11.250]	1.11.4. 11 [= 11.251]	115
57 B 13	115)	1.10.15. 2 [= 11.102]	1.10.15. 3 [= 11.103]	115
57 A 13		1.10.6. 5 [= 10.925]	1.10.6. 6 [= 10.926]	115
56 F 14		1.9.15. 8 [= 10.748]	1.9.15. 9 [= 10.749]	115
56 E 14		1.9.6. 11 [= 10.571]	1.9.6. 12 [= 10.572]	115
56 D 14		1.8.15. 14 [= 10.394]	1.8.15. 15 [= 10.395]	115
56 C 14		1.8.6. 16 [= 10.216]	1.8.6. 17 [= 10.217]	115
55 H 14		1.7. 15.19 [= 10.039]	1.7. 17.9 [= 10.069]	115
55 G 14		1.7.8. 11 [= 9.891]	1.7.8. 12 [= 9.892]	115
55 F 14		1.6.17. 14 [= 9.714]	1.6.17. 15 [= 9.715]	115
55 E 14		1.6.8. 17 [= 9.537]	1.6.8. 18 [= 9.538]	115
55 D 14		1.6. <mark>0.0</mark> [= 9.360]	1.6. 0.1 [= 9.361]	115
55 C 14		1.5.9. 3 [= 9.183]	1.5.9. 4 [= 9.184]	115
55 B 14		1.5. <mark>0.6</mark> [= 9.006]	1.5. <mark>0.7</mark> [= 9.007]	115
55 A 14		1.4.9. 8 [= 8.828]	1.4.9. 9 [= 8.829]	115
54 G 13		1.4.0. 11 [= 8.651]	1.4.0. 12 [= 8.652]	115
54 D 13		1.3.9. 14 [= 8.474]	1.3.9. 15 [= 8.475]	115
54 C 13		1.3.2. 6 [= 8.326]	1.3.2.7 [= 8.327]	115
54 B 13		1.2.11. 9 [= 8.149]	1.2.11. 10 [= 8.150]	115
54 A 13		1.2.2. 12 [= 7.972]	1.2.2. 13 [= 7.973]	115
53 G 13		1.1.11 .15 [= 7.795]	1.1.11. 16 [= 7.796]	115
53 F 13		1.1.2. 18 [= 7.618]	1.1.2. 19 [= 7.619]	115
53 E 13		1. <mark>0</mark> .12. 1 [= 7.441]	1. <mark>0</mark> .12. 2 [= 7.442]	115
53 B 13		1. <mark>0</mark> .3. 4 [= 7.264]	1. <mark>0</mark> .3. 5 [= 7.265]	115
53 A 13	-	19.13. 16 [= 7.116]	19.13. 17 [= 7.117]	115
52 F 20		19. 4.19 [= 6.939]	19. 5.0 [= 6.940]	115
52 E 20		18.14.2 [= 6.762]	18.14. 3 [= 6.763]	115
52 D 20	4	18.5. 5 [= 6.585]	18.5. 6 [= 6.586]	115
52 C 20	1	17.14. 8 [= 6.408]	17.14. 9 [= 6.409]	115
51 F 19	4	17.5. 10 [= 6.230]	17.5. 11 [= 6.231]	115
51 E 19	4	16.16. 2 [= 6.082]	16.16. 3 [= 6.083]	115
51 D 19	4	16.7. 5 [= 5.905]	16.7. 6 [= 5.906]	115
51 C 19	4	15.16. 8 [= 5.728]	15.16. 9 [= 5.729]	115
51 B 19	ĺ	15.7. 11 [= 5.551]	15.7. 12 [= 5.552]	115
51 A 19		14.16. 14 [= 5.374]	14.16. 15 [= 5.375]	115

Codex		J.E.S. Thompson	n (1972)	
Dresden	Codex Dresden	Lesung	Modifikation	Seite
58 D 03	→ 58 A 13:	14.7. 17 [= 5.197]	14.7. 18 [= 5.198]	115
58 C 03	(Thompson 1901:	13.17. 0 [= 5.020]	13.17. 1 [= 5.021]	115
58 B 03	115)	13.8. 2 [= 4.842]	13.8 .3 [= 4.843]	115
58 A 03		12.17. 5 [= 4.665]	12.17. 6 [= 4.666]	115
57 D 03		12.8. 8 [= 4.488]	12.8 .9 [= 4.489]	115
57 C 03	57a Col. C	12.1. 0 [= 4.340]	12.1.1 [= 4.341]	115
57 A 03	57a Col. A	11.1. 6 [= 3.986]	11.1. 7 [= 3.987]	115
55 D 03	55a Col. D	7.3. 18 [= 2.598]	7.3. 19 [= 2.599]	115
55 C 03	55a Col. C	8 .13.2 [= 3.142]	6 .13.2 [= 2.422]	115
54 F 03	54a Col. F	5. 10 .16 [= 2.016]	5. 14 .16 [= 2.096]	115
54 D 03	54a Col. D	4.15. 8 [= 1.748]	4.15. 2 [= 1.742]	115
53 F 03	53a Col. F top	1.15. 14 [= 674]	1.15. 19 [= 679]	115
53 B 04	53a Col. B top	17. 13 [= 353]	17. 14 [= 354]	115
53 A 03	53a Col. A top	7 .17 [= 157]	8 .17 [= 177]	115
59 H 01	59a Col. H	12. 12 .0.0 [= 90.720]	12. 7 .0.0 [= 88.920]	116
59 F 17	59c Col. F	13. 13 .0 [= 4.940]	13. 0 .0 [= 4.680]	116
59 H 17	59c Col. H	8. 13 .0 [= 3.140]	8. 12 .0 [= 3.120]	116
59 I 17	59c Col. I	6.9 .0 [= 2340]	4.6 .0 [= 1560]	116
43 D 11	44b-43b	1.1.0.6.0 [= 151.320]	1.1.4.12.0 [= 152.880]	24
43 G 06	43b Col. G top	9 .13.6.0 [= 69.600]	8 .13.6.0 [= 62.400]	24, 107,
43 H 06	43b Col. H top	4. 5.17 .0 [= 30.940]	4. 6.12 .0 [= 31.200]	115
44 B 06	44b Col. B top	1. 16.2 .0 [= 13.000]	1. 15.7 .0 [= 12.740]	
43 F 11	43b Col. F bottom	9.7 .0 [= 3.380]	8.12 .0 [= 3.120]	
71 E 11	71c Col. E	1. 15 .2 [= 662]	1. 17 .2 [= 702]	116
70 B 18	70b Col. B	8.16.19. 10 .0 [= 1.274.240]	8.16.19. 11 .0 [= 1.274.260]	22, 116
70 E 16	70d Col. E	1.0. 12.3 .0 [= 148.380]	1.0. 4.8 .0 [= 145.600]	116
71 C 18	71d Col. C	12.2.12 [= 4.372]	12.2.12. 0 [= 87.360]	24, 85,
71 C 15	71d Col. C	10.2.4 [= 3.644]	10.2.4. 0 [= 72.800]	116
70 F 16	70d Col. F	8.1. 10 .0 [= 58.160]	8.1. 14 .0 [= 58.240]	
31 F 03	31a Col. D	10.13. 3.13 .2 [= 1.534.942]	10.13. 13.3 .2 [= 1.538.342]	94, 115
31 F 08	31a - 39a	7.2.14.5 [= 51.405]	7.2.14.19 [= 51.419]	94
32 C 01	31a - 32a	(4).(0).16 [= 1.456]	(4).(0).16. 0 [= 29.120]	115
32 A 04	31a - 32a	3.0.12 [= 1.092]	3.0.12. 0 [= 21.840]	115
32 B 04	31a - 32a	2.0.8 [= 728]	2.0.8. 0 [= 14.560]	115
32 A 08	31a - 32a	10.2 [= 202]	10.2. 0 [= 3.640]	115
32 B 08	32a Col. B	0.5.1 [= 101]	5.1.0 [= 1.820]	94, 115
32 B 12	31a - 32a	1.0 [= 20]	1.0.4 [= 364]	115
63 C 16	63 Col. C middle	10.8.3.16.4 [= 1.499.004]	10. 13 .3.16.4 [= 1.535.004]	116
63 D 13	63b Col. D	19. 0.4.4 [= 136.884]	19. 4.4.0 [= 138.320]	116
64 F 01	63	10. 3. 0 [= 3.660]	10. 2 .0 [= 3.640]	81

Anhang 4: Datenbestand: eigene Lesung, Förstemann (1901), Thompson (1972)

Allgemeine Regeln

Die Identifikation (Spalte (1) der folgenden Tabellen) nennt die Matrix-Position des Blattes *Translation*, in der die Dezimalzahl der eigenen Lesung (Spalte (2)) zu finden ist. Für die Zahlen der eigenen Lesung sind Modifikationen von Originalzahlen durch folgende Darstellung kenntlich gemacht (vgl. Anhang 4.2, 55 C 03):

 $(3142 \rightarrow)$ **2.422**, allgemein: (Originalzahl \rightarrow) modifizierte Zahl.

Für die Statistische Analyse ist ausschließlich die Kennziffer 2 (Spalte (3)) relevant.

Die Modifikationen E.W. Förstemann (1901) (→ Anhang 3.1) und J.E.S. Thompson (1972) (→ Anhang 3.2) sind (in den Spalten (5) und (7)) durch **Fettdruck** kenntlich gemacht.

Dezimalzahlen die aus der Rekonstruktion von mindestens einer Stelle einer Vigesimalzahl gewonnen wurden, sind (in den Spalten (2), (5) und (7)) durch *Kursivdruck* kenntlich gemacht.

Besondere Fälle

(1) Anhang 4.1: 51 A 06 in Verbindung mit 51 A 12: Die Unterschiede zwischen den drei Lesungen dieser Zahlen beruhen auf der Farbgebung der 1 in 51 A 12:

Förstemann (1901:120) liest sie als schwarze 1 und ordnet sie den zwei schwarzen Balken (51 A 13) zu und erhält so zunächst 11 in der zweiten Vigesimalstelle. Förstemann modifiziert anschließend so, als hätte er eine rote 1 in 51 A 12 gelesen und erhält so 51 A 06 (1.578.988) und 51 A 12 (1.412.878).

Die Editionen Kingsborough (1831-1848) und Gates (1932) zeigen 51 A 12 als rote 1. Thompson (1972:115) transkribiert 51 A 12 als rote 1, modifiziert aber 51 A 06 von 8 nach 9.

(2) Anhang 4.1: 54 G 03 (2.244) wird in der eigenen Lesung als Rekonstruktion (2.244) ausgewiesen, weil die Ausgabe Kingsborough 4 Punkte in der zweiten Vigesimalstelle zeigt, von denen ein Punkt in der Ausgabe Cholsamaj nicht mehr lesbar wiedergegeben ist. Demgegenüber las Förstemann (1901:123) 3 Punkte und korrigiert sie entsprechend auf (2.244).

Anhang 4.1: Datenbestand der Seiten p. 24, 46-50

	Neurohr		Förster	mann (1901)	Thompson (1972)		
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
24 B 18	1.366.560	3,1	48	1.366.560	62	1.366.560	
24 C 18	1.364.360	3,1	48	1.364.360	62	1.364.360	
24 D 07	185.120	5,1	48	185.120	62	185.120	
24 D 01	151.840	2,1	48	151.840	62	151.840	
24 E 01	113.880	2,1	48	113.880	62	113.880	
24 F 01	75.920	2,1	48	75.920	62	75.920	
24 E 07	68.900	5,1	48	68.900	62	68.900	
24 G 01	37.960	2,1	48	37.960	62	37.960	
24 D 13	35.040	2,1	48	35.040	62	35.040	
24 F 07	33.280	5,1	48	33.280	62	33.280	
24 E 13	32.120	2,1	48	32.120	62	32.120	
24 F 13	29.200	2,1	48	29.200	62	29.200	
24 G 13	26.280	2,1	48	26.280	62	26.280	
24 D 18	23.360	2,1	48	23.360	62	23.360	
24 E 18	20.440	2,1	48	20.440	62	20.440	
24 F 18	17.520	2,1	48	17.520	62	17.520	
24 G 18	14.600	2,1	48	14.600	62	14.600	
24 D 23	11.620	2,1	48	11.680	115	11.680	
24 G 07	9.100	5,1	48	9.100	115	9.360	
24 E 23	8.760	2,1	48	8.760	62	8.760	
24 F 23	5.840	2,1	48	5.840	62	5.840	
24 G 23	2.920	2,1	48	2.920	62	2.920	
50 D 19	2.920	4,1	108	2.920	66	2.920	
50 C 19	2.912	4,1	108	2.912	66	2.912	
50 B 19	2.662	4,1	108	2.662	66	2.662	
50 A 19	2.572	4,1	108	2.572	66	2.572	
49 D 19	2.336	4,1	108	2.336	66	2.336	
49 C 19	2.328	4,1	108	2.328	66	2.328	
24 A 21	2.200	8,1	48	2.200	62	2.200	
49 B 19	2.078	4,1	108	2.078	66	2.078	
49 A 19	1.988	4,1	108	1.988	66	1.988	
48 D 19	1.752	4,1	108	1.752	66	1.752	
48 C 19	1.744	4,1	108	1.744	66	1.744	
48 B 19	1.494	4,1	108	1.494	66	1.494	
48 A 19	1.403	4,1	108	1.404	66	1.404	
47 D 19	1.168	4,1	107	1.168	66	1.168	
47 C 19	1.160	4,1	107	1.160	66	1.160	
47 B 19	910	4,1	107	910	66	910	
47 A 19	820	4,1	107	820	66	820	
46 D 19	584	4,1	107	584	66	584	
46 C 19	576	4,1	107	576	66	576	
46 B 19	326	4,1	107	326	66	326	
46 A 19	236	4,1	107	236	66	236	
10 /1 1/	230	7,1	107	230	00	230	

Anhang 4.2: Datenbestand der Seiten p. 51-58

	Neurohr		Förster	nann (1901)	Thompso	n (1972)
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung
(1)	(2)	(3)	(4)	(5)	(6)	(7)
51 A 12	1.578.988	5,0	120	1.578.988	71	1.578.988
52 E 03	1.435.828	9,0	119	1.434.748	71, 115	1.435.468
52 F 03	1.412.863	9,0	119	1.412.863	71	1.412.863
52 E 09	1.412.858	5,0	119	1.412.878	71, 115	1.412.878
52 F 09	1.412.848	5,0	119	1.412.848	71	1.412.848
51 A 06	1.268.840	5,0	120	1.268.800	71, 115	1.412.840
51 C 03	466.440	2,0	119	466.440	71	466.440
51 D 03	371.020	5,0	119	370.760	71, 115	370.760
51 B 03	215.280	2,0	119	215.280	71	215.280
51 C 07	203.320	2,0	119	203.320	71	203.320
51 D 07	191.360	2,0	119	191.360	71	191.360
51 E 06	71.880	5,0	119	71.760	71, 115	71.760
52 A 06	59.800	2,0	119	59.800	71	59.800
52 C 06	47.840	2,0	119	47.840	71	47.840
51 E 03	47.840	2,0	119	47.840	71	47.840
52 B 07	35.880	2,0	119	35.880	71	35.880
52 A 03	35.860	2,0	119	35.880	71	35.880
52 B 03	23.920	2,0	119	23.920	71	23.920
52 C 03	13.780	5,0	119	11.960	115	11.960
58 B 13	11.958	3,0	123	11.958	116	11.960
58 A 13	11.781	3,0	123	11.781	115	11.782
57 G 13	11.604	3,0	123	11.604	115	11.605
57 F 13	11.427	3,0	123	11.427	115	11.428
57 C 13	11.250	3,0	123	11.250	115	11.251
57 B 13	11.102	3,0	123	11.102	115	11.103
57 A 13	10.925	3,0	123	10.925	115	10.926
56 F 14	10.748	3,0	123	10.748	115	10.749
56 E 14	10.571	3,0	123	10.571	115	10.572
56 D 14	10.394	3,0	123	10.394	115	10.395
56 C 14	10.216	3,0	123	10.216	115	10.217
55 H 14	10.039	3,0	123	10.068	115	10.069
55 G 14	9.891	3,0	123	9.891	115	9.892
55 F 14	9.714	3,0	123	9.714	115	9.715
55 E 14	9.537	3,0	123	9.537	115	9.538
55 D 14	9.360	3,0	123	9.360	115	9.361
55 C 14	9.183	3,0	123	9.183	115	9.184
55 B 14	9.006	3,0	123	9.006	115	9.007
55 A 14	8.828	3,0	123	8.828	115	8.829
54 G 13	8.651	3,0	123	8.651	115	8.652
54 D 13	8.474	3,0	123	8.474	115	8.475
54 C 13	8.326	3,0	123	8.326	115	8.327
54 B 13	8.149	3,0	123	8.149	115	8.150
54 A 13	7.972	3,0	123	7.972	115	7.973
53 G 13	7.795	3,0	123	7.795	115	7.796
53 F 13	7.618	3,0	123	7.618	115	7.619

Neurohr			Förstemann (1901)		Thompson (1972)	
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung
(1)	(2)	(3)	(4)	(5)	(6)	(7)
53 E 13	7.441	3,0	123	7.441	115	7.442
53 B 13	7.264	3,0	123	7.264	115	7.265
53 A 13	7.116	3,0	123	7.116	115	7.117
52 F 20	6.939	3,0	123	6.939	115	6.940
52 E 20	6.762	3,0	123	6.762	115	6.763
52 D 20	6.585	3,0	123	6.585	115	6.586
52 C 20	6.408	3,0	123	6.408	115	6.409
51 F 19	6.230	3,0	123	6.230	115	6.231
51 E 19	6.082	3,0	123	6.082	115	6.083
51 D 19	5.905	3,0	123	5.905	115	5.906
51 C 19	5.728	3,0	123	5.728	115	5.729
51 B 19	5.551	3,0	123	5.551	115	5.552
51 A 19	5.374	3,0	123	5.374	115	5.375
58 D 03	5.197	3,0	123	5.197	115	5.198
58 C 03	5.020	3,0	123	5.020	115	5.021
58 B 03	4.842	3,0	123	4.842	115	4.843
58 A 03	4.665	3,0	123	4.665	115	4.666
57 D 03	4.488	3,0	123	4.488	115	4.489
57 C 03	4.340	3,0	123	4.340	115	4.341
57 B 03	4.164	3,0	123	4.163	implizit	4.164
57 A 03	3.986	3,0	123	3.986	115	3.987
56 F 03	3.809	3,0	123	3.809	implizit	3.809
56 E 03	3.632	3,0	123	3.632	implizit	3.632
56 D 03	3.455	3,0	123	3.455	implizit	3.455
56 A 03	3.278	3,0	123	3.278	implizit	3.278
55 G 03	3.130	3,0	123	3.130	implizit	3.130
55 F 03	2.953	3,0	123	2.953	implizit	2.953
55 E 03	2.776	3,0	123	2.776	implizit	2.776
55 D 03	2.598	3,0	123	2.599	115	2.599
55 C 03	(3142→) 2.422	3,0	123	2.422	115	2.422
54 G 03	2.244	3,0	123	2.244	115	2.244
54 F 03	2.016	3,0	123	2.096	115	2.096
54 E 03	1.919	3,0	123	1.919	implizit	1.919
54 D 03	1.748	3,0	123	1.742	115	1.742
54 C 03	1.565	3,0	123	1.565	implizit	1.565
54 B 03	1.388	3,0	123	1.388	implizit	1.388
54 A 03	1.211	3,0	123	1.211	implizit	1.211
53 H 03	1.033	3,0	123	1.034	implizit	1.033
53 G 03	856	3,0	123	856	implizit	856
53 F 03	674	3,0	123	679	115	679
53 C 03	502	3,0	123	502	implizit	502
53 B 03	353	3,0	123	354	115	354
53 A 03	157	3,0	123	177	115	177

Anhang 4.3: Datenbestand der Seiten p. 58-59

Neurohr			Förstemann (1901)		Thompson (1972)	
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung
(1)	(2)	(3)	(4)	(5)	(6)	(7)
58 F 09	1.426.360	2,2	135	1.426.360	78	1.426.360
58 F 15	1.386.580	3,2	135	1.386.580	78	1.386.580
59 A 01	144.300	2,2	133	144.300	78	144.300
59 B 01	140.400	2,2	133	140.400	78	140.400
59 C 01	138.840	2,2	133	138.840	78	138.840
59 D 01	134.160	2,2	133	134.160	78	134.160
59 E 01	133.380	2,2	133	133.380	78	133.380
59 F 01	118.560	2,2	133	118.560	78	118.560
59 H 01	112.320	2,2	133	112.320	116	88.920
59 G 01	103.740	2,2	133	103.740	78	103.740
59 I 01	74.100	2,2	133	74.100	78	74.100
59 A 07	44.460	2,2	133	44.460	78	44.460
59 B 07	29.640	2,2	133	29.640	78	29.640
59 C 07	14.820	2,2	133	14.820	78	14.820
59 D 07	14.040	2,2	133	14.040	78	14.040
59 E 07	13.260	2,2	133	13.260	78	13.260
59 F 07	12.480	2,2	133	12.480	78	12.480
59 G 07	11.700	2,2	133	11.700	78	11.700
59 H 07	10.920	2,2	133	10.920	78	10.920
59 I 07	10.140	2,2	133	10.140	78	10.140
59 A 13	9.360	2,2	133	9.360	78	9.360
59 A 17	8.580	2,2	133	8.580	78	8.580
59 B 17	7.800	2,2	133	7.800	78	7.800
59 C 17	7.020	2,2	133	7.020	78	7.020
59 D 17	6.240	2,2	133	6.240	78	6.240
59 E 17	5.460	2,2	133	5.460	78	5.460
59 F 17	4.940	2,2	133	4.680	116	4.680
59 G 17	3.900	2,2	133	3.900	78	3.900
59 H 17	3.140	5,2	133	3.120	116	3.120
59 I 17	2.340	2,2	133	2.340	78	1.560
59 H 13	2.340	2,2	133	2.340	116	2.340
59 I 13	780	2,2	133	780	78	780
59 A 21	702	6,2	133	702	78	702
59 B 21	624	6,2	133	624	78	624
59 C 21	546	6,2	133	546	78	546
58 E 14	511	8,2	134	511	78	511
59 D 21	468	6,2	133	468	78	468
59 E 21	390	6,2	133	390	78	390
59 F 21	312	6,2	133	312	78	312
59 G 21	234	6,2	133	234	78	234
59 H 21	156	6,2	133	156	78	156
59 I 21	78	6,2	133	78	78	78
58 E 16	12	8,2	134	251	78	251

Anhang 4.4: Datenbestand der Seiten p. 43-44

Neurohr			Förstemann (1901)		Thompson (1972)	
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung
(1)	(2)	(3)	(4)	(5)	(6)	(7)
43 C 08	1.435.980	2,3	92	1.435.980	107	1.435.980
43 D 11	151.320	2,3	92	151.320	24, 107	152.880
43 E 06	131.040	2,3	92	131.040	24, 107	131.040
43 D 06	109.200	2,3	91	109.200	24, 107	109.200
43 F 06	72.800	5,3	91	72.540	24, 107	72.800
43 G 06	69.600	5,3	91	62.400	24, 107, 115	62.400
43 H 06	30.940	5,3	91	31.200	24, 107, 115	31.200
44 A 06	15.600	2,3	91	15.600	24, 107	15.600
44 B 06	13.000	5,3	91	13.260	24, 107, 115	12.740
43 E 11	3.900	2,3	91	3.900	24, 107	3.900
43 F 11	3.380	5,3	91	3.120	24, 107, 115	3.120
43 G 11	2.340	2,3	91	2.340	24, 107	2.340
43 H 11	1.560	2,3	91	1.560	24, 107	1.560
44 A 11	780	2,3	91	780	24, 107	780
44 C 06	702	6,3	91	702	24, 107	702
44 D 06	624	6,3	91	624	24, 107	624
44 E 06	546	6,3	91	546	24, 107	546
44 F 06	468	6,3	91	468	24, 107	468
44 B 11	390	6,3	91	390	24, 107	390
43 C 14	352	8,3	92	352	107	352
44 C 11	312	6,3	91	312	24, 107	312
44 D 11	234	6,3	91	234	24, 107	234
44 E 11	156	6,3	91	156	24, 107	156
44 F 11	78	6,3	91	78	24, 107	78

Anhang 4.5: Datenbestand der Seiten p. 69-73 (9 Ix)

Neurohr			Förstemann (1901)		Thompson (1972)	
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung
(1)	(2)	(3)	(4)	(5)	(6)	(7)
69 F 11	12.391.470	7,4	171	12.391.470	22, 85	12.391.470
70 C 07	1.567.332	5,4	166	1.567.332	85	1.567.332
70 D 07	1.520.654	5,4	166	1.520.654	85	1.520.654
70 B 06	1.437.020	5,4	166	1.437.020	85	1.437.020
70 A 06	1.394.120	2,4	166	1.394.120	85	1.394.120
70 B 18	-	-	166, 167	1.202.240	-	-
70 A 18	1.201.200	3,4	166	1.201.200	85	1.201.200
70 E 01	280.800	2,4	164	168.480	85	168.480
70 F 01	210.600	2,4	164	154.440	85	154.440
71 A 01	140.400	2,4	164	140.400	85	140.400
71 B 01	126.360	2,4	164	126.360	85	126.360
71 C 01	112.320	2,4	164	112.320	85	112.320
70 D 21	111.554	5,4	166	111.554	85	111.554
70 D 17	101.852	5,4	166	101.812	85	101.852
71 D 01	98.280	2,4	164	98.280	85	98.280
71 E 01	84.240	2,4	164	84.240	85	84.240
73 D 05	83.474	5,4	167	83.474	86	83.474
70 E 07	70.200	2,4	164	70.200	85	70.200
70 F 07	56.160	2,4	164	56.160	85	56.160
71 A 06	42.120	2,4	164	42.120	85	42.120
73 E 05	34.732	5,4	167	34.732	86	34.732
71 B 06	28.080	2,4	164	28.080	85	28.080
73 F 06	14.040	2,4	163	14.040	86	14.040
71 C 06	7.020	2,4	163	7.020	85	7.020
71 D 06	6.318	2,4	163	6.318	85	6.318
71 E 06	5.616	2,4	163	5.616	85	5.616
70 E 12	4.914	2,4	163	4.914	85	4.914
70 F 12	4.212	2,4	163	4.212	85	4.212
71 A 11	3.510	2,4	163	3.510	85	3.510
71 B 11	2.808	2,4	163	2.808	85	2.808
71 C 11	2.106	2,4	163	2.106	85	2.106
70 B 12	1.646	8,4	166, 167	1.646	85	1.646
71 D 11	1.404	2,4	163	1.404	85	1.404
71 E 11	(662→) 702	2,4	163	702	85, 116	702
70 A 12	606	8,4	166, 167	606	85	606
70 B 22	-	8,4	168	1) 208	-	-
70 A 23	86	8,4	166, 167	86	85	86

¹⁾ 70 B 18 wird von Förstemann (1901:166-67) in Zusammenhang mit anderen Zahlen dieses Abschnitts diskutiert. Daher wird auch die zugehörige Zahl in 70 B 22 hier geführt.

Anhang 4.6: Datenbestand der Seiten p. 69-73 (4 Eb)

Neurohr			Förstemann (1901)		Thompson (1972)	
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung
(1)	(2)	(3)	(4)	(5)	(6)	(7)
69 E 11	12.381.728	7,5	171	12.381.728	22, 85	12.381.728
70 B 18	1.274.240	3,5	166	1.202.240	22, 116	1.274.260
70 E 16	148.380	9,5	164	7443	85, 116	145.600
71 A 15	109.200	2,5	164	109.200	24, 85	109.200
71 B 15	94.640	2,5	164	94.640	24, 85	94.640
71 D 15	65.520	2,5	164	65.520	24, 85, 116	65.520
70 F 16	58.160	5,5	164	58.240	24, 85	58.240
71 E 15	50.960	2,5	164	50.960	24, 85	50.960
70 E 22	43.680	2,5	164	43.680	24, 85	43.680
70 F 22	36.400	2,5	164	36.400	24, 85	36.400
71 A 22	29.120	2,5	164	29.120	24, 85	29.120
71 B 22	21.840	2,5	164	21.840	24, 85	21.840
71 C 22	14.560	2,5	164	14.560	24, 85	14.560
71 D 22	5.460	2,5	164	5.460	24, 85	5.460
71 C 18	²⁾ 4.372	5,5	164	-	24, 85	87.360
71 C 15	²⁾ 3.644	5,5	164	72.800	24, 85, 116	72.800
71 E 22	3.640	2,5	164	3.640	24, 85	3.640
71 F 22	1.820	2,5	164	1.820	87	1.820
71 G 22	1.755	2,5	164	1.755	87	1.755
72 A 19	1.690	2,5	164	1.690	87	1.690
72 B 19	1.625	2,5	164	1.625	87	1.625
72 C 19	1.560	2,5	164	1.560	87	1.560
72 D 19	1.495	2,5	164	1.495	87	1.495
72 E 19	1.430	2,5	164	1.430	87	1.430
72 F 19	1.365	2,5	164	1.365	87	1.365
72 G 19	1.300	2,5	164	1.300	87	1.300
73 A 19	1.235	2,5	164	1.235	87	1.235
73 B 19	1.170	2,5	164	1.170	87	1.170
73 C 19	1.105	2,5	164	1.105	87	1.105
73 D 19	1.040	2,5	164	1.040	87	1.040
73 E 19	975	2,5	164	975	87	975
71 F 14	910	2,5	164	910	87	910
71 G 14	845	2,5	164	845	87	845
72 A 12	780	2,5	164	780	87	780
72 B 12	715	2,5	164	715	87	715
72 C 12	650	2,5	164	650	87	650
72 D 12	585	2,5	164	585	87	585
72 E 12	520	2,5	164	520	87	520
72 F 12	455	2,5	164	455	87	455
72 G 12	390	2,5	164	390	87	390
73 A 13	325	2,5	164	325	87	325
73 B 13	260	2,5	164	260	87	260
70 B 22	2) 208	8,5	166	208	87	208
73 C 13	195	2,5	164	195	87	195
						\rightarrow

	Neurohr		Förste	mann (1901)	Thompson (1972)		
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
73 D 13	130	2,5	164	130	87	130	
73 E 13	65	2,5	164	65	87	65	

 $^{^{2)}\,}$ 71 C 18 (4.372) und 71 C 15 (3.644) anhand der Editionen Kingsborough (1831-1848) und Gates (1932) evaluiert.

Anhang 4.7: Datenbestand der Seiten p. 31-32

	Neurohr		Förster	mann (1901)	Thompso	on (1972)
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung 3)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
31 G 07	2.804.100	5,6	69	2.804.100	?	2.804.100
31 F 03	1.534.942	5,6	67, 68	1.538.342	94, 115	1.538.342
31 D 03	1.272.544	2,6	67, 68	1.272.544	94	1.272.544
31 E 03	1.268.540	2,6	67, 68	1.268.540	94	1.268.540
31 F 08	51.405	5,6	67, 68	51.419	94	51.419
32 C 08	1.456	2,6	67	1.456	115	1.456
32 C 12	1.001	2,6		1	94	1.001
32 A 12	728	2,6	67	728	94	728
32 F 01	637	2,6	67	637	94	637
32 G 01	546	2,6	67	546	94	546
32 D 07	455	2,6	67	455	94	455
32 E 07	273	2,6	67	273	94	273
32 A 08	202	6,6	67	3.640	115	3.640
32 F 07	182	2,6	67	182	94	182
31 D 09	121	8,6	67	121	94	121
32 B 08	101	6,6	67	1.820	94, 115	1.820
32 G 07	91	2,6	67	91	94	91
32 B 12	20	6,6	67	364	115	364
31 E 09	17	8,6	67	17	94	17
32 C 01	-	2,6	67	29.120	115	29.120
32 A 04	-	2,6	-	-	115	21.840
32 B 04	-	2,6	-	-	115	14.560
32 D 01	-	2,6	67	910	94	910
32 E 01	-	2,6	67	819	94	819
32 C 04	-	2,6	-	-	94	7.280
32 B 01	-	2,6	-	-	94	36.400
32 A 01	-	2,6	-	-	94	72.800

³⁾ Die Zahlen der Lesung Thompson (1972) wurden mit Hilfe der Darstellung in Paxton (2001:47) evaluiert.

Anhang 4.8: Datenbestand der Seiten p. 62-64

	Neurohr		Försten	mann (1901)	Thompson (1972)			
Identifikation	Lesung	Kz.1&2	Seite	Lesung	Seite	Lesung		
(1)	(2)	(3)	(4)	(5)	(6)	(7)		
63 C 13	1.538.342	5,7	141	1.538.342	21	1.538.342		
63 C 16	1.499.004	5,7	140, 141	1.535.004	116	1.535.004		
62 E 08	1.272.921	5,7	141	1.272.921	21	1.272.921		
62 F 08	1.272.544	2,7	141	1.272.544	21	1.272.544		
63 B 18	1.268.540	2,7	141	1.268.540	21	1.268.540		
63 A 18	1.234.220	5,7	141	1.234.220	21	1.234.220		
63 D 01	145.600	2,7	140	145.600	81	145.600		
63 D 13	136.884	6,7	140	136.864	116	138.320		
63 E 01	109.200	2,7	140	109.200	81	109.200		
63 F 01	72.800	2,7	140	72.800	81	72.800		
63 C 27	51.419	8,7	141	51.419	-	51.419		
64 A 01	36.400	2,7	140	36.400	81	36.400		
64 B 01	29.120	2,7	140	29.120	81	29.120		
64 C 01	21.840	2,7	140	21.840	81	21.840		
64 D 01	14.560	2,7	140	14.560	81	14.560		
64 E 01	7.280	2,7	140	7.280	81	7.280		
64 F 01	3.660	2,7	140	3.640	81	3.640		
63 D 11	1.820	2,7	140	1.820	81	1.820		
64 G 01	1.820	2,7	140	1.820	81	1.820		
63 E 11	1.729	2,7	140	1.729	81	1.729		
63 F 11	1.638	2,7	140	1.638	81	1.638		
64 A 10	1.547	2,7	140	1.547	81	1.547		
64 B 10	1.456	2,7	140	1.456	81	1.456		
64 C 10	1.365	2,7	140	1.365	81	1.365		
64 D 10	1.274	2,7	140	1.274	81	1.274		
64 E 10	1.183	2,7	140	1.183	81	1.183		
64 F 10	1.092	2,7	140	1.092	81	1.092		
64 G 10	1.001	2,7	140	1.001	81	1.001		
63 D 23	910	2,7	140	910	81	910		
63 E 23	819	2,7	140	819	81	819		
63 F 23	728	2,7	140	728	81	728		
64 A 18	637	2,7	140	637	81	637		
64 B 18	546	2,7	140	546	81	546		
62 E 15	456	8,7	141	456	81	456		
64 C 18	455	2,7	140	455	81	455		
64 D 18	364	2,7	140	364	81	364		
64 E 18	273	2,7	140	273	81	273		
63 A 27	235	8,7	141	235	81	235		
64 F 18	182	2,7	140	182	81	182		
62 F 15	121	8,7	142	121	81	121		
64 G 18	91	2,7	139	91	81	91		
63 B 27	17	8,7	142	17	81	17		

Anhang 5: Informationsverarbeitung

(1) Für Anhänge 5.2 - 5.3 gilt:

Kennziffer 1 (→ Programmzeile 29019) ist für die vorliegende Untersuchung nicht relevant.

Kennziffer 2 (→ Programmzeile 29030) unterscheidet für die vorliegende Untersuchung die acht ausgewählten Abschnitte des Codex Dresden in der Software-technischen Realisierung.

Anhang 5.1: Software-Programm (Quellcode)

```
100 REM *** Analyse von Daten aus acht ausgewählten Abschnitten des Codex Dresden mit
            Dateiausgabe ***
101 REM
105 OPEN "O", #1, "P260KX0N.BAS"
106 REM OPEN "O", #2, "WERTE_X9.BAS"
110 DIM W#(500),Y1(500),Y2(500),IX(500)
120 STF=3 : XMX#=-1# : XMN#=100000000# : TMX#=99999# : P=260
130 REM *** Statistikfaktor STF
200 GW1=.01 : GW2=.001 : GW3=.0001
210 INPUT "Erste Kennziffer(n)";K1$: IF K1$="x" THEN END
220 INPUT "Zweite Kennziffer(n)";K2$
230 RESTORE : I=0
240 READ X#,Y1,Y2
250 IF X#=-1# THEN 320
260 Y=Y1: K$=K1$: GOSUB 1000: IF ES=0 THEN 240
270 Y=Y2 : K$=K2$ : GOSUB 1000 : IF ES=0 THEN 240
275 REM WRITE #2, I, X#, Y1, Y2
280 I=I+1 : W#(I)=X# : Y1(I)=Y1 : Y2(I)=Y2
290 IF X#>XMX# THEN XMX#=X#
300 IF X#<XMN# THEN XMN#=X#
310 GOTO 240
320 PRINT"Anzahl der Treffer";I: N=I: IF I=0 THEN 120
330 PRINT"kleinster / größter Wert ";XMN#,XMX#
340 INPUT"Periode / auffällige Teiler / ... mit Ausgabe 0/1/2";I
350 EN=0: IF I=2 THEN EN=1
360 IF I>0 THEN 600
400 REM *** Periodenrechnung ***
410 INPUT"Periode";W0
                                     I3(.0001)"
420 PRINT" W
                   I1(.01)
                            I2(.001)
430 FOR W=W0-10 TO W0+10
440 I1=0 : I2=0 : I3=0 : W#=W
450 FOR I=1 TO N
460 V=W#(I)/W#
470 IF (V-INT(V)<GW1) OR (V-INT(V)>1-GW1) THEN I1=I1+1
480 IF (V-INT(V)<GW2) OR (V-INT(V)>1-GW2) THEN I2=I2+1
490 IF (V-INT(V)<GW3) OR (V-INT(V)>1-GW3) THEN I3=I3+1
500 NEXT I
510 PRINT W,I1,I2,I3
520 NEXT W
530 GOTO 120
600 REM *** Auffällige Teiler ***
610 PRINT"Teiler T
                   N(T-1)
                               N(T)
                                        N(T+1)
                                                  teilt";P
620 IZ=0 : FOR T=28 TO TMX#
630 IZ1=0
640 TA=0 : TB=0 : TC=0 : T#=T : J=0
650 FOR I=1 TO N
660 IF W#(I)/(T#-1#)=INT(W#(I)/(T#-1#)) THEN TA=TA+1
670 IF W#(I)/T#=INT(W#(I)/T#) THEN TB=TB+1 : J=J+1 : IX(J)=I
680 IF W#(I)/(T#+1#)=INT(W#(I)/(T#+1#)) THEN TC=TC+1
690 NEXT I
```

```
700 IF TB<=STF*SQR(TB)+(TA+TC)/2 THEN 840
710 QR=T/P : IF QR < 1 THEN QR=1/QR
720 PRINT T,TA,TB,TC,OR
725 WRITE #1, T,TA,TB,TC,QR
730 IF EN=0 THEN 830
740 PRINT "Teiler hat folgende Datensätze:"
750 J0=2*INT(J/2)
760 FOR I=1 TO J0-1 STEP 2
770 PRINT W#(IX(I)),Y1(IX(I));Y2(IX(I)),W#(IX(I+1)),Y1(IX(I+1));Y2(IX(I+1))
771 REM WRITE #1, W#(IX(I)),Y1(IX(I));Y2(IX(I)),W#(IX(I+1)),Y1(IX(I+1));Y2(IX(I+1))
780 IZ1=IZ1+1 : IF IZ1=15 THEN IZ1=0 : GOSUB 2000
790 NEXT I
800 REM FOR I=J0+1 TO J: WRITE #1, W#(IX(I)),Y1(IX(I));Y2(IX(I)): NEXT I: GOSUB
2000
801 FOR I=J0+1 TO J: PRINT W#(IX(I)),Y1(IX(I));Y2(IX(I)): NEXT I: GOSUB 2000
810 PRINT"Teiler T N(T-1)
                               N(T)
                                        N(T+1)
                                                  teilt":P
820 IF EN=1 THEN 840
830 IZ=IZ+1 : IF IZ=15 THEN IZ=0 : GOSUB 2000
840 NEXT T
845 CLOSE #1
846 REM CLOSE #2
850 GOTO 120
1000 REM *** Kennziffer es=1/0 enthalten/nicht enthalten ***
1010 L=LEN(K\$) : ES=0
1020 IF L=0 THEN ES=1 : GOTO 1060
1030 FOR J=1 TO L
1040 IF VAL(MID$(K$,J,1))=Y THEN ES=1
1050 NEXT J
1060 RETURN
2000 REM *** Warteroutine ***
```

2010 PRINT "Taste drücken"

2030 RETURN

2020 A\$=INKEY\$: IF A\$="" THEN 2020

Anhang 5.2: Daten der eigenen Lesung in der Software

```
29000 REM --- DATEN C.D.: p. 24,43,44, 46-50, 51-59, 62-64, 69-73
29001 REM
29002 REM --- Stand: 03.02.2009
29003 REM
29010 REM MZ(I): MAYAZAHL (dez.)
29019 REM K1: Kennziffer 1 (für vorliegende Untersuchung nicht relevant)
29020 REM
               0 = \text{solit}äre Zahl
29021 REM
               1 = Glied einer Folge mit genau 1 Datumselement
               2 = Glied einer Folge mit genau 2 Datumselementen
29022 REM
29023 REM
               3 = Glied einer Folge mit genau 3 Datumselementen
29024 REM
               4 = Glied einer Folge mit Vigesimalzahl, Tzolkin, Haab
29025 REM
               5 = Glied einer Folge, jedoch nicht ganzzahliges Vielfaches
29026 REM
               6 = Glied einer Folge, jedoch < (ggT oder 115d oder 260d)
29027 REM
               7 = Schlangenzahl
29028 REM
               8 = Schleifenzahl
               9 = Lesung unsicher, alternative Lesung im Datenbestand
29029 REM
29030 REM K2: Kennziffer 2
               0 = p. 51-58 (Finsternisse)
29031 REM
               1 = p. 24, 46-50  (Venus)
29032 REM
               2 = p. 59 (Basis: 13 Muluk)
29033 REM
29034 REM
               3 = p. 43-44 (Basis: 3 Lamat)
               4 = p. 70-71 (Basis: 9 Ix)
29035 REM
               5 = p. 70-73 (Basis: 4 Eb)
29036 REM
29037 REM
               6 = p. 31-32
29038 REM
               7 = p. 63-64
29050 REM
29060 REM MZ, KS, PK, ..., (4mal)
29068 REM *** Analyse: Mayadaten gemäß eigener Lesung (Axel Neurohr)
29070 REM
29100 REM --- DATEN C.D.: p. 51-58 (Finsternis-Seiten)
              51 A 12
                         52 E 03
                                   52 F 03
29110 REM
                                             52 E 09
29115 DATA 1578988,5,0, 1435828,9,0, 1412863,9,0, 1412858,5,0
29120 REM
              52 F 09
                        51 A 06
                                   51 C 03
                                              51 D 03
29125 DATA 1412848,5,0, 1268840,5,0, 466440,2,0, 371020,5,0
29130 REM
              51 B 03
                         51 C 07
                                   51 D 07
                                              51 E 06
29135 DATA 215280,2,0, 203320,2,0, 191360,2,0, 71880,5,0
                         52 C 06
29140 REM
              52 A 06
                                   51 E 03
                                              52 B 07
29145 DATA 59800,2,0, 47840,2,0, 47840,2,0, 35880,2,0
                         52 B 03
                                   52 C 03
29150 REM
              52 A 03
                                              58 B 13
29155 DATA 35860,2,0, 23920,2,0, 13780,5,0, 11958,3,0
              58 A 13
                         57 G 13
                                   57 F 13
                                              57 C 13
29160 REM
29165 DATA 11781,3,0, 11604,3,0, 11427,3,0, 11250,3,0
29170 REM
              57 B 13
                         57 A 13
                                   56 F 14
                                              56 E 14
29175 DATA 11102,3,0, 10925,3,0, 10748,3,0, 10571,3,0
                         56 C 14
29180 REM
              56 D 14
                                   55 H 14
                                              55 G 14
29185 DATA 10394,3,0, 10216,3,0, 10039,3,0,
                                                9891,3,0
29190 REM
              55 F 14
                        55 E 14
                                   55 D 14
                                             55 C 14
              9714,3,0,
                         9537,3,0, 9360,3,0,
29195 DATA
                                              9183,3,0
29200 REM
              55 B 14
                        55 A 14
                                   54 G 13
                                              54 D 13
```

```
29205 DATA
              9006,3,0,
                         8828,3,0,
                                   8651,3,0,
                                              8474,3,0
29210 REM
              54 C 13
                                              53 G 13
                         54 B 13
                                   54 A 13
29215 DATA
              8326,3,0,
                         8149,3,0,
                                    7972,3,0,
                                              7795,3,0
29220 REM
              53 F 13
                        53 E 13
                                   53 B 13
                                             53 A 13
29225 DATA
              7618,3,0,
                         7441,3,0,
                                   7264,3,0,
                                              7116,3,0
29230 REM
              52 F 20
                        52 E 20
                                   52 D 20
                                             52 C 20
29235 DATA
              6939,3,0,
                         6762,3,0,
                                    6585,3,0,
                                              6408,3,0
29240 REM
              51 F 19
                        51 E 19
                                   51 D 19
                                             51 C 19
29245 DATA
              6230,3,0,
                         6082,3,0,
                                   5905,3,0,
                                              5728,3,0
29250 REM
                         51 A 19
              51 B 19
                                   58 D 03
                                              58 C 03
29255 DATA
              5551.3.0.
                         5374.3.0.
                                   5197.3.0.
                                              5020,3,0
29260 REM
              58 B 03
                         58 A 03
                                   57 D 03
                                              57 C 03
29265 DATA
              4842,3,0,
                         4665,3,0,
                                   4488,3,0,
                                              4340,3,0
                         57 A 03
                                              56 E 03
29270 REM
              57 B 03
                                   56 F 03
              4164,3,0,
                         3986,3,0,
                                    3809,3,0,
29275 DATA
                                              3632,3,0
29280 REM
              56 D 03
                         56 A 03
                                   55 G 03
                                              55 F 03
29285 DATA
              3455,3,0,
                         3278,3,0,
                                    3130,3,0,
                                              2953,3,0
                        55 D 03
                                   55 C 03
                                              54 G 03
29290 REM
              55 E 03
29295 DATA
              2776,3,0,
                         2598,3,0,
                                    2422,3,0,
                                              2244,3,0
29300 REM
              54 F 03
                        54 E 03
                                   54 D 03
                                             54 C 03
                                   1748,3,0,
                         1919,3,0,
29305 DATA
              2016,3,0,
                                              1565,3,0
29310 REM
              54 B 03
                        54 A 03
                                   53 H 03
                                              53 G 03
                         1211,3,0,
                                   1033,3,0,
29315 DATA
              1388,3,0,
                                               856,3,0
29320 REM
              53 F 03
                        53 C 03
                                   53 B 03
                                             53 A 03
29325 DATA
               674,3,0,
                         502,3,0,
                                   353,3,0,
                                             157,3,0
29400 REM --- DATEN C.D.: p. 24, 46-50 (Venus)
                         24 C 18
29410 REM
              24 B 18
                                   24 D 07
                                              24 D 01
29415 DATA 1366560,3,1, 1364360,3,1, 185120,5,1, 151840,2,1
29420 REM
              24 E 01
                        24 F 01
                                   24 E 07
                                             24 G 01
29425 DATA 113880,2,1, 75920,2,1, 68900,5,1, 37960,2,1
29430 REM
              24 D 13
                         24 F 07
                                   24 E 13
                                             24 F 13
29435 DATA 35040,2,1, 33280,5,1, 32120,2,1, 29200,2,1
              24 G 13
                         24 D 18
29440 REM
                                   24 E 18
                                              24 F 18
29445 DATA 26280,2,1, 23360,2,1, 20440,2,1, 17520,2,1
29450 REM
              24 G 18
                         24 D 23
                                   24 G 07
                                              24 E 23
             14600,2,1, 11620,2,1,
                                     9100,5,1,
                                               8760,2,1
29455 DATA
29460 REM
              24 F 23
                        24 G 23
                                   50 D 19
                                              50 C 19
29465 DATA
                         2920,2,1,
              5840,2,1,
                                    2920,4,1,
                                              2912,4,1
29470 REM
              50 B 19
                         50 A 19
                                   49 D 19
                                              49 C 19
29475 DATA
              2662,4,1,
                         2572,4,1,
                                    2336,4,1,
                                              2328,4,1
29480 REM
              24 A 21
                         49 B 19
                                   49 A 19
                                              48 D 19
                         2078,4,1,
29485 DATA
              2200,8,1,
                                    1988,4,1,
                                              1752,4,1
29490 REM
              48 C 19
                        48 B 19
                                   48 A 19
                                              47 D 19
29495 DATA
              1744,4,1,
                         1494,4,1,
                                   1403,4,1,
                                              1168,4,1
29500 REM
              47 C 19
                        47 B 19
                                   47 A 19
                                              46 D 19
29505 DATA
              1160,4,1,
                          910,4,1,
                                    820,4,1,
                                              584.4.1
29510 REM
              46 C 19
                         46 B 19
                                   46 A 19
29515 DATA
               576,4,1,
                         326,4,1,
                                   236,4,1
29600 REM --- DATEN C.D.: p. 58-59 (13 Muluc)
29610 REM
              58 F 09
                        58 F 15
                                   59 A 01
                                             59 B 01
29615 DATA 1426360,2,2, 1386580,3,2, 144300,2,2, 140400,2,2
```

```
59 C 01
                        59 D 01
29620 REM
                                   59 E 01
                                              59 F 01
29625 DATA 138840,2,2, 134160,2,2, 133380,2,2, 118560,2,2
29630 REM
              59 H 01
                         59 G 01
                                   59 I 01
                                             59 A 07
29635 DATA 112320,2,2, 103740,2,2, 74100,2,2, 44460,2,2
29640 REM
              59 B 07
                        59 C 07
                                   59 D 07
                                              59 E 07
29645 DATA 29640,2,2, 14820,2,2, 14040,2,2, 13260,2,2
29650 REM
              59 F 07
                        59 G 07
                                   59 H 07
                                              59 I 07
29655 DATA 12480,2,2, 11700,2,2, 10920,2,2, 10140,2,2
                         59 A 17
29660 REM
              59 A 13
                                   59 B 17
                                              59 C 17
              9360,2,2,
                                   7800,2,2,
29665 DATA
                         8580,2,2,
                                              7020,2,2
29670 REM
              59 D 17
                         59 E 17
                                   59 F 17
                                             59 G 17
29675 DATA
              6240,2,2,
                         5460,2,2,
                                    4940,2,2,
                                              3900,2,2
29680 REM
              59 H 17
                         59 I 17
                                  59 H 13
                                             59 I 13
29685 DATA
              3140,5,2,
                         2340,2,2,
                                    2340,2,2,
                                               780,2,2
              59 A 21
                         59 B 21
                                   59 C 21
29690 REM
                                              58 E 14
29695 DATA
               702,6,2,
                         624,6,2,
                                   546,6,2,
                                             511,8,2
29700 REM
              59 D 21
                         59 E 21
                                   59 F 21
                                             59 G 21
29705 DATA
               468,6,2,
                         390,6,2,
                                   312,6,2,
                                             234,6,2
29710 REM
              59 H 21
                         59 I 21
                                  58 E 16
29715 DATA
               156,6,2,
                          78,6,2,
                                   12,8,2
29800 REM --- DATEN C.D. p. 43-44 ( 3 Lamat)
29810 REM
              43 C 08
                        43 D 11
                                   43 E 06
                                              43 D 06
29815 DATA 1435980,2,3, 151320,2,3, 131040,2,3, 109200,2,3
29820 REM
              43 F 06
                        43 G 06
                                   43 H 06
                                              44 A 06
29825 DATA 72800,5,3, 69600,5,3, 30940,5,3, 15600,2,3
29830 REM
              44 B 06
                        43 E 11
                                   43 F 11
                                             43 G 11
29835 DATA
             13000,5,3,
                          3900,2,3,
                                    3380,5,3,
                                               2340,2,3
29840 REM
              43 H 11
                         44 A 11
                                   44 C 06
                                              44 D 06
                          780,2,3,
29845 DATA
              1560,2,3,
                                    702,6,3,
                                              624,6,3
              44 E 06
                        44 F 06
29850 REM
                                   44 B 11
                                             43 C 14
29855 DATA
               546,6,3,
                         468,6,3,
                                             352,8,3
                                   390,6,3,
29860 REM
              44 C 11
                        44 D 11
                                   44 E 11
                                              44 F 11
29865 DATA
               312,6,3,
                         234,6,3,
                                   156,6,3,
                                              78,6,3
29900 REM --- DATEN C.D. p. 69-73 ( 9 Ix)
29910 REM
               69 F 11
                          70 C 07
                                     70 D 07
                                                70 B 06
29915 DATA 12391470,7,4, 1567332,5,4, 1520654,5,4, 1437020,5,4
29920 REM
               70 A 06
                          70 B 18
                                    70 A 18
                                                70 E 01
29925 DATA 1394120,2,4,
                                  1201200,3,4, 280800,2,4
29930 REM
               70 F 01
                          71 A 01
                                     71 B 01
                                                71 C 01
29935 DATA
             210600,2,4, 140400,2,4, 126360,2,4, 112320,2,4
29940 REM
               70 D 21
                          70 D 17
                                     71 D 01
                                                71 E 01
29945 DATA 111554,5,4, 101852,5,4,
                                       98280,2,4,
                                                   84240,2,4
                                     70 F 07
29950 REM
               73 D 05
                          70 E 07
                                                71 A 06
29955 DATA
              83474,5,4,
                          70200,2,4,
                                      56160,2,4,
                                                  42120,2,4
29960 REM
               73 E 05
                          71 B 06
                                     73 F 06
                                               71 C 06
29965 DATA
              34732.5.4.
                          28080,2,4,
                                      14040,2,4,
                                                  7020.2.4
               71 D 06
                          71 E 06
                                     70 E 12
                                                70 F 12
29970 REM
29975 DATA
               6318,2,4,
                          5616,2,4,
                                     4914,2,4,
                                                 4212,2,4
                                     71 C 11
29980 REM
               71 A 11
                          71 B 11
                                                70 B 12
29985 DATA
               3510,2,4,
                          2808,2,4,
                                     2106,2,4,
                                                 1646,8,4
29990 REM
               71 D 11
                          71 E 11
                                     70 A 12
                                                70 B 22
```

```
702,2,4,
                                      606,8,4
29995 DATA
               1404,2,4,
29996 REM
               70 A 23
29997 DATA
                86,8,4
30000 REM
30100 REM --- DATEN C.D. p. 69-73 ( 4 Eb)
                          70 B 18
30110 REM
               69 E 11
                                     70 E 16
                                                70 A 15
30115 DATA 12381728,7,5, 1274240,3,5, 148380,9,5, 109200,2,5
30120 REM
               71 B 15
                          71 C 15
                                     71 D 15
                                                70 F 16
30125 DATA
              94640,2,5,
                           3644,5,5,
                                     65520,2,5,
                                                 58160,5,5
               71 E 15
                          70 E 22
                                                71 A 22
30130 REM
                                     70 F 22
                          43680,2,5,
30135 DATA
              50960.2.5.
                                      36400,2,5, 29120,2,5
30140 REM
               71 B 22
                          71 C 22
                                     71 D 22
                                                71 C 18
30145 DATA
              21840,2,5,
                          14560,2,5,
                                       5460,2,5,
                                                  4372,5,5
               71 E 22
                          71 F 22
                                    71 G 22
30150 REM
                                                72 A 19
                          1820,2,5,
30155 DATA
               3640,2,5,
                                      1755,2,5,
                                                 1690,2,5
30160 REM
               72 B 19
                          72 C 19
                                     72 D 19
                                                72 E 19
30165 DATA
               1625,2,5,
                          1560,2,5,
                                      1495,2,5,
                                                 1430,2,5
               72 F 19
                          72 G 19
                                     73 A 19
                                                73 B 19
30170 REM
30175 DATA
               1365,2,5,
                          1300,2,5,
                                     1235,2,5,
                                                 1170.2.5
30180 REM
               73 C 19
                          73 D 19
                                     73 E 19
                                                71 F 14
                                      975,2,5,
30185 DATA
               1105,2,5,
                          1040,2,5,
                                                 910,2,5
30190 REM
               71 G 14
                          72 A 12
                                     72 B 12
                                                72 C 12
                                     715,2,5,
30195 DATA
               845,2,5,
                          780,2,5,
                                                650,2,5
                          72 E 12
                                     72 F 12
30200 REM
               72 D 12
                                                72 G 12
30205 DATA
                585,2,5,
                          520,2,5,
                                     455,2,5,
                                                390,2,5
30210 REM
               73 A 13
                          73 B 13
                                     70 B 22
                                                73 C 13
30215 DATA
                325,2,5,
                          260,2,5,
                                     208,8,5,
                                                195,2,5
30220 REM
               73 D 13
                          73 E 13
30225 DATA
                130,2,5,
                           65,2,5
30300 REM --- DATEN C.D. p. 31-32
30310 REM
              31 G 07
                         31 F 03
                                    31 D 03
                                                31 E 03
30315 DATA 2804100,5,6, 1534942,5,6, 1272544,2,6, 1268540,2,6
30320 REM
              31 F 08
                         32 C 08
                                    32 C 12
                                               32 A 12
30325 DATA 51405,5,6,
                          1456,2,6,
                                      1001,2,6,
                                                  728.2.6
30330 REM
              32 F 01
                         32 G 01
                                    32 D 07
                                                32 E 07
30335 DATA
               637,2,6,
                          546,2,6,
                                    455,2,6,
                                               273,2,6
30340 REM
              32 A 08
                         32 F 07
                                    31 D 09
                                                32 B 08
30345 DATA
               202,6,6,
                          182,2,6,
                                    121,8,6,
                                               101,6,6
30350 REM
              32 G 07
                         32 B 12
                                    31 E 09
                                                x y 01
30355 DATA
               91,2,6,
                          20,6,6,
                                    17,8,6
30400 REM --- DATEN C.D. p. 63-64
                         63 C 16
30410 REM
              63 C 13
                                    62 E 08
                                               62 F 08
30415 DATA 1538342,5,7, 1499004,5,7, 1272921,5,7, 1272544,2,7
30420 REM
              63 B 18
                         63 A 18
                                    63 D 01
                                                63 D 13
30425 DATA 1268540,2,7, 1234220,5,7, 145600,2,7, 136884,6,7
                         63 F 01
                                    63 C 27
30430 REM
              63 E 01
                                               64 A 01
30435 DATA 109200,2,7,
                          72800,2,7,
                                      51419,8,7,
                                                  36400,2,7
30440 REM
              64 B 01
                         64 C 01
                                    64 D 01
                                                64 E 01
30445 DATA 29120,2,7,
                          21840,2,7,
                                      14560,2,7,
                                                  7280,2,7
30450 REM
              64 F 01
                         63 D 11
                                    64 G 01
                                                63 E 11
30455 DATA
              3660,2,7,
                          1820,2,7,
                                     1820,2,7,
                                                 1729,2,7
```

30460 REM	63 F 11	64 A 10	64 B 10	64 C 10
30465 DATA	1638,2,7,	1547,2,7,	1456,2,7,	1365,2,7
30470 REM	64 D 10	64 E 10	64 F 10	64 G 10
30475 DATA	1274,2,7,	1183,2,7,	1092,2,7,	1001,2,7
30480 REM	63 D 23	63 E 23	63 F 23	64 A 18
30485 DATA	910,2,7,	819,2,7,	728,2,7,	637,2,7
30490 REM	64 B 18	62 E 15	64 C 18	64 D 18
30495 DATA	546,2,7,	456,8,7,	455,2,7,	364,2,7
30500 REM	64 E 18	63 A 27	64 F 18	62 F 15
30505 DATA	273,2,7,	235,8,7,	182,2,7,	121,8,7
30510 REM	64 G 18	63 B 27		
30515 DATA	91,2,7,	17,8,7		
30900 DATA	-1,-1,-1			
31000 REM	- E N D E	-		

Anhang 5.3: Daten der Lesung E.W. Förstemann (1901) in der Software

Programmzeilen 29000 bis 29060 sind identisch mit den entsprechenden Zeilen gemäß der eigenen Lesung (→ Anhang 5.2).

```
29068 REM *** Analyse: Mayadaten gemäß der Lesung E.W. FÖRSTEMANN (1901)
29070 REM
29100 REM --- DATEN C.D.: p. 51-58 (Finsternis-Seiten)
29110 REM
              51 A 12
                         52 E 03
                                   52 F 03
                                             52 E 09
29115 DATA 1578988,5,0, 1434748,9,0, 1412863,9,0, 1412878,5,0
29120 REM
              52 F 09
                        51 A 06
                                   51 C 03
                                             51 D 03
29125 DATA 1412848,5,0, 1268800,5,0, 466440,2,0, 370760,5,0
29130 REM
              51 B 03
                        51 C 07
                                   51 D 07
                                              51 E 06
29135 DATA 215280,2,0, 203320,2,0, 191360,2,0, 71760,5,0
29140 REM
              52 A 06
                         52 C 06
                                   51 E 03
                                              52 B 07
29145 DATA 59800,2,0, 47840,2,0, 47840,2,0, 35880,2,0
              52 A 03
                         52 B 03
                                   52 C 03
29150 REM
                                              58 B 13
29155 DATA 35880,2,0, 23920,2,0, 11960,5,0, 11958,3,0
              58 A 13
                         57 G 13
                                   57 F 13
                                              57 C 13
29160 REM
29165 DATA
             11781,3,0,
                        11604,3,0, 11427,3,0, 11250,3,0
                         57 A 13
29170 REM
              57 B 13
                                   56 F 14
                                             56 E 14
29175 DATA
             11102,3,0,
                        10925,3,0,
                                    10748,3,0, 10571,3,0
29180 REM
              56 D 14
                         56 C 14
                                   55 H 14
                                              55 G 14
29185 DATA 10394,3,0, 10216,3,0, 10068,3,0,
                                                9891,3,0
              55 F 14
                        55 E 14
                                   55 D 14
                                             55 C 14
29190 REM
29195 DATA
              9714,3,0,
                         9537,3,0,
                                   9360,3,0,
                                              9183,3,0
29200 REM
              55 B 14
                        55 A 14
                                   54 G 13
                                              54 D 13
                                   8651,3,0,
29205 DATA
              9006,3,0,
                         8828,3,0,
                                              8474,3,0
29210 REM
              54 C 13
                        54 B 13
                                   54 A 13
                                              53 G 13
29215 DATA
              8326,3,0,
                         8149,3,0,
                                   7972,3,0,
                                              7795,3,0
29220 REM
              53 F 13
                        53 E 13
                                   53 B 13
                                             53 A 13
29225 DATA
              7618,3,0,
                         7441,3,0,
                                   7264,3,0,
                                              7116,3,0
29230 REM
              52 F 20
                        52 E 20
                                   52 D 20
                                             52 C 20
29235 DATA
              6939,3,0,
                         6762,3,0,
                                   6585,3,0,
                                              6408,3,0
29240 REM
              51 F 19
                        51 E 19
                                   51 D 19
                                             51 C 19
29245 DATA
              6230,3,0,
                         6082,3,0,
                                   5905,3,0,
                                              5728,3,0
                                              58 C 03
29250 REM
              51 B 19
                        51 A 19
                                   58 D 03
29255 DATA
                         5374,3,0,
                                   5197,3,0,
                                              5020,3,0
              5551,3,0,
29260 REM
              58 B 03
                        58 A 03
                                   57 D 03
                                              57 C 03
                         4665,3,0,
29265 DATA
              4842,3,0,
                                   4488,3,0,
                                              4340,3,0
29270 REM
              57 B 03
                        57 A 03
                                   56 F 03
                                             56 E 03
29275 DATA
              4163,3,0,
                         3986,3,0,
                                   3809,3,0,
                                              3632,3,0
                         56 A 03
                                              55 F 03
29280 REM
              56 D 03
                                   55 G 03
29285 DATA
              3455,3,0,
                         3278,3,0,
                                   3130,3,0,
                                              2953,3,0
                                   55 C 03
29290 REM
              55 E 03
                        55 D 03
                                              54 G 03
                         2599,3,0,
                                   2422,3,0,
                                              2244,3,0
29295 DATA
              2776,3,0,
29300 REM
              54 F 03
                        54 E 03
                                   54 D 03
                                             54 C 03
29305 DATA
              2096,3,0,
                         1919,3,0,
                                   1742,3,0,
                                              1565,3,0
29310 REM
              54 B 03
                        54 A 03
                                   53 H 03
                                              53 G 03
29315 DATA
              1388,3,0,
                         1211,3,0,
                                   1034,3,0,
                                               856,3,0
29320 REM
              53 F 03
                        53 C 03
                                   53 B 03
                                             53 A 03
```

```
29325 DATA
               679,3,0,
                         502,3,0,
                                   354,3,0,
                                             177,3,0
29400 REM --- DATEN C.D.: p. 24, 46-50 (Venus)
29410 REM
              24 B 18
                         24 C 18
                                   24 D 07
                                             24 D 01
29415 DATA 1366560,3,1, 1364360,3,1, 185120,5,1, 151840,2,1
29420 REM
              24 E 01
                        24 F 01
                                   24 E 07
                                             24 G 01
29425 DATA 113880,2,1, 75920,2,1, 68900,5,1, 37960,2,1
29430 REM
              24 D 13
                         24 F 07
                                   24 E 13
                                             24 F 13
29435 DATA 35040,2,1, 33280,5,1, 32120,2,1, 29200,2,1
29440 REM
              24 G 13
                         24 D 18
                                   24 E 18
                                             24 F 18
29445 DATA 26280,2,1, 23360,2,1, 20440,2,1, 17520,2,1
              24 G 18
                         24 D 23
                                   24 G 07
29450 REM
                                              24 E 23
29455 DATA 14600,2,1, 11680,2,1,
                                     9100,5,1,
                                               8760,2,1
29460 REM
              24 F 23
                        24 G 23
                                   50 D 19
                                             50 C 19
29465 DATA
              5840,2,1,
                         2920,2,1,
                                   2920,4,1,
                                              2912,4,1
29470 REM
              50 B 19
                        50 A 19
                                   49 D 19
                                              49 C 19
29475 DATA
              2662,4,1,
                         2572,4,1,
                                   2336,4,1,
                                              2328,4,1
29480 REM
              24 A 21
                         49 B 19
                                   49 A 19
                                              48 D 19
29485 DATA
              2200,8,1,
                         2078,4,1,
                                   1988,4,1,
                                             1752,4,1
29490 REM
              48 C 19
                        48 B 19
                                   48 A 19
                                             47 D 19
                                              1168,4,1
29495 DATA
              1744,4,1,
                         1494,4,1,
                                   1404,4,1,
29500 REM
              47 C 19
                        47 B 19
                                   47 A 19
                                             46 D 19
29505 DATA
              1160,4,1,
                         910,4,1,
                                   820,4,1,
                                              584,4,1
29510 REM
              46 C 19
                        46 B 19
                                   46 A 19
29515 DATA
               576,4,1,
                         326,4,1,
                                   236,4,1
29600 REM --- DATEN C.D.: p. 58-59 (13 Muluc)
29610 REM
              58 F 09
                        58 F 15
                                  59 A 01
                                             59 B 01
29615 DATA 1426360,2,2, 1386580,3,2, 144300,2,2, 140400,2,2
29620 REM
              59 C 01
                        59 D 01
                                   59 E 01
                                             59 F 01
29625 DATA 138840,2,2, 134160,2,2, 133380,2,2, 118560,2,2
29630 REM
              59 H 01
                         59 G 01
                                   59 I 01
                                             59 A 07
29635 DATA 112320,2,2, 103740,2,2, 74100,2,2, 44460,2,2
29640 REM
              59 B 07
                        59 C 07
                                   59 D 07
                                             59 E 07
29645 DATA 29640,2,2, 14820,2,2, 14040,2,2, 13260,2,2
29650 REM
              59 F 07
                        59 G 07
                                   59 H 07
                                             59 I 07
29655 DATA 12480,2,2, 11700,2,2, 10920,2,2, 10140,2,2
29660 REM
              59 A 13
                         59 A 17
                                   59 B 17
                                              59 C 17
29665 DATA
              9360,2,2,
                         8580,2,2,
                                              7020,2,2
                                   7800,2,2,
                         59 E 17
                                   59 F 17
29670 REM
              59 D 17
                                             59 G 17
              6240,2,2,
                         5460,2,2,
                                   4680,2,2,
29675 DATA
                                              3900,2,2
29680 REM
              59 H 17
                         59 I 17
                                  59 H 13
                                             59 I 13
29685 DATA
              3120,5,2,
                         2340,2,2,
                                   2340,2,2,
                                               780,2,2
                         59 B 21
                                   59 C 21
29690 REM
              59 A 21
                                             58 E 14
29695 DATA
               702,6,2,
                         624,6,2,
                                   546,6,2,
                                             511,8,2
29700 REM
              59 D 21
                         59 E 21
                                   59 F 21
                                             59 G 21
29705 DATA
               468,6,2,
                         390,6,2,
                                   312,6,2,
                                             234,6,2
                         59 I 21
29710 REM
              59 H 21
                                  58 E 16
               156,6,2,
                         78,6,2,
                                   251,8,2
29715 DATA
29800 REM --- DATEN C.D. p. 43-44 ( 3 Lamat)
29810 REM
              43 C 08
                        43 D 11
                                   43 E 06
                                             43 D 06
29815 DATA 1435980,2,3, 151320,2,3, 131040,2,3, 109200,2,3
                                             44 A 06
              43 F 06
                        43 G 06
29820 REM
                                   43 H 06
```

```
29825 DATA 72540,5,3, 62400,5,3, 31200,5,3, 15600,2,3
29830 REM
              44 B 06
                         43 E 11
                                   43 F 11
                                              43 G 11
29835 DATA 13260,5,3,
                          3900,2,3,
                                    3120,5,3,
                                               2340,2,3
29840 REM
              43 H 11
                         44 A 11
                                   44 C 06
                                              44 D 06
29845 DATA
              1560,2,3,
                          780,2,3,
                                    702,6,3,
                                              624,6,3
              44 E 06
                         44 F 06
                                              43 C 14
29850 REM
                                   44 B 11
29855 DATA
               546,6,3,
                         468,6,3,
                                   390.6.3.
                                              352.8.3
29860 REM
              44 C 11
                         44 D 11
                                   44 E 11
                                              44 F 11
29865 DATA
               312,6,3,
                         234,6,3,
                                   156,6,3,
                                              78,6,3
29900 REM --- DATEN C.D. p. 69-73 ( 9 Ix)
29910 REM
               69 F 11
                          70 C 07
                                     70 D 07
                                                70 B 06
29915 DATA 12391470,7,4, 1567332,5,4, 1520654,5,4, 1437020,5,4
29920 REM
               70 A 06
                          70 B 18
                                     70 A 18
                                                70 E 01
29925 DATA 1394120,2,4, 1202240,5,4, 1201200,3,4, 168480,2,4
               70 F 01
29930 REM
                          71 A 01
                                     71 B 01
                                                71 C 01
29935 DATA 154440,2,4, 140400,2,4, 126360,2,4, 112320,2,4
29940 REM
               70 D 21
                          70 D 17
                                     71 D 01
                                                71 E 01
29945 DATA
             111554,5,4, 101812,5,4,
                                       98280,2,4,
                                                   84240,2,4
                                     70 F 07
29950 REM
               73 D 05
                          70 E 07
                                                71 A 06
29955 DATA
              83474,5,4,
                          70200,2,4,
                                      56160,2,4, 42120,2,4
               73 E 05
                                     73 F 06
                                                71 C 06
29960 REM
                          71 B 06
29965 DATA
              34732,5,4,
                          28080,2,4,
                                      14040,2,4,
                                                   7020,2,4
                                                70 F 12
29970 REM
               71 D 06
                          71 E 06
                                     70 E 12
29975 DATA
               6318,2,4,
                          5616,2,4,
                                      4914,2,4,
                                                 4212,2,4
29980 REM
               71 A 11
                          71 B 11
                                     71 C 11
                                                70 B 12
                                     2106,2,4,
29985 DATA
               3510,2,4,
                          2808,2,4,
                                                 1646,8,4
29990 REM
                          71 E 11
                                     70 A 12
                                                70 B 22
               71 D 11
29995 DATA
               1404,2,4,
                           702,2,4,
                                      606,8,4,
                                                208,8,4
30000 REM
               70 A 23
30005 DATA
                86,8,4
30100 REM --- DATEN C.D. p. 69-73 ( 4 Eb)
30110 REM
               69 E 11
                          70 B 18
                                     70 E 16
                                                70 A 15
30115 DATA 12381728,7,5, 1202240,3,5,
                                         7443,9,5, 109200,2,5
30120 REM
               71 B 15
                          71 C 15
                                     71 D 15
                                                70 F 16
30125 DATA
              94640,2,5,
                          72800,5,5,
                                      65520,2,5,
                                                  58240,5,5
30130 REM
               71 E 15
                                     70 F 22
                                               71 A 22
                          70 E 22
30135 DATA
              50960,2,5,
                          43680,2,5,
                                      36400,2,5, 29120,2,5
30140 REM
               71 B 22
                          71 C 22
                                     71 D 22
                                                71 C 18
30145 DATA
              21840,2,5,
                          14560,2,5,
                                       5460,2,5
30150 REM
               71 E 22
                          71 F 22
                                    71 G 22
                                                72 A 19
30155 DATA
               3640,2,5,
                          1820,2,5,
                                     1755,2,5,
                                                 1690,2,5
               72 B 19
                          72 C 19
                                     72 D 19
                                                72 E 19
30160 REM
30165 DATA
               1625,2,5,
                          1560,2,5,
                                      1495,2,5,
                                                 1430,2,5
30170 REM
               72 F 19
                          72 G 19
                                     73 A 19
                                                73 B 19
30175 DATA
               1365,2,5,
                          1300,2,5,
                                     1235,2,5,
                                                 1170,2,5
               73 C 19
                          73 D 19
                                     73 E 19
                                                71 F 14
30180 REM
30185 DATA
               1105,2,5,
                          1040,2,5,
                                      975,2,5,
                                                 910,2,5
30190 REM
               71 G 14
                          72 A 12
                                     72 B 12
                                                72 C 12
30195 DATA
               845,2,5,
                          780,2,5,
                                     715,2,5,
                                                650.2.5
30200 REM
               72 D 12
                          72 E 12
                                     72 F 12
                                                72 G 12
30205 DATA
               585,2,5,
                                     455,2,5,
                                                390,2,5
                          520,2,5,
```

```
30210 REM
               73 A 13
                          73 B 13
                                     70 B 22
                                                73 C 13
30215 DATA
               325,2,5,
                          260,2,5,
                                     208,8,5,
                                                195,2,5
30220 REM
               73 D 13
                          73 E 13
30225 DATA
               130,2,5,
                           65,2,5
30300 REM --- DATEN C.D. p. 31-32
30310 REM
              31 G 07
                         31 F 03
                                    31 D 03
                                                31 E 03
30315 DATA 2804100,5,6, 1538342,5,6, 1272544,2,6, 1268540,2,6
30320 REM
              31 F 08
                         32 C 08
                                    32 C 12
                                               32 A 12
                                               728,2,6
30325 DATA 51419,5,6,
                          1456,2,6,
30330 REM
              32 F 01
                         32 G 01
                                    32 D 07
                                               32 E 07
30335 DATA
               637,2,6,
                          546,2,6,
                                    455,2,6,
                                               273,2,6
30340 REM
              32 A 08
                         32 F 07
                                    31 D 09
                                               32 B 08
30345 DATA
               3640,2,6,
                           182,2,6,
                                     121,8,6,
                                                1820,2,6
30350 REM
              32 G 07
                         32 B 12
                                    31 E 09
                                                32 C 01
30355 DATA
               91,2,6,
                         364,6,6,
                                    17,8,6,
                                             29120,2,6
30360 REM
                                     32 D 01
                                                32 E 01
30365 DATA
                                    910,2,6,
                                               819,2,6
30400 REM --- DATEN C.D. p. 63-64
              63 C 13
                         63 C 16
                                    62 E 08
                                               62 F 08
30410 REM
30415 DATA 1538342,5,7, 1535004,5,7, 1272921,5,7, 1272544,2,7
30420 REM
              63 B 18
                         63 A 18
                                    63 D 01
                                                63 D 13
30425 DATA 1268540,2,7, 1234220,5,7, 145600,2,7, 136864,6,7
30430 REM
              63 E 01
                         63 F 01
                                    63 C 27
                                               64 A 01
30435 DATA 109200,2,7,
                          72800,2,7, 51419,8,7, 36400,2,7
30440 REM
                         64 C 01
                                    64 D 01
                                                64 E 01
              64 B 01
30445 DATA
                         21840,2,7,
             29120,2,7,
                                     14560,2,7,
                                                  7280,2,7
30450 REM
              64 F 01
                         63 D 11
                                    64 G 01
                                               63 E 11
30455 DATA
              3640,2,7,
                          1820,2,7,
                                     1820,2,7,
                                                1729,2,7
              63 F 11
                         64 A 10
30460 REM
                                    64 B 10
                                               64 C 10
30465 DATA
              1638,2,7,
                         1547,2,7,
                                     1456,2,7,
                                                1365,2,7
30470 REM
              64 D 10
                         64 E 10
                                    64 F 10
                                               64 G 10
30475 DATA
              1274,2,7,
                          1183,2,7,
                                     1092,2,7,
                                                1001,2,7
30480 REM
              63 D 23
                         63 E 23
                                    63 F 23
                                               64 A 18
30485 DATA
              910,2,7,
                          819,2,7,
                                    728,2,7,
                                               637,2,7
                                    64 C 18
30490 REM
              64 B 18
                         62 E 15
                                               64 D 18
30495 DATA
                          456,8,7,
                                    455,2,7,
                                               364,2,7
              546,2,7,
              64 E 18
                         63 A 27
                                    64 F 18
                                               62 F 15
30500 REM
30505 DATA
               273,2,7,
                          235,8,7,
                                    182,2,7,
                                               121,8,7
30510 REM
              64 G 18
                         63 B 27
30515 DATA
               91,2,7,
                          17,8,7
30900 DATA -1,-1,-1
31000 REM --- E N D E ---
31100 END
```

Anhang 5.4: Daten der Lesung J.E.S. Thompson (1972) in der Software

Programmzeilen 29000 bis 29060 sind identisch mit den entsprechenden Zeilen gemäß der eigenen Lesung (→ Anhang 5.2).

```
29068 REM *** Analyse: Mayadaten gemäß der Lesung J.E.S. THOMPSON (1972)
29070 REM
29100 REM --- DATEN C.D.: p. 51-58 (Finsternis-Seiten)
29110 REM
              51 A 12
                         52 E 03
                                   52 F 03
                                             52 E 09
29115 DATA 1578988,5,0, 1435468,9,0, 1412863,9,0, 1412878,5,0
29120 REM
              52 F 09
                        51 A 07
                                   51 C 03
                                             51 D 03
29125 DATA 1412848,5,0, 1412840,5,0, 466440,2,0, 370760,5,0
29130 REM
              51 B 03
                         51 C 07
                                   51 D 07
                                              51 E 06
29135 DATA 215280,2,0, 203320,2,0, 191360,2,0, 71760,5,0
29140 REM
              52 A 06
                         52 C 06
                                   51 E 03
                                              52 B 07
29145 DATA 59800,2,0, 47840,2,0, 47840,2,0, 35880,2,0
              52 A 03
                         52 B 03
                                   52 C 03
29150 REM
                                              58 B 13
29155 DATA 35880,2,0, 23920,2,0, 11960,5,0, 11960,3,0
              58 A 13
                         57 G 13
                                   57 F 13
                                              57 C 13
29160 REM
29165 DATA
             11782,3,0,
                        11605,3,0, 11428,3,0, 11251,3,0
                         57 A 13
29170 REM
              57 B 13
                                   56 F 14
                                             56 E 14
                        10926,3,0,
29175 DATA
             11103,3,0,
                                    10749,3,0, 10572,3,0
                         56 C 14
29180 REM
              56 D 14
                                   55 H 14
                                              55 G 14
29185 DATA 10395,3,0, 10217,3,0, 10069,3,0,
                                                9892,3,0
              55 F 14
                        55 E 14
                                   55 D 14
                                             55 C 14
29190 REM
29195 DATA
              9715,3,0,
                         9538,3,0,
                                   9361,3,0,
                                              9184,3,0
29200 REM
              55 B 14
                         55 A 14
                                   54 G 13
                                              54 D 13
                         8829,3,0,
29205 DATA
              9007,3,0,
                                   8652,3,0,
                                              8475,3,0
29210 REM
              54 C 13
                         54 B 13
                                   54 A 13
                                              53 G 13
29215 DATA
              8327,3,0,
                         8150,3,0,
                                   7973,3,0,
                                              7796,3,0
29220 REM
              53 F 13
                        53 E 13
                                   53 B 13
                                             53 A 13
29225 DATA
              7619,3,0,
                         7442,3,0,
                                   7265,3,0,
                                              7117,3,0
29230 REM
              52 F 20
                        52 E 20
                                   52 D 20
                                             52 C 20
29235 DATA
              6940,3,0,
                         6763,3,0,
                                   6586,3,0,
                                              6409,3,0
29240 REM
              51 F 19
                        51 E 19
                                   51 D 19
                                             51 C 19
29245 DATA
              6231,3,0,
                         6083,3,0,
                                   5906,3,0,
                                              5729,3,0
                                              58 C 03
29250 REM
              51 B 19
                        51 A 19
                                   58 D 03
29255 DATA
              5552,3,0,
                         5375,3,0,
                                   5198,3,0,
                                              5021,3,0
29260 REM
              58 B 03
                        58 A 03
                                   57 D 03
                                              57 C 03
                         4666,3,0,
29265 DATA
              4843,3,0,
                                   4489,3,0,
                                              4341,3,0
29270 REM
              57 B 03
                         57 A 03
                                   56 F 03
                                             56 E 03
29275 DATA
              4164,3,0,
                         3987,3,0,
                                   3809,3,0,
                                              3632,3,0
                         56 A 03
                                              55 F 03
29280 REM
              56 D 03
                                   55 G 03
29285 DATA
              3455,3,0,
                         3278,3,0,
                                   3130,3,0,
                                              2953,3,0
                        55 D 03
                                   55 C 03
                                              54 G 03
29290 REM
              55 E 03
                         2599,3,0,
                                   2422,3,0,
                                              2244,3,0
29295 DATA
              2776,3,0,
29300 REM
              54 F 03
                        54 E 03
                                   54 D 03
                                             54 C 03
                         1919,3,0,
29305 DATA
              2096,3,0,
                                   1742,3,0,
                                              1565,3,0
29310 REM
              54 B 03
                        54 A 03
                                   53 H 03
                                              53 G 03
29315 DATA
              1388,3,0,
                         1211,3,0,
                                   1033,3,0,
                                               856,3,0
29320 REM
              53 F 03
                        53 C 03
                                   53 B 03
                                             53 A 03
```

```
29325 DATA
               679,3,0,
                         502,3,0,
                                   354,3,0,
                                             177,3,0
29400 REM --- DATEN C.D.: p. 24, 46-50 (Venus)
29410 REM
              24 B 18
                         24 C 18
                                   24 D 07
                                             24 D 01
29415 DATA 1366560,3,1, 1364360,3,1, 185120,5,1, 151840,2,1
29420 REM
              24 E 01
                        24 F 01
                                   24 E 07
                                             24 G 01
29425 DATA 113880,2,1, 75920,2,1, 68900,5,1, 37960,2,1
29430 REM
              24 D 13
                         24 F 07
                                   24 E 13
                                             24 F 13
29435 DATA 35040,2,1, 33280,5,1, 32120,2,1, 29200,2,1
29440 REM
              24 G 13
                         24 D 18
                                   24 E 18
                                             24 F 18
29445 DATA 26280,2,1, 23360,2,1, 20440,2,1, 17520,2,1
              24 G 18
                         24 D 23
                                   24 G 07
29450 REM
                                              24 E 23
29455 DATA 14600,2,1, 11680,2,1,
                                     9360,5,1,
                                               8760,2,1
29460 REM
              24 F 23
                        24 G 23
                                   50 D 19
                                             50 C 19
29465 DATA
              5840,2,1,
                         2920,2,1,
                                   2920,4,1,
                                              2912,4,1
29470 REM
              50 B 19
                        50 A 19
                                   49 D 19
                                              49 C 19
29475 DATA
              2662,4,1,
                         2572,4,1,
                                   2336,4,1,
                                              2328,4,1
29480 REM
              24 A 21
                         49 B 19
                                   49 A 19
                                              48 D 19
29485 DATA
              2200,8,1,
                         2078,4,1,
                                   1988,4,1,
                                             1752,4,1
29490 REM
              48 C 19
                        48 B 19
                                   48 A 19
                                             47 D 19
                                              1168,4,1
29495 DATA
              1744,4,1,
                         1494,4,1,
                                   1404,4,1,
29500 REM
              47 C 19
                        47 B 19
                                   47 A 19
                                             46 D 19
29505 DATA
              1160,4,1,
                         910,4,1,
                                   820,4,1,
                                              584,4,1
29510 REM
              46 C 19
                        46 B 19
                                   46 A 19
29515 DATA
               576,4,1,
                         326,4,1,
                                   236,4,1
29600 REM --- DATEN C.D.: p. 58-59 (13 Muluc)
29610 REM
              58 F 09
                        58 F 15
                                  59 A 01
                                             59 B 01
29615 DATA 1426360,2,2, 1386580,3,2, 144300,2,2, 140400,2,2
29620 REM
              59 C 01
                        59 D 01
                                   59 E 01
                                             59 F 01
29625 DATA 138840,2,2, 134160,2,2, 133380,2,2, 118560,2,2
29630 REM
              59 H 01
                         59 G 01
                                   59 I 01
                                             59 A 07
29635 DATA 88920,2,2, 103740,2,2, 74100,2,2, 44460,2,2
29640 REM
              59 B 07
                        59 C 07
                                   59 D 07
                                             59 E 07
29645 DATA 29640,2,2, 14820,2,2, 14040,2,2, 13260,2,2
29650 REM
              59 F 07
                        59 G 07
                                   59 H 07
                                             59 I 07
29655 DATA 12480,2,2, 11700,2,2, 10920,2,2, 10140,2,2
29660 REM
              59 A 13
                         59 A 17
                                   59 B 17
                                              59 C 17
29665 DATA
              9360,2,2,
                         8580,2,2,
                                              7020,2,2
                                   7800,2,2,
              59 D 17
                         59 E 17
                                   59 F 17
29670 REM
                                             59 G 17
              6240,2,2,
                         5460,2,2,
                                   4680,2,2,
29675 DATA
                                              3900,2,2
29680 REM
              59 H 17
                         59 I 17
                                  59 H 13
                                             59 I 13
29685 DATA
              3120,5,2,
                         1560,2,2,
                                   2340,2,2,
                                               780,2,2
                         59 B 21
                                   59 C 21
29690 REM
              59 A 21
                                             58 E 14
29695 DATA
               702,6,2,
                         624,6,2,
                                   546,6,2,
                                             511,8,2
29700 REM
              59 D 21
                         59 E 21
                                   59 F 21
                                             59 G 21
29705 DATA
               468,6,2,
                         390,6,2,
                                   312,6,2,
                                             234,6,2
                         59 I 21
29710 REM
              59 H 21
                                  58 E 16
               156,6,2,
                         78,6,2,
                                   251,8,2
29715 DATA
29800 REM --- DATEN C.D. p. 43-44 ( 3 Lamat)
29810 REM
              43 C 08
                        43 D 11
                                   43 E 06
                                             43 D 06
29815 DATA 1435980,2,3, 152880,2,3, 131040,2,3, 109200,2,3
                                             44 A 06
              43 F 06
29820 REM
                        43 G 06
                                   43 H 06
```

```
29825 DATA 72800,5,3, 62400,5,3, 31200,5,3, 15600,2,3
29830 REM
                         43 E 11
              44 B 06
                                   43 F 11
                                             43 G 11
29835 DATA 12740,5,3,
                          3900,2,3,
                                    3120,5,3,
                                               2340,2,3
29840 REM
              43 H 11
                         44 A 11
                                   44 C 06
                                              44 D 06
29845 DATA
              1560,2,3,
                          780,2,3,
                                    702,6,3,
                                              624,6,3
              44 E 06
                         44 F 06
                                             43 C 14
29850 REM
                                   44 B 11
29855 DATA
               546,6,3,
                         468,6,3,
                                   390.6.3.
                                             352.8.3
29860 REM
              44 C 11
                         44 D 11
                                   44 E 11
                                              44 F 11
29865 DATA
               312,6,3,
                         234,6,3,
                                   156,6,3,
                                              78,6,3
29900 REM --- DATEN C.D. p. 69-73 ( 9 Ix)
29910 REM
               69 F 11
                          70 C 07
                                     70 D 07
                                                70 B 06
29915 DATA 12391470,7,4, 1567332,5,4, 1520654,5,4, 1437020,5,4
29920 REM
               70 A 06
                          70 B 18
                                     70 A 18
                                                70 E 01
29925 DATA 1394120,2,4,
                                        1201200,3,4, 168480,2,4
               70 F 01
29930 REM
                          71 A 01
                                     71 B 01
                                                71 C 01
29935 DATA 154440,2,4, 140400,2,4, 126360,2,4, 112320,2,4
29940 REM
               70 D 21
                          70 D 17
                                     71 D 01
                                                71 E 01
29945 DATA
             111554,5,4, 101852,5,4,
                                       98280,2,4,
                                                   84240,2,4
                                     70 F 07
29950 REM
               73 D 05
                          70 E 07
                                                71 A 06
29955 DATA
              83474,5,4,
                          70200,2,4,
                                      56160,2,4, 42120,2,4
               73 E 05
                                     73 F 06
                                                71 C 06
29960 REM
                          71 B 06
29965 DATA
              34732,5,4,
                          28080,2,4,
                                      14040,2,4,
                                                   7020,2,4
                                                70 F 12
29970 REM
               71 D 06
                          71 E 06
                                     70 E 12
29975 DATA
               6318,2,4,
                          5616,2,4,
                                      4914,2,4,
                                                 4212,2,4
29980 REM
               71 A 11
                          71 B 11
                                     71 C 11
                                                70 B 12
                                     2106,2,4,
29985 DATA
               3510,2,4,
                          2808,2,4,
                                                 1646,8,4
                          71 E 11
                                     70 A 12
                                                70 B 22
29990 REM
               71 D 11
29995 DATA
               1404,2,4,
                           702,2,4,
                                      606,8,4
30000 REM
               70 A 23
30005 DATA
                86,8,4
30100 REM --- DATEN C.D. p. 69-73 ( 4 Eb)
30110 REM
               69 E 11
                          70 B 18
                                     70 E 16
                                                70 A 15
30115 DATA 12381728,7,5, 1274260,3,5, 145600,9,5, 109200,2,5
30120 REM
               71 B 15
                          71 C 15
                                     71 D 15
                                                70 F 16
30125 DATA
              94640,2,5,
                          72800,5,5,
                                      65520,2,5,
                                                  58240,5,5
30130 REM
               71 E 15
                                     70 F 22
                                               71 A 22
                          70 E 22
30135 DATA
              50960,2,5,
                          43680,2,5,
                                      36400,2,5, 29120,2,5
30140 REM
               71 B 22
                          71 C 22
                                     71 D 22
                                                71 C 18
30145 DATA
              21840,2,5,
                          14560,2,5,
                                       5460,2,5,
                                                 87360,5,5
30150 REM
               71 E 22
                          71 F 22
                                    71 G 22
                                                72 A 19
30155 DATA
               3640,2,5,
                          1820,2,5,
                                      1755,2,5,
                                                 1690,2,5
               72 B 19
                          72 C 19
                                     72 D 19
                                                72 E 19
30160 REM
30165 DATA
               1625,2,5,
                          1560,2,5,
                                      1495,2,5,
                                                 1430,2,5
30170 REM
               72 F 19
                          72 G 19
                                     73 A 19
                                                73 B 19
30175 DATA
               1365,2,5,
                          1300,2,5,
                                     1235,2,5,
                                                 1170,2,5
               73 C 19
                          73 D 19
                                     73 E 19
                                                71 F 14
30180 REM
30185 DATA
               1105,2,5,
                          1040,2,5,
                                      975,2,5,
                                                 910,2,5
30190 REM
               71 G 14
                          72 A 12
                                     72 B 12
                                                72 C 12
30195 DATA
               845,2,5,
                          780,2,5,
                                     715,2,5,
                                                650.2.5
30200 REM
               72 D 12
                          72 E 12
                                     72 F 12
                                                72 G 12
30205 DATA
                                     455,2,5,
                                                390,2,5
               585,2,5,
                          520,2,5,
```

```
70 B 22
30210 REM
               73 A 13
                                                73 C 13
                          73 B 13
30215 DATA
                                                195,2,5
                325,2,5,
                          260,2,5,
                                     208,8,5,
30220 REM
               73 D 13
                          73 E 13
30225 DATA
                130,2,5,
                           65,2,5
30300 REM --- DATEN C.D. p. 31-32
30310 REM
              31 G 07
                         31 F 03
                                    31 D 03
                                                31 E 03
30315 DATA 2804100,5,6, 1538342,5,6, 1272544,2,6, 1268540,2,6
30320 REM
              31 F 08
                         32 C 08
                                    32 C 12
                                               32 A 12
30325 DATA 51419,5,6,
                          1456,2,6,
                                      1001,2,6,
                                                  728,2,6
                                                32 E 07
30330 REM
              32 F 01
                         32 G 01
                                    32 D 07
30335 DATA
               637.2.6.
                          546.2.6.
                                     455.2.6.
                                               273.2.6
30340 REM
              32 A 08
                         32 F 07
                                     31 D 09
                                                32 B 08
30345 DATA
              3640,6,6,
                          182,2,6,
                                     121,8,6,
                                               1820,6,6
30350 REM
              32 G 07
                         32 B 12
                                     31 E 09
                                                32 C 01
30355 DATA
               91,2,6,
                         364,6,6,
                                     17,8,6,
                                             29120,2,6
30360 REM
              32 A 01
                         32 B 01
                                     32 D 01
                                                 32 E 01
30365 DATA 21840,2,6,
                         14560,2,6,
                                       910,2,6,
                                                  819,2,6
              32 C 04
                         32 B 01
                                     32 A 01
30370 REM
30375 DATA
              7280,2,6,
                         36400,2,6,
                                     72800,2,6
30400 REM --- DATEN C.D. p. 63-64
30410 REM
              63 C 13
                         63 C 16
                                     62 E 08
                                               62 F 08
30415 DATA 1538342,5,7, 1535004,5,7, 1272921,5,7, 1272544,2,7
30420 REM
              63 B 18
                         63 A 18
                                     63 D 01
                                                63 D 13
30425 DATA 1268540,2,7, 1234220,5,7, 145600,2,7, 138320,6,7
30430 REM
                                    63 C 27
              63 E 01
                         63 F 01
                                               64 A 01
30435 DATA 109200,2,7,
                          72800,2,7,
                                      51419,8,7,
                                                  36400,2,7
                         64 C 01
30440 REM
              64 B 01
                                    64 D 01
                                                64 E 01
30445 DATA 29120,2,7,
                          21840,2,7,
                                      14560,2,7,
                                                  7280,2,7
30450 REM
              64 F 01
                         63 D 11
                                    64 G 01
                                                63 E 11
30455 DATA
              3640,2,7,
                          1820,2,7,
                                     1820,2,7,
                                                 1729,2,7
30460 REM
              63 F 11
                         64 A 10
                                    64 B 10
                                               64 C 10
              1638,2,7,
30465 DATA
                          1547,2,7,
                                     1456,2,7,
                                                 1365,2,7
30470 REM
              64 D 10
                         64 E 10
                                     64 F 10
                                               64 G 10
30475 DATA
                          1183,2,7,
                                     1092,2,7,
              1274,2,7,
                                                 1001.2.7
30480 REM
              63 D 23
                         63 E 23
                                     63 F 23
                                               64 A 18
              910,2,7,
                                     728,2,7,
                                               637,2,7
30485 DATA
                          819,2,7,
30490 REM
              64 B 18
                         62 E 15
                                    64 C 18
                                               64 D 18
30495 DATA
                                     455,2,7,
                                               364,2,7
              546,2,7,
                          456,8,7,
30500 REM
                         63 A 27
                                     64 F 18
                                               62 F 15
              64 E 18
30505 DATA
                          235,8,7,
               273,2,7,
                                     182,2,7,
                                               121,8,7
30510 REM
              64 G 18
                         63 B 27
30515 DATA
                91,2,7,
                          17,8,7
30900 DATA
               -1,-1,-1
31000 REM --- E N D E ---
```

Anhang 6: Ergebnisse der statistischen Analyse von acht Abschnitten des numerischen Korpus

Anhang 6.1: Ergebnisse gemäß eigener Lesung

6.1.1 p.24, 46-50: Venus-Tafel (Ausgangspunkt: 1 Ahau) [Kz. 2 = 1]

Te	eiler	Anz	ahl der T	eiler		Kandidaten				
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	260	365	584			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
T_1	30	1	6	0	8.667	12.17	19.47			
T_2	32	0	9	0	8.125	11.41	18.25			
T_3	40	3	22	1	6.5	9.125	14.6			
T_4	50	0	5	0	5.2	7.3	11.68			
T_5	52	0	11	1	5	7.019	11.23			
T_6	60	1	6	0	4.333	6.083	9.733			
T_7	65	3	10	0	<mark>4</mark>	5.615	8.985			
T_8	73	3	21	0	3.562	5	8			
T ₉	80	0	10	0	3.25	4.563	7.3			
T_{10}	100	0	5	0	2.6	3.65	5.84			
T ₁₁	104	0	8	0	2.5	3.51	5.615			
T_{12}	120	0	6	1	2.167	3.042	4.867			
T_{13}	130	0	10	0	2	2.808	4.492			
T_{14}	146	1	21	0	1.781	2.5	4			
T_{15}	160	0	6	0	1.625	2.281	3.65			
T_{16}	208	0	6	0	1.25	1.755	2.808			
T_{17}	219	1	7	2	1.187	1.667	2.667			
T_{18}	260	0	9	0	1	1.404	2.246			
T ₁₉	292	1	21	0	1.123	1.25	2			
T ₂₀	365	2	17	0	1.404	1	1.6			
T_{21}	416	1	5	0	1.6	1.14	1.404			
T ₂₂	438	0	7	0	1.685	1.2	1.333			
T_{23}	520	0	7	0	2	1.425	1.123			
T ₂₄	584	0	21	1	2.246	1.6	1			
T ₂₅	730	0	17	0	2.808	2	1.25			
T ₂₆	876	0	7	0	3.369	2.4	1.5			
T ₂₇	949	0	5	0	3.65	2.6	1.625			
T ₂₈	1040	1	5	0	<mark>4</mark>	2.849	1.781			
T ₂₉	1095	0	6	0	4.212	<mark>3</mark>	1.875			
T ₃₀	1168	0	10	0	4.492	3.2	2			
T ₃₁	1460	0	17	0	5.615	<mark>4</mark>	2.5			
T ₃₂	1752	0	7	0	6.738	4.8	3			
T ₃₃	1898	0	5	0	7.3	5.2	3.25			
T ₃₄	2190	0	6	0	8.423	<mark>6</mark>	3.75			
T ₃₅	2336	0	5	0	8.985	6.4	<mark>4</mark>			
T ₃₆	2920	0	17	0	11.23	8	5			

Te	eiler	Anz	ahl der T	eiler	I	Kandidate	n
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	365	584
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
T ₃₇	3796	0	5	0	14.6	10.4	6.5
T ₃₈	4380	0	6	0	16.85	<mark>12</mark>	7.5
T ₃₉	4745	0	5	0	18.25	13	8.125
T_{40}	5840	0	8	0	22.46	<mark>16</mark>	<mark>10</mark>
T ₄₁	7592	0	5	0	29.2	20.8	13
T ₄₂	8760	0	6	0	33.69	<mark>24</mark>	15
T ₄₃	9490	0	5	0	36.5	<mark>26</mark>	16.25
T ₄₄	18980	0	5	0	<mark>73</mark>	<mark>52</mark>	32.5
T ₄₅	37960	0	5	0	146	104	<mark>65</mark>

Bilanz (p.24, 46-50)	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	5	0	9	4	6	3
Anzahl ganzzahliger Teiler < Periode	1	2	0	1	0	3
Anzahl aller ganzzahligen Teiler	6	2	9	5	6	6

6.1.2 p.51-58: Finsternis-Tafel (Ausgangspunkt: multipel) [Kz. 2 = 0]

Те	iler	Anza	ıhl der T	`eiler	Kand	idaten
Bez.	Wert	N(T _i -1)	$N(T_i)$	$N(T_i+1)$	115	260
(1)	(2)	(3)	(4)	(5)	(6)	(7)
T_1	40	5	12	1	2.875	6.5
T_2	46	3	12	0	2.5	5.652
T_3	52	4	12	1	2.212	<mark>5</mark>
T_4	65	1	12	2	1.769	4
T_5	80	1	6	0	1.438	3.25
T_6	92	2	10	0	1.25	2.826
T_7	104	0	10	0	1.106	2.5
T_8	115	1	10	0	1	2.261
T ₉	120	1	5	0	1.043	2.167
T_{10}	130	0	12	0	1.130	2
T ₁₁	184	0	9	0	1.6	1.413
T_{12}	208	1	6	0	1.809	1.25
T ₁₃	230	0	9	1	<mark>2</mark>	1.130
T_{14}	260	0	12	0	2.261	1
T ₁₅	299	1	9	0	2.6	1.15
T ₁₆	368	0	5	0	3.2	1.415
T ₁₇	460	0	9	0	<mark>4</mark>	1.769
T_{18}	520	0	10	0	4.522	2
T_{19}	598	0	9	1	5.2	2.3
T_{20}	920	0	9	0	<mark>8</mark>	3.538
T_{21}	1040	0	6	1	9.043	<mark>4</mark>
T_{22}	1196	0	9	0	10.4	4.6
T_{23}	1495	0	9	1	13	5.75
T_{24}	1840	0	5	0	<mark>16</mark>	7.077
T ₂₅	2392	0	9	0	20.8	9.2
T_{26}	2990	0	9	0	<mark>26</mark>	11.5
T_{27}	4784	0	5	0	41.6	18.4
T_{28}	5980	1	9	0	<mark>52</mark>	<mark>23</mark>
T_{29}	11960	0	9	0	<mark>104</mark>	<mark>46</mark>
T_{30}	23920	0	5	0	<mark>208</mark>	<mark>92</mark>

Anza	ahl der T	eiler		
N(T _i -1)	$N(T_i)$	$N(T_i+1)$		
(3a)	(4a)	(5a)		
3	10	0		
1	9	0		
0	11	1 0 0		
0	11	0		
	5	0		
0	9	0		
0	9	0		
0	11 11 5 9 9	0		
0 0 - 0 0		- 0 0		
0	- 11 9	0		
0	9	0		
1	5	0		
1 0	9	0		
0	5 9 11 9 5 9 9 9 9 9 9	0 0 0 0 0 0 0 1 0 0 0		
0	9	0		
0	5	0		
0	9	0		
0	9	0		
0	9	1		
0 0 0 0	9	0		
0	5	0		
0	9	0		
0 0	9	0		
0	5	0 0		
0	9	0		
0 0 0	9 9 5 9 9	0 0 0 0		
0	5	0		
0	9	0		
	9	0		
0	5	0		

Die Spalten 3a, 4a, 5a sind im Text erklärt.

Bilanz (p.51-58)	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	9	1	4	2
Anzahl ganzzahliger Teiler < Periode	0	0	1	2
Anzahl aller ganzzahligen Teiler	9	1	5	4

6.1.3 p.58-59: (Ausgangspunkt: 13 Muluc) [Kz. 2 = 2]

To	eiler	Anza	hl der '	Teiler				Kand	idaten			
Bez.	Wert	N(T _i -1)	N(T _i)	$N(T_i+1)$	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_1	30	0	29	0	3.9	8.667	13	17.33	19.5	23.4	<mark>26</mark>	34.67
T_2	36	3	11	1	3.25	7.222	10.83	14.44	16.25	19.5	21.67	28.89
T_3	39	8	37	13	3	6.667	10	13.33	<u>15</u>	18	<mark>20</mark>	26.67
T_4	45	1	10	0	2.6	5.778	8.667	11.56	13	15.6	17.33	23.11
T_5	48	0	8	0	2.438	5.417	8.125	10.83	12.19	14.63	16.25	21.67
T_6	50	0	6	1	2.34	5.2	7.8	10.4	11.7	14.04	15.6	20.8
T_7	52	1	35	0	2.25	<mark>5</mark>	7.5	10	11.25	13.5	15	20
T_8	54	0	6	1	2.167	4.815	7.222	9.63	10.83	<u>13</u>	14.44	19.26
T ₉	57	1	7	0	2.053	4.561	6.842	9.123	10.26	12.32	13.68	18.25
T_{10}	60	0	28	0	1.95	4.333	6.5	8.667	9.75	11.7	13	17.33
T_{11}	65	2	32	1	1.8	4	6	8	9	10.8	12	<u>16</u>
T ₁₂	78	0	37	0	1.5	3.333	5	6.667	7.5	9	10	13.33
T ₁₃	80	0	7	0	1.463	3.25	4.875	6.5	7.313	8.775	9.75	13
T ₁₄	90	1	10	4	1.3	2.889	4.333	5.778	6.5	7.8	8.667	11.56
T ₁₅	95	0	8	4	1.232	2.737	4.105	5.474	6.158	7.389	8.211	10.95
T ₁₆	100	0	6	0	1.17	2.6	3.9	5.2	5.85	7.02	7.8	10.4
T ₁₇	104	0	15	3	1.125	2.5	3.75	5	5.625	6.75	7.5	10
T ₁₈	108	0	5	0	1.083	2.407	3.611	4.815	5.417	6.5	7.222	9.63
T ₁₉	114	0	7	0	1.026	2.281	3.421	4.561	5.132	6.158	6.842	9.123
T_{20}	117	0	13	0	1	2.222	3.333	4.444	5	6	6.667	8.889
T_{21}	120	0	12	0	1.026	2.167	3.25	4.333	4.875	5.85	6.5	8.667
T ₂₂	130	1	32	0	1.111	2	3	4	4.5	5.4	6	8
T ₂₃	135	0	5	0	1.154	1.926	2.889	3.852	4.333	5.2	5.778	7.704
T ₂₄	150	0	6	0	1.282	1.733	2.6	3.467	3.9	4.68	5.2	6.934
T ₂₅	156	0	32	1	1.333	1.667	2.5	3.333	3.75	4.5	1 222	6.667
T ₂₆	180	0	10	0	1.538	1.444	2.167	2.889	3.25	3.9	4.333	5.778
T ₂₇	190	0	8	0	1.624	1.368	2.053	2.737	3.079	3.694	4.105	5.474
T_{28}	195	0	29	0	1.667	1.333	1 075	2.667 2.5	_	3.6	2.75	5.333 5
T ₂₉	208 228	0	8 7	0	1.778 1.949	1.25	1.875		2.813 2.566	3.375	3.75	
T ₃₀	234	0	13	0	1.747	1.140 1.111	1.711 1.667	2.281	2.500	3.079	3.421	4.561 4.444
$\begin{array}{c} T_{31} \\ \hline T_{32} \end{array}$	240	0	7	0	2.051	1.111	1.625	2.222	2.438	2.925	3.25	4.444
T_{33}	247	0	8	0	2.111	1.053	1.579	2.107	2.438	2.842	3.158	4.333
-	260	0	31	0	2.222	1.033	1.579	2.103	2.25	2.7	3.136	7.411
T ₃₄	270	0	5	0	2.308	1.038	1.3	1.926	2.23	2.6	2.889	3.852
T ₃₅	285	0	7	1	2.436	1.038	1.444	1.926	2.167	2.463	2.737	3.649
$\frac{T_{36}}{T_{37}}$	300	0	6	0	2.430	1.090	1.308	1.733	1.95	2.403	2.737	3.467
T_{38}	312	0	14	0	2.667	1.134	1.25	1.733	1.93	2.25	2.5	3.333
T_{39}	325	0	6	0	2.778	1.25	1.23	1.6	1.873	2.23	2.4	3.2
T_{40}	351	0	6	0	3	1.35	1.111	1.481	1.667	2.10	2.222	2.963
T_{41}	380	0	8	0	3.248	1.462	1.026	1.368	1.539	1.847	2.053	2.737
T_{42}	390	0	29	0	3.333	1.402	1.020	1.333	1.539	1.8	2.033	2.667
					3.333						1 667	
T_{43}	468	0	0	0	4 222	1.8	1.2	1.111	1.25	1.5	1.667	2.222
T_{44}	494	0	8	0	4.222	1.9	1.267	1.053	1.184	1.421	1.579	2.105

T	eiler	Anza	hl der '	Гeiler	er Kandidaten							
Bez.	Wert	N(T _i -1)	N(T _i)	$N(T_i+1)$	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_{45}	520	0	13	0	4.444	2	1.333	1	1.125	1.35	1.5	2
T_{46}	540	0	5	0	4.615	2.077	1.385	1.038	1.083	1.3	1.444	1.926
T_{47}	570	0	7	0	4.872	2.192	1.462	1.096	1.026	1.232	1.368	1.825
T_{48}	585	0	10	0	<mark>5</mark>	2.25	1.5	1.125	1	1.2	1.333	1.778
T_{49}	624	0	8	0	5.333	2.4	1.6	1.2	1.067	1.125	1.25	1.667
T_{50}	650	0	6	0	5.556	2.5	1.667	1.25	1.111	1.08	1.2	1.6
T_{51}	702	0	6	0	<mark>6</mark>	2.7	1.8	1.35	1.2	<mark>1</mark>	1.111	1.481
T_{52}	741	1	7	0	6.333	2.85	1.9	1.425	1.267	1.056	1.053	1.404
T_{53}	780	0	28	0	6.667	3	2	1.5	1.333	1.111	1	1.333
T ₅₄	975	0	6	0	8.333	3.75	2.5	1.875	1.667	1.389	1.25	1.067
T_{55}	988	0	8	0	8.444	3.8	2.533	1.9	1.689	1.407	1.267	1.053
T_{56}	1040	0	7	0	8.889	<mark>4</mark>	2.667	2	1.778	1.482	1.333	<mark>1</mark>
T ₅₇	1140	0	7	0	9.744	4.385	2.923	2.192	1.949	1.624	1.462	1.096
T_{58}	1170	0	10	0	10	4.5	<mark>3</mark>	2.25	2	1.667	1.5	1.125
T_{59}	1235	0	8	0	10.56	4.75	3.167	2.375	2.111	1.76	1.583	1.188
T_{60}	1300	0	6	0	11.11	<mark>5</mark>	3.333		2.222	1.852	1.667	1.25
T_{61}	1404	0	5	0	<mark>12</mark>	5.4	3.6	2.7	2.4	<mark>2</mark>	1.8	1.35
T_{62}	1482	0	7	0	12.67	5.7	3.8	2.85	2.533	2.111	1.9	1.425
T_{63}	1560	0	12	0	13.33	6	4	3	2.667	2.222	2	1.5
T_{64}	1755	0	5	0	<mark>15</mark>	6.75	4.5	3.375	<mark>3</mark>	2.5	2.25	1.688
T_{65}	1950	0	6	0	16.67	7.5	<mark>5</mark>	3.75	3.333	2.778	2.5	1.875
T ₆₆	2340	0	10	0	20	9	6	4.5	4	3.333	3	2.25
T_{67}	2470	0	8	0	21.11	9.5	6.333		4.222	3.519	3.167	2.375
T ₆₈	2964	0	7	0	25.33	11.4	7.6	5.7	5.067	4.222	3.8	2.85
T_{69}	3120	0	7	0	26.67	<u>12</u>	8	<u>6</u>	5.333	4.444	<mark>4</mark>	3
T_{70}	3510	0	5	0	30	13.5	9	6.75	<mark>6</mark>	5	4.5	3.375
T ₇₁	3705	0	7	0	31.67	14.25	9.5	7.125	6.333	5.278	4.75	3.563
T ₇₂	3900	0	6	0	33.33	15	10	7.5	6.667	5.556	5	3.75
T ₇₃	4940	0	8	0	42.22	19 27	12.67		8.444	7.037	6.333	4.75
T ₇₄	7020	0	5	0	60	27 20. 7	18	13.5	12 (7	10 56	9	6.75
T ₇₅	7410	0	7	0	63.33	28.5	19	14.25	12.67	10.56	9.5	7.125
T_{76}	14820	0	7	0	126.7	<mark>57</mark>	<mark>38</mark>	28.5	25.33	21.11	<mark>19</mark>	14.25
						<mark>2σ <mark>3σ</mark></mark>	<mark>2σ 3σ</mark>					
A 1	Bilanz (p.58-59) Anzahl ganzzahliger Teiler ≥ Periode											
	ıl ganzzahl ıl ganzzahl				6 6 0 1	7 5 0 3	7 5 0 6	2 2 0 5	3 3 0 5	4 0 2 4	4 3 0 11	2 0
	ıl ganzzanı ıl aller gan			ode	6 7	7 8	7 11	2 7	3 8	6 4	4 14	4 6
, mean	41101 5411	LLamingu	. 101101		- -	. ,	.		- 0		-	- "

6.1.4 p.43-44: (Ausgangspunkt: 3 Lamat) [Kz. 2 = 3]

Tei	ler	Anza	hl der T	Teiler	Kandidaten						
Bez.	Wert	N(T _i -1)	N(T _i)	$N(T_i+1)$	260	390	520	780			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)			
T_1	30	1	11	0	8.667	13	17.33	<mark>26</mark>			
T_2	39	0	18	8	6.667	10	13.33	20			
T_3	48	0	5	0	5.417	8.125	10.83	16.25			
T_4	50	0	6	0	5.2	7.8	10.4	15.6			
T_5	52	0	17	0	<mark>5</mark>	7.5	10	15			
T_6	60	0	10	0	4.333	6.5	8.667	13			
T_7	65	0	14	0	<mark>4</mark>	<mark>6</mark>	8	<mark>12</mark>			
T_8	70	0	5	0	3.714	5.571	7.429	11.14			
T_9	78	0	18	0	3.333	<mark>5</mark>	6.667	10			
T_{10}	80	0	5	0	3.25	4.875	6.5	9.75			
T_{11}	91	2	6	0	2.857	4.286	5.714	8.571			
T_{12}	100	0	6	0	2.6	3.9	5.2	7.8			
T_{13}	104	0	9	3	2.5	3.75	<mark>5</mark>	7.5			
T_{14}	117	1	5	0	2.222	3.333	4.444	6.667			
T_{15}	120	1	6	0	2.167	3.25	4.333	6.5			
T_{16}	130	0	14	0	2	3	4	6			
T_{17}	140	0	5	0	1.857	2.788	3.714	5.571			
T_{18}	156	0	13	0	1.667	2.5	3.333	<mark>5</mark>			
T_{19}	182	0	6	0	1.429	2.143	2.857	4.286			
T_{20}	195	1	10	0	1.333	2	2.667	4			
T_{21}	200	0	5	0	1.3	1.95	2.6	3.9			
T ₂₂	208	0	5	0	1.25	1.875	2.5	3.75			
T_{23}	234	0	5	0	1.111	1.667	2.222	3.333			
T_{24}	260	0	13	0	1	1.5	2	3			
T_{25}	312	0	7	0	1.2	1.25	1.667	2.5			
T_{26}	325	0	5	0	1.25	1.2	1.6	2.4			
T_{27}	364	0	5	0	1.4	1.071	1.429	2.143			
T_{28}	390	0	10	0	1.5	1	1.333	2			
T_{29}	455	0	5	0	1.75	1.167	1.143	1.714			
T ₃₀	520	0	7	0	2	1.333	1	1.5			
T ₃₁	650	0	5	0	2.5	1.667	1.25	1.2			
T_{32}	780	0	9	0	3	2	1.5	1			
T ₃₃	910	0	5	0	3.5	2.333	1.75	1.167			
T_{34}	1300	0	5	0	<u>5</u>	3.333	2.5	1.667			
T ₃₅	1560	0	5	0	6	4	3	2			
T ₃₆	1820	0	5	0	7	4.667	3.5	2.333			

Bilanz (p.43-44)	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	5	1	2	1	2	0	2	0
Anzahl ganzzahliger Teiler < Periode	0	3	0	6	1	4	0	11
Anzahl aller ganzzahligen Teiler	5	4	2	7	3	4	2	11

6.1.5 p.69-73: (Ausgangspunkt: 9 Ix) [Kz. 2 = 4]

Te	eiler	Anza	hl der	Teiler		Kandidaten						
Bez.	Wert	N(T _i -1)	N(T _i)	N(T _i +1)	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_1	30	0	17	0	3.9	8.667	13	17.33	19.5	23.4	<mark>26</mark>	34.67
T_2	36	5	18	0	3.25	7.222	10.83	14.44	16.25	19.5	21.67	28.89
T_3	39	1	25	14	3	6.667	10	13.33	15	18	<mark>20</mark>	26.67
T_4	42	0	5	1	2.786	6.19	9.286	12.38	13.93	16.71	18.57	24.76
T_5	45	1	15	0	2.6	5.778	8.667	11.56	13	15.6	17.33	23.11
T_6	48	0	8	0	2.438	5.417	8.125	10.83	12.19	14.63	16.25	21.67
T_7	50	0	6	2	2.34	5.2	7.8	10.4	11.7	14.04	15.6	20.8
T_8	52	2	21	0	2.25	5	7.5	10	11.25	13.5	15	20
T ₉	54	0	22	1	2.167	4.815	7.222	9.63	10.83	13	14.44	19.26
T_{10}	60	0	14	0	1.95	4.333	6.5	8.667	9.75	11.7	13	17.33
T_{11}	65	1	18	1	1.8	4	<mark>6</mark>	8	9	10.8	12	<mark>16</mark>
T_{12}	70	0	5	0	1.672	3.714	5.571	7.429	8.357	10.03	11.14	14.86
T_{13}	72	0	14	0	1.625	3.611	5.417	7.222	8.125	9.75	10.83	14.44
T ₁₄	75	0	6	1	1.56	3.467	5.2	6.933	7.8	9.36	10.4	13.87
T ₁₅	78	1	25	0	1.5	3.333	<mark>5</mark>	6.667	7.5	9	10	13.33
T_{16}	90	2	15	5	1.3	2.889	4.333	5.778	6.5	7.8	8.667	11.56
T_{17}	100	0	5	1	1.17	2.6	3.9	5.2	5.85	7.02	7.8	10.4
T_{18}	104	0	16	4	1.125	2.5	3.75	5	5.625	6.75	7.5	10
T_{19}	108	0	17	0	1.083	2.407	3.611	4.815	5.417	6.5	7.222	9.63
T_{20}	117	0	24	0	1	2.222	3.333	4.444	5	6	6.667	8.889
T_{21}	120	1	13	0	1.026	2.167	3.25	4.333	4.875	5.85	6.5	8.667
T_{22}	130	0	18	0	1.111	2	3	<mark>4</mark>	4.5	5.4	6	8
T_{23}	135	0	14	0	1.154	1.926	2.889	3.852	4.333	5.2	5.778	7.704
T_{24}	144	1	7	0	1.231	1.806	2.708	3.611	4.063	4.875	5.417	7.222
T_{25}	150	0	6	0	1.282	1.733	2.6	3.467	3.9	4.68	5.2	6.933
T_{26}	156	0	19	0	1.333	1.667	2.5	3.333	3.75	4.5	<mark>5</mark>	6.667
T_{27}	162	0	7	0	1.385	1.605	2.407	3.21	3.611	4.333	4.815	6.412
T_{28}	180	0	13	0	1.538	1.444	2.167	2.889	3.25	3.9	4.333	5.778
T ₂₉	182	0	5	0	1.556	1.429	2.143	2.857	3.214	3.857	4.286	5.714
T_{30}	195	1	16	0	1.667	1.333	2	2.667	3	3.6	4	5.333
T ₃₁	200	0	5	0	1.709	1.3	1.95	2.6	2.925	3.51	3.9	5.2
T_{32}	208	0	8	0	1.778	1.25	1.875	2.5	2.813	3.375	3.75	<u>5</u>
T_{33}	216	0	14	0	1.846	1.204	1.806	2.407	2.708	3.25	3.611	4.815
T_{34}	234	0	24	0	2	1.111	1.667	2.222	2.5	3	3.333	4.444
T_{35}	240	0	7	0	2.051	1.083	1.625	2.167	2.438	2.925	3.25	4.333
T ₃₆	260	0	16	0	2.222	1	1.5	2	2.25	2.7	3	4
T ₃₇	270	0	14	0	2.308	1.038	1.444	1.926	2.167	2.6	2.889	3.852
T ₃₈	300	0	5	0	2.564	1.154	1.3	1.733	1.95	2.34	2.6	3.467
T ₃₉	312	0	15	0	2.667	1.2	1.25	1.667	1.875	2.25	2.5	3.333
T_{40}	351	2	22	0	3	1.35	1.111	1.481	1.667	2	2.222	2.963
T ₄₁	360	0	12	0	3.077	1.385	1.083	1.444	1.625	1.95	2.167	2.889
T_{42}	390	0	16	0	3.333	1.5	1	1.333	1.5	1.8	2	2.667
T_{43}	432	0	7	0	3.692	1.662	1.108	1.204	1.354	1.625	1.806	2.407

To	eiler	Anza	hl der '	Teiler	Kandidaten														
Bez.	Wert	N(T _i -1)	N(T _i)	N(T _i +1)	11	7	260)	390		520		585	,	702	7	80	10	40
(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)		(9)		(10)	_	(11)	_	12)	_ `	(3)
T_{44}	468	0	18	0	4		1.8		1.2		1.111	1	.25	1	.5	1.	667	2.2	222
T_{45}	520	0	14	0	4.4	44	2		1.333	3	1	1	.125	1	.35	1.	5	2	
T ₄₆	540	0	13	0	4.6	15	2.07	7	1.385	5	1.038	1	.083	1	.3	1.	444	1.9	926
T ₄₇	585	0	15	0	5		2.25		1.5		1.125	1		1	.2	1.	333	1.7	778
T_{48}	600	0	5	0	5.12	28	2.30	8	1.538	3	1.154	. 1	.026	1	.17	1.	3	1.7	733
T_{49}	624	1	8	0	5.33	33	2.4		1.6		1.2	1	.067	1	.125	1.	25	1.6	667
T_{50}	650	0	5	0	5.53	56	2.5		1.667	7	1.25	1	.111	1	.08	1.	2	1.6	,
T_{51}	702	0	22	0	6		2.7		1.8		1.35	1	.2	1		1.	111	1.4	81
T ₅₂	720	0	6	0	6.13	54	2.76	9	1.846	5	1.385	1	.231	1	.026	1.	083	1.4	144
T_{53}	780	0	14	0	6.6	67	3		2		1.5	1	.333	1	.111	1		1.3	333
T ₅₄	936	0	14	0	8		3.6		2.4		1.8	1	.6	1	.333	1.	2	1.1	11
T ₅₅	975	0	5	0	8.33	33	3.75		2.5		1.875	1	.667	1	.389	1.	25	1.0	67
T ₅₆	1040	0	7	0	8.88	89	<mark>4</mark>		2.667	7	2	1	.778	1	.481	1.	333	1	
T ₅₇	1053	0	7	0	9		4.05		2.7		2.025	1	.8	1	.5	1.	35	1.0)13
T ₅₈	1080	0	12	0	9.2	31	4.15	4	2.769)	2.077	1	.846	1	.538	1.	385	1.0)38
T ₅₉	1170	0	15	0	10		4.5		3		2.25	2	2	1	.667	1	5	1.1	25
T ₆₀	1300	0	5	0	11.	11	<mark>5</mark>		3.333	3	2.5	2	2.222	1	.852	1.	667	1.2	25
T ₆₁	1404	0	17	0	12		5.4		3.6		2.7	2	2.4	2		1.	8	1.3	55
T_{62}	1560	0	13	0	13.3	33	<mark>6</mark>		4		3	2	2.667	2	.222	2		1.5	j
T_{63}	1755	0	14	0	15		6.75		4.5		3.375		3	2	.5	2.	25	1.6	588
T ₆₄	1872	0	7	0	<mark>16</mark>		7.2		4.8		3.6	3	3.2	2	.667	2.	4	1.8	;
T ₆₅	1950	0	5	0	16.0	67	7.5		<mark>5</mark>		3.75	_	3.333		.778	2.			375
T ₆₆	2106	0	7	0	<mark>18</mark>		8.1		5.4	_	4.05	-	3.6	3		2.		2.0	
T ₆₇	2160	0	6	0	18.4	46	8.30		5.538	3	4.154	. 3	3.692	_	.077	_	769	2.0	
T_{68}	2340	0	13	0	20		9		6		4.5	4		_	.333	3		2.2	
T_{69}	2600	0	5	0	22.2	22	10	_	6.667	_	<u>5</u>	_	1.444	3	.704	_	333	2.5	
T ₇₀	2808	0	14	0	24		10.8		7.2		5.4		1.8	4	444	3.	6	2.7	
T ₇₁	3120	0	7	0	26.0	67	12		8	_	6	5	5.333	_	.444	4		3	
T ₇₂	3510	0	14	0	30	22	13.5		9	-	6.75	1) 	5	~~~	4.	5		375
T ₇₃	3900	0	5	0	33.	33	15 16 2		10 0		7.5	_	5.667		.556	<u>5</u>	4	3.7	
T ₇₄	4212	0	12	0	36 40		16.2		10.8	-	8.1	1	7.2	6		5.	4	4.0	
T ₇₅	4680	0	7	0			21.6		12	-	10.0) 6		.667	7	<u> </u>	4.5	
T ₇₆	5616 7020	0		0	48 60	-	21.6		14.4	\dashv	10.8		9.6 2	8	_	7.		5.4	
T ₇₇	7020 7800	0	13 5	0	66.0	67	30		18 20	\dashv	13.5 15	_	3.33		1.11	10	V	6.7 7.5	
T ₇₈	9360	0	6	0	80	U/	36		20 24	+	18		13.33 6		3.33	12		7.5 <mark>9</mark>	
T_{80}	14040	0	12	0	120		54		24 36	\dashv	27	_	24	2	_	18		13.	5
T_{81}	28080	0	6	0	240		108	_	72	\dashv	54		18 18	4		36		27	
18I	20000	U	U	U	240	<u>'</u>	100		1 4		J -t		r O	+	U	30	<u>'</u>	<u> </u>	
т	Bilanz (p	60.72	0 Iv)	2	<mark>σ 3σ</mark>	<mark>2σ</mark>	<u>3σ</u>	<mark>2σ</mark>	<u>3σ</u>	20	30	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	3σ
	ganzzahlig				7 16	8		6		-6		2	8	4	6	5	6	4	0
	ganzzahlig				0 1	0		0		(0		0	6	0	11	1	6
	l aller gan				7 17	8		6	_	6	_	2	13	4	12	5	17	5	6
	<i>6</i>	0											<u> </u>						

6.1.6 p.69-73: (Ausgangspunkt: 4 Eb) [Kz. 2 = 5]

Te	eiler	Anza	hl der T	Teiler	Kandidaten				
Bez.	Wert	N(T _i -1)	N(T _i)	N(T _i +1)	260	364	390	780	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
T_1	28	1	12	0	9.286	13	13.93	27.86	
T_2	30	0	10	0	8.667	12.13	13	26	
T_3	32	0	5	0	8.125	11.38	12.19	24.38	
T_4	35	0	15	1	7.429	10.4	11.14	22.29	
T ₅	40	14	15	0	6.5	9.1	9.75	19.5	
T_6	42	0	5	0	6.19	8.667	9.286	18.57	
T_7	52	0	19	0	<u>5</u>	7	7.5	15	
T_8	56	3	10	0	4.643	6.5	6.964	13.93	
T ₉	60	0	8	0	4.333	6.067	6.5	13	
T ₁₀	65	2	39	0	4	5.6	6	12	
T ₁₁	70	0	13	0	3.714	5.2	5.571	11.14	
T ₁₂	78	0	9	0	3.333	4.667	<u>5</u>	10	
T ₁₃	80	0	12	0	3.25	4.55	4.875	9.75	
T ₁₄	84	0	5	1	3.095	4.333	4.643	9.286	
T ₁₅	91	2	15	1	2.857	4	4.286	8.571	
T ₁₆	104	0	14	6	2.5	3.5	3.75	7.5	
T ₁₇	112	0	9	0	2.321	3.25	3.482	6.964	
T ₁₈	120	0	5	0	2.167	3.033	3.25	6.5	
T ₁₉	130	0	25	0	2	2.8	3	6	
T ₂₀	140	0	12	0	1.857	2.6	2.786	5.571	
T ₂₁	156	0	7	0	1.667	2.333	2.5	<mark>5</mark>	
T_{22}	182	1	13	0	1.429	2	2.143	4.286	
T ₂₃	195	0	14	1	1.333	1.867	2	4	
T ₂₄	208	0	11	0	1.25	1.75	1.875	3.75	
T ₂₅	210	0	5	0	1.238	1.733	1.857	3.714	
T ₂₆	260	0	18	0	1	1.4	1.5	3	
T ₂₇	273	0	6	0	1.05	1.333	1.429	2.857	
T_{28}	280	0	10	0	1.077	1.3	1.393	2.786	
T ₂₉	312	0	5	0	1.2	1.167	1.25	2.5	
T ₃₀	325	0	7	0	1.25	1.12	1.2	2.4	
T ₃₁	364	0	12	0	1.4	1	1.071	2.143	
T ₃₂	390	0	9	0	1.5	1.071	1	2	
T ₃₃	420	0	5	0	1.615	1.154	1.077	1.857	
T ₃₄	455	0	15	0	1.75	1.25	1.167	1.714	
T ₃₅	520	0	13	0	2	1.429	1.333	1.5	
T ₃₆	546	0	5	0	2.1	1.5	1.4	1.429	
T ₃₇	560	0	9	0	2.154	1.538	1.436	1.393	
T ₃₈	728	1	10	0	2.8	2	1.867	1.071	
T ₃₉	780	0	7	0	3	2.143	2	1	
T ₄₀	910	0	13	1	3.5	2.5	2.333	1.167	
T_{41}	1040	0	10	0	4	2.857	2.667	1.333	
T_{42}	1092	0	5	1	4.2	3	2.8	1.4	
T_{43}	1365	0	6	0	5.25	3.75	3.5	1.75	
- 43	1303	J	5		5.25	5.75	5.5	1.,5	

Te	eiler	Anza	hl der T	Гeiler		Kand	idaten	
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	260	364	390	780
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
T_{44}	1456	0	9	0	5.6	<mark>4</mark>	3.733	1.867
T_{45}	1560	0	5	0	<mark>6</mark>	4.286	<mark>4</mark>	2
T_{46}	1820	0	12	0	7	5	4.667	2.333
T_{47}	2730	0	5	0	10.5	7.5	<mark>7</mark>	3.5
T_{48}	3640	0	10	0	14	10	9.333	4.667
T_{49}	5460	0	5	0	<mark>21</mark>	<mark>15</mark>	<mark>14</mark>	<mark>7</mark>
T ₅₀	7280	0	9	0	<mark>28</mark>	<mark>20</mark>	18.67	9.333

Bilanz (p.69-73, 4 Eb)	$\frac{2\sigma}{2}$	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	4	5	4	4	5	0	3	0
Anzahl ganzzahliger Teiler < Periode	0	3	0	4	1	4	4	6
Anzahl aller ganzzahligen Teiler	4	8	4	8	6	4	7	6

6.1.7 p.31-32: (Ausgangspunkt: multipel) [Kz. 1 = alle, Kz. 2 = 6]

Te	iler	Anz	ahl der T	`eiler	Kandidaten			
Bez.	Wert	$N(T_{i}-1)$	$N(T_i)$	$N(T_i+1)$	260	364		
(1)	(2)	(3)	(4)	(5)	(6)	(7)		
T_1	52	0	5	0	<mark>5</mark>	<mark>7</mark>		
T_2	91	0	11	1	2.857	4		
T_3	182	0	6	0	1.429	2		

Bilanz (p.31-32)	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ
Anzahl ganzzahliger Teiler ≥ Periode	0	0	0	0
Anzahl ganzzahliger Teiler < Periode	1	0	2	1
Anzahl aller ganzzahligen Teiler	1	0	2	1

6.1.8 p.62-64: (Ausgangspunkt: multipel) [Kz. 1 = alle, Kz. 2 = 7]

Te	iler	Anza	ahl der T	Ceiler	Kand	idaten
Bez.	Wert	N(T _i -1)	N(T _i)	$N(T_i+1)$	260	364
(1)	(2)	(3)	(4)	(5)	(6)	(7)
T_1	28	0	16	0	9.286	13
T_2	32	0	5	1	8.125	11.38
T_3	35	2	14	1	7.429	10.4
T_4	42	1	5	0	6.19	8.667
T_5	52	1	18	0	5	<mark>7</mark>
T_6	56	0	11	1	4.643	6.5
T_7	65	2	15	1	4	5.6
T_8	70	0	12	0	3.714	5.2
T ₉	78	1	6	0	3.333	4.667
T_{10}	80	0	8	0	3.25	4.55
T_{11}	91	0	31	1	2.857	<mark>4</mark>
T_{12}	104	0	11	3	2.5	3.5
T_{13}	112	0	10	0	2.321	3.25
T_{14}	130	0	13	0	2	2.8
T_{15}	140	0	11	0	1.857	2.6
T_{16}	182	0	21	2	1.429	2
T_{17}	208	0	10	0	1.25	1.75
T_{18}	224	0	5	0	1.161	1.625
T_{19}	260	0	12	0	1	1.4
T_{20}	273	0	8	0	1.05	1.333
T_{21}	280	0	8	0	1.077	1.3
T_{22}	364	0	16	0	1.4	1
T ₂₃	416	0	5	0	1.6	1.143
T ₂₄	455	0	14	1	1.75	1.25
T ₂₅	520	0	8	0	2	1.429
T ₂₆	546	0	5	0	2.1	1.5
T ₂₇	560	0	8	1	2.154	1.538
T ₂₈	728	0	11	0	2.8	2
T ₂₉	910	0	12	0	3.5	2.5
T ₃₀	1040	0	8	0	<mark>4</mark>	2.857
T ₃₁	1456	0	10	0	5.6	4
T ₃₂	1820	0	11	0	<mark>7</mark>	5
T ₃₃	2912	0	5	0	11.2	8
T ₃₄	3640	0	8	0	<mark>14</mark>	10
T ₃₅	7280	0	8	0	<mark>28</mark>	<mark>20</mark>

Bilanz (p.63-64)	$\frac{2\sigma}{2}$	<mark>3σ</mark>	$\frac{2\sigma}{2}$	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	4	2	3	4
Anzahl ganzzahliger Teiler < Periode	0	3	0	4
Anzahl aller ganzzahligen Teiler	4	5	3	8

Anhang 6.2: Ergebnisse gemäß der Lesung Förstemann (1901)

6.2.1 p.24, 46-50: Venus-Tafel (Ausgangspunkt: 1 Ahau) [Kz. 2 = 1]

Tei	iler	Anz	ahl der T	eiler		Kandidater	1
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	260	365	584
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
T_1	30	1	6	0	8.667	12.17	19.47
T_2	32	0	10	0	8.125	11.41	18.25
T_3	40	3	23	1	6.5	9.125	14.6
T_4	50	0	5	0	5.2	7.3	11.68
T_5	52	0	11	1	<mark>5</mark>	7.019	11.24
T_6	60	1	6	0	4.333	6.083	9.733
T_7	65	3	10	0	<mark>4</mark>	5.615	8.985
T_8	73	3	22	0	3.562	<u>5</u>	8
T ₉	80	0	11	0	3.25	4.563	7.3
T_{10}	100	0	5	0	2.6	3.65	5.84
T_{11}	104	0	8	0	2.5	3.51	5.615
T_{12}	120	0	6	1	2.167	3.042	4.867
T_{13}	130	0	10	0	2	2.808	4.492
T ₁₄	146	1	22	0	1.781	2.5	4
T ₁₅	160	0	7	0	1.625	2.281	3.65
T ₁₆	208	0	6	0	1.25	1.755	2.808
T ₁₇	219	1	7	2	1.187	1.667	2.667
T ₁₈	260	0	9	0	1	1.404	2.246
T ₁₉	292	1	22	0	1.123	1.25	2
T ₂₀	365	2	18	0	1.404	1	1.6
T ₂₁	416	0	5	0	1.6	1.14	1.404
T ₂₂	438	0	7	0	1.685	1.2	1.333
T ₂₃	520	0	7	0	2	1.425	1.123
T ₂₄	584	0	30	1	2.246	1.6	1
T ₂₅	730	0	32	0	2.808	2	1.25
T ₂₆	876	0	7	0	3.369	2.4	1.5
T ₂₇	949	0	5	0	3.65	2.6	1.625
T ₂₈	1040	1	5	0	<mark>4</mark>	2.849	1.781
T ₂₉	1095	0	6	0	4.212	3	1.875
T ₃₀	1168	0	11	0	4.492	3.2	2
T ₃₁	1460	0	18	0	5.615	4	2.5
T ₃₂	1752	0	7	0	6.738	4.8	3
T ₃₃	1898	0	5	0	7.3	5.2	3.25
T ₃₄	2190	0	6	0	8.423	<mark>6</mark>	3.75
T ₃₅	2336	0	6	0	8.985	6.4	<mark>4</mark>
T ₃₆	2920	0	18	0	11.23	8	5
T ₃₇	3796	0	5	0	14.6	10.4	6.5
T ₃₈	4380	0	6	0	16.85	<mark>12</mark>	7.5
T ₃₉	4745	0	5	0	18.25	<mark>13</mark>	8.125
T ₄₀	5840	0	9	0	22.46	<mark>16</mark>	10
T ₄₁	7592	0	5	0	29.2	20.8	13

Tei	iler	Anz	ahl der T	eiler	Kandidaten						
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	365	584				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
T_{42}	8760	0	6	0	33.69	<mark>24</mark>	<mark>15</mark>				
T_{43}	9490	0	5	0	36.5	<mark>26</mark>	16.25				
T ₄₄	11680	0	5	0	44.92	<mark>32</mark>	<mark>20</mark>				
T_{45}	18980	0	5	0	<mark>73</mark>	<mark>52</mark>	32.5				
T_{46}	37960	0	5	0	146	<mark>104</mark>	<mark>65</mark>				

Bilanz (p.24,46-50)	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<u>3σ</u>
Anzahl ganzzahliger Teiler ≥ Periode	5	0	10	4	7	3
Anzahl ganzzahliger Teiler < Periode	1	2	0	1	0	3
Anzahl aller ganzzahligen Teiler	6	2	10	5	7	6

6.2.2 p.51-58: Finsternis-Tafel (Ausgangspunkt: multipel) [Kz. 2 = 0]

Tei	iler	Anz	ahl der T	'eiler		Kandidate	en
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	115	260	299
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
T_1	40	7	15	1	2.875	6.5	7.475
T_2	46	3	15	1	2.5	5.652	6.5
T ₃	52	4	15	0	2.212	5	5.75
T_4	65	2	15	2	1.769	4	4.6
T_5	78	1	6	1	1.474	3.333	3.833
T_6	80	1	8	0	1.438	3.25	3.738
T_7	92	2	13	0	1.25	2.826	3.25
T_8	104	0	15	0	1.106	2.5	2.875
T ₉	115	1	14	0	1	2.261	2.6
T_{10}	120	1	6	0	1.043	2.167	2.492
T ₁₁	130	0	15	1	1.130	2	2.3
T ₁₂	138	0	6	0	1.2	1.884	2.167
T ₁₃	184	0	13	0	1.6	1.413	1.625
T ₁₄	195	0	6	0	1.696	1.333	1.533
T ₁₅	208	1	8	0	1.809	1.25	1.438
T ₁₆	230	0	13	1	2	1.130	1.3
T ₁₇	260	0	15	0	2.261	1	1.15
T ₁₈	276	0	5	0	2.4	1.062	1.083
T ₁₉	299	1	13	0	2.6	1.15	1
T ₂₀	345	0	5	1	3	1.327	1.154
T_{21}	368	0	6	0	3.2	1.415	1.231
T_{22}	390	1	6	1	3.391	1.5	1.304
T_{23}	460	0	13	0	4	1.769	1.538
T_{24}	520	0	15	0	4.522	2	1.739
T ₂₅	552	0	5	0	4.8	2.123	1.846
T ₂₆	598	0	13	0	5.2	2.3	2
T ₂₇	690	0	5	1	<u>6</u>	2.654	2.308
T ₂₈	780	0	6	0	6.783	3	2.609
T ₂₉	897	0	5	0	7.8	3.45	3
T ₃₀	920	0	13	0	8	3.538	3.077
T ₃₁	1040	0	8	0	9.043	4	3.478
T ₃₂	1196	0	13	0	10.4	4.6	4
T ₃₃	1380	0	5	0	12	5.308	4.615
T ₃₄	1495	0	13	1	13	5.75	5
T ₃₅	1560	1	6	0	13.57	<mark>6</mark>	5.217
T ₃₆	1794	0	5	0	15.6	6.9	<mark>6</mark>
T ₃₇	1840	0	6	0	<mark>16</mark>	7.077	6.154
T ₃₈	2392	0	13	0	20.8	9.2	8
T ₃₉	2760	0	5	0	<mark>24</mark>	10.62	9.231
T ₄₀	2990	0	13	0	26	11.5	10
T ₄₁	3588	0	5	0	31.2	13.8	12
T ₄₂	4485	0	5	0	<mark>39</mark>	17.25	15
T ₄₃	4784	0	6	0	41.6	18.4	<mark>16</mark>
T ₄₄	5980	1	13	0	<mark>52</mark>	<mark>23</mark>	20

Te	iler	Anz	ahl der T	eiler	Kandidaten						
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	115	260	299				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
T_{45}	7176	0	5	0	62.4	27.6	<mark>24</mark>				
T_{46}	8970	0	5	0	<mark>78</mark>	34.5	<mark>30</mark>				
T_{47}	11960	0	13	0	104	46	40				
T_{48}	17940	0	5	0	<mark>156</mark>	<mark>69</mark>	<mark>60</mark>				
T ₄₉	23920	0	6	0	<mark>208</mark>	<mark>92</mark>	<mark>80</mark>				
T ₅₀	35880	0	5	0	<mark>312</mark>	138	120				

Bilanz (p.51-58)	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	<mark>10</mark>	8	6	4	10	8
Anzahl ganzzahliger Teiler < Periode	0	0	0	3	0	0
Anzahl aller ganzzahligen Teiler	<mark>10</mark>	8	6	7	10	8

6.2.3 p.58-59 (Ausgangspunkt: 13 Muluc) [Kz. 2 = 2]

To	eiler	Anzal	hl der	Teiler				Kand	idaten			
Bez.	Wert	N(T _i -1)	N(T _i)	N(T _i +1)	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_1	30	0	31	0	3.9	8.667	13	17.33	19.5	23.4	26	34.67
T_2	36	3	12	1	3.25	7.222	10.83	14.44	16.25	19.5	21.67	28.89
T_3	39	7	39	15	3	6.667	10	13.33	<u>15</u>	18	<mark>20</mark>	26.67
T_4	45	1	11	0	2.6	5.778	8.667	11.55	13	15.6	17.33	23.11
T_5	48	0	9	0	2.438	5.417	8.125	10.83	12.19	14.63	16.25	21.67
T_6	50	0	6	1	2.34	5.2	7.8	10.4	11.7	14.04	15.6	20.8
T_7	52	1	36	0	2.25	5	7.5	10	11.25	13.5	15	<mark>20</mark>
T_8	54	0	6	1	2.167	4.815	7.222	9.63	10.83	<mark>13</mark>	14.44	19.23
T ₉	57	1	7	0	2.053	4.561	6.842	9.123	10.26	12.32	13.68	18.25
T_{10}	60	0	30	0	1.95	4.333	6.5	8.667	9.75	11.7	13	17.33
T_{11}	65	2	33	1	1.8	<mark>4</mark>	6	8	9	10.8	12	<u> 16</u>
T_{12}	72	0	5	1	1.625	3.611	5.416	7.222	8.125	9.75	10.83	14.44
T_{13}	78	0	39	0	1.5	3.333	5	6.667	7.5	9	10	13.33
T_{14}	80	0	8	0	1.463	3.25	4.875	6.5	7.313	8.775	9.75	<mark>13</mark>
T_{15}	90	1	11	4	1.3	2.889	4.333	5.778	6.5	7.8	8.667	11.55
T_{16}	100	0	6	0	1.17	2.6	3.9	5.2	5.85	7.02	7.8	10.4
T_{17}	104	0	17	3	1.125	2.5	3.75	5	5.625	6.75	7.5	10
T_{18}	108	0	5	0	1.083	2.407	3.611	4.815	5.417	6.5	7.222	9.63
T_{19}	114	0	7	0	1.026	2.281	3.421	4.561	5.132	6.158	6.842	9.123
T_{20}	117	0	14	0	1	2.222	3.333	4.444	5	6	6.667	8.889
T_{21}	120	0	14	0	1.026	2.166	3.25	4.333	4.875	5.85	6.5	8.666
T_{22}	130	1	33	0	1.111	2	3	4	4.5	5.4	6	8
T ₂₃	135	0	5	0	1.154	1.926	2.889	3.852	4.333	5.2	5.777	7.704
T ₂₄	150	0	6	0	1.282	1.733	2.6	3.467	3.9	4.68	5.2	6.933
T ₂₅	156	0	34	0	1.333	1.667	2.5	3.333	3.75	4.5	5	6.667
T ₂₆	180	0	11	0	1.538	1.444	2.166	2.889	3.25	3.9	4.333	5.778
T ₂₇	190	0	7	0	1.624	1.368	2.053	2.737	3.079	3.695	4.105	5.474
T ₂₈	195	0	31	0	1.667	1.333	1.075	2.667	3 012	3.6	2.75	5.333
T ₂₉	208	0	9	0	1.778	1.25	1.875	2.5	2.813	3.375	3.75	5 4 7 6 1
T ₃₀	228	0	7	0	1.949	1.140	1.711	2.281	2.566	3.079	3.421	4.561
T ₃₁	234	0	14	0	2.052	1.111	1.667	2.222	2.5	3 025	3.333	4.444
T ₃₂	240	0	8	0	2.052	1.083	1.625	2.167	2.438	2.925	3.25	4.333
T ₃₃	247	0	7	0	2.111	1.053	1.579	2.105	2.368	2.842	3.158	4.211
T ₃₄	260	0	32	0	2.222	1.000	1.5	1.001	2.25	2.7	2 000	2.072
T ₃₅	270	0	5	0	2.308	1.038	1.444	1.926	2.166	2.6	2.888	3.852
T ₃₆	285	0	7	1	2.436	1.096	1.368	1.825	2.053	2.463	2.737	3.649
T ₃₇	300	0	6	0	2.564	1.154	1.3	1.733	1.95	2.34	2.6	3.466
T ₃₈	312	0	16	0	2.667	1.2	1.25	1.667	1.878	2.25	2.5	3.333
T ₃₉	325	0	6	0	2.778	1.25	1.2	1.6	1.8	2.16	2.4	3.2
T ₄₀	351	0	6	0	3 2 077	1.35	1.111	1.481	1.667	1.05	2.222	2.963
T_{41}	360	0	5	0	3.077	1.385	1.083	1.444	1.625	1.95	2.167	2.889
T_{42}	380	0	7	0	3.248	1.462	1.026	1.368	1.539	1.847	2.053	2.737
T_{43}	390	0	31	0	3.333	1.5	1	1.333	1.5	1.8	2	2.667

T	eiler	Anza	hl der	Teiler									Kand	lidat	ten						
Bez.	Wert	N(T _i -1)	N(T _i)	N(T _i +1))	117		260		3	90	5	520	5	85	70)2		780	10)40
(1)	(2)	(3)	(4)	(5)		(6)		(7)		((8)		(9)	(10)	(1	1)		(12)	(1	13)
T_{44}	468	0	12	0	4			1.8		1.	2	1.	111	1.3	25	1.5	i	1	.667	2.2	222
T_{45}	494	0	7	0	4	.222	. 1	1.9		1.	266	1.	053	1.	184	1.4	-21	1	.579	2.1	105
T_{46}	520	0	15	0	4	.444	. [2	2		1	333	1		1.	125	1.3	55	1	.5	2	
T_{47}	540	0	5	0	4	.615	1	2.077	7	1	385	1.	038	1.	083	1.3	}	1	.444	1.9	923
T_{48}	570	0	7	0	4	.873	1	2.192	2	1.4	462	1.	096	1.	026	1.2	232	1	.368	1.8	325
T_{49}	585	0	11	0	5		2	2.25		1.:	5	1.	125	1		1.2)	1	.333	1.7	778
T_{50}	624	0	9	0	5	3.333		2.4		1.0	5	1.	2	1.0	066	1.1	25	1	.25	1.6	567
T_{51}	650	0	6	0	5	5.555		2.5		1.0	566	1.	25	1.	111	1.0	8	1	.2	1.6	5
T_{52}	702	0	6	0	6	,)	2	2.7		1.3	8	1.	35	1.3	2	1		1	.111	1.4	181
T_{53}	741	1	7	0	6	5.333	2	2.85		1.9	9	1.	425	1.	266	1.0)55	1	.053	1.4	104
T_{54}	780	0	30	0	6	5.667	'	3		2		1.	5	1.	333	1.1	11	1		1.3	333
T ₅₅	936	0	5	0	8	8		3.6		2.4	4	1.	8	1.	6	1.3	33	1	.2	1.1	111
T ₅₆	975	0	6	0	8	3.333	1	3.75		2.:	5	1.	875	1.	667	1.3	89	1	.25	1.0)66
T ₅₇	988	0	7	0	8	3.444	. 3	3.8		2.:	533	1.	9	1.	689	1.4	07	1	.266	1.0)53
T_{58}	1040	0	8	0	8	.889) 4	<mark>1</mark>		2.0	667	2		1.	778	1.4	-81	1	.333	1	
T ₅₈	1140	0	7	0	9	.744	. 4	1.385	5	2.9	923	2.	192	1.	948	1.6	524	1	.462	1.0)96
T ₆₀	1170	0	11	0	1	.0	4	1.5		3		2.	25	2		1.6		1	.5	1.1	125
T_{61}	1235	0	7	0	1	0.55	j 2	1.75		3.	167	2.	375	2.	111	1.7	'59	1	.583	1.1	189
T_{62}	1300	0	6	0	1	1.11	. 4	<mark>5</mark>		3	333	2.	5	2.	222	1.8	352	1	.667	1.2	25
T_{63}	1404	0	5	0	1	.2	4	5.4		3.0	5	2.	7	2.	4	2		1	.8	1.3	35
T_{64}	1482	0	7	0	1	2.66	5 4	5.7		3.3	8	2.	85	2.:	533	2.1	11	1	.9	1.4	125
T_{65}	1560	0	14	0	1	3.33	_	5		4		3			667	2.2		2		1.5	5
T_{66}	1755	0	5	0	1	<mark>.5</mark>		5.75		4.:	5	_	375	<mark>3</mark>		2.5	<u> </u>		.25	1.6	589
T_{67}	1950	0	6	0	1	6.66) [7.5		<u>5</u>		3.	75	3.	333	2.7	77	2	.5	1.8	375
T_{68}	2340	0	11	0		20)		6		4.		4		3.3		3		2.2	
T_{69}	2470	0	7	0	_	21.11		9.5			333		75		222	3.5		+-	.167	-	375
T ₇₀	2964	0	7	0		25.33		11.4		7.	5	5.	7		067	4.2		_	.8	2.8	35
T ₇₁	3120	0	8	0		26.67		<mark>12</mark>		8		<u>6</u>		_	333	4.4	44	4		3	
T ₇₂	3510	0	5	0	_	<mark>0</mark>	_	13.5	_	<mark>9</mark>			75	<mark>6</mark>		<mark>5</mark>		-	.5	_	375
T ₇₃	3705	0	7	0	_	1.66		14.25	5	9.:			125		333	5.2		_	.75		563
T ₇₄	3900	0	6	0	_	3.33		1 <mark>5</mark>	_	10		7.	5		667	5.5		5		3.7	
T ₇₅	4680	0	5	0		<u>.0</u>	_	18		12		9		8		6.6		6		4.5	
T ₇₆	4940	0	7	0		2.22		<mark>19</mark>	_	_	.66	9.		_	444	7.0	37	_	.333	4.7	
T ₇₇	7020	0	5	0		<mark>60</mark>	_	27		18			3.5	12	<u> </u>	10		9		6.7	
T ₇₈	7410	0	7	0		3.33	_	28.5	_	19	_		1.25		2.67	10.		_	.5		125
T_{79}	14820	0	7	0	1	26.6) 5	<mark>57</mark>		<mark>38</mark>	,	28	3.5	25	5.33	21.	.11	1	<mark>9</mark>	14	.25
																	_				
	Bilanz	-1			<mark>2σ</mark>	<u>3σ</u>	<mark>2σ</mark>	<u>З</u> б		σ	<u>3σ</u>	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	<u>3</u> 6	20		<mark>2σ</mark>	<u>3σ</u>
	ganzzahlig ganzzahlig				8	6	8	5 3		8	5	0	5	0	<u>3</u>	2	4	5		2	0
	ı ganzzanııg ıl aller gan				8	7	8	+	-	8	11	3	7	4	8	6	4		11 14	3	7
1 MILAI	i unci gali	LLumigu		•			U	U	<u> </u>	,		J	,	-	J	v	7	_			_

6.2.4 p.43-44: (Ausgangspunkt: 3 Lamat) [Kz. 2 = 3]

Tei	ler	Anza	ahl der T	`eiler]	Kandidate	en	Kandidaten										
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	260	390	520	780	1040										
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)										
T_1	30	0	15	1	8.667	13	17.33	<mark>26</mark>	34.67										
T_2	39	0	23	8	6.667	10	13.33	20	26.67										
T_3	48	0	7	0	5.417	8.125	10.83	16.25	21.67										
T_4	50	0	5	1	5.2	7.8	10.4	15.6	20.8										
T_5	52	1	18	0	5	7.5	10	<mark>15</mark>	<mark>20</mark>										
T_6	60	0	14	0	4.333	6.5	8.667	<mark>13</mark>	17.33										
T_7	65	1	15	0	4	<mark>6</mark>	8	12	<mark>16</mark>										
T_8	75	0	5	0	3.467	5.2	6.933	10.4	13.87										
T ₉	78	0	23	0	3.333	<mark>5</mark>	6.667	<mark>10</mark>	13.33										
T_{10}	80	0	6	0	3.25	4.875	6.5	9.75	<mark>13</mark>										
T_{11}	100	0	5	0	2.6	3.9	5.2	7.8	10.4										
T_{12}	104	0	10	3	2.5	3.75	<mark>5</mark>	7.5	<mark>10</mark>										
T_{13}	117	0	6	0	2.222	3.333	4.444	6.667	8.889										
T_{14}	120	0	8	0	2.167	3.25	4.333	6.5	8.667										
T_{15}	130	0	15	0	2	3	4	<mark>6</mark>	8										
T ₁₆	150	0	5	0	1.733	2.6	3.467	5.2	6.933										
T_{17}	156	1	18	0	1.667	2.5	3.333	5	6.667										
T_{18}	195	1	15	0	1.333	2	2.667	4	5.333										
T_{19}	208	0	7	0	1.25	1.875	2.5	3.75	<mark>5</mark>										
T_{20}	234	0	6	0	1.111	1.667	2.222	3.333	4.444										
T_{21}	240	0	6	0	1.083	1.625	2.167	3.25	4.333										
T_{22}	260	0	14	0	1	1.5	2	3	<mark>4</mark>										
T_{23}	300	0	5	0	1.154	1.3	1.733	2.6	3.467										
T ₂₄	312	0	10	0	1.2	1.25	1.667	2.5	3.333										
T_{25}	325	0	5	0	1.25	1.2	1.6	2.4	3.2										
T_{26}	390	0	15	0	1.5	1	1.333	<mark>2</mark>	2.667										
T_{27}	520	0	8	0	2	1.333	1	1.5	<mark>2</mark>										
T_{28}	624	0	7	0	2.4	1.6	1.2	1.25	1.667										
T ₂₉	650	0	5	0	2.5	1.667	1.25	1.2	1.6										
T ₃₀	780	0	14	0	3	2	1.5	1	1.333										
T ₃₁	975	0	5	0	3.75	2.5	1.875	1.25	1.067										
T ₃₂	1040	0	6	0	<mark>4</mark>	2.667	2	1.333	1										
T ₃₃	1300	0	5	0	<u>5</u>	3.333	2.5	1.667	1.25										
T ₃₄	1560	0	8	0	6	4	3	2	1.5										
T ₃₅	1950	0	5	0	7.5	5			1.875										
T ₃₆	3120	0	6	0	12	8	<mark>6</mark>	2.5 4	3										
T ₃₇	3900	0	5	0	<mark>15</mark>	<mark>10</mark>	7.5	<mark>5</mark>	3.75										

Bilanz (p.43-44)	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ
Anzahl ganzzahliger Teiler ≥ Periode	6	2	4	2	4	0	3	1	2	0
Anzahl ganzzahliger Teiler < Periode	0	3	0	6	1	4	0	11	4	4
Anzahl aller ganzzahligen Teiler	6	5	4	8	5	4	3	12	6	4

6.2.5 p.69-73: (Ausgangspunkt: 9 Ix) [Kz. 2 = 4]

Τe	eiler	Anza	hl der	Teiler	Kandidaten							
Bez.	Wert	N(T _i -1)	N(T _i)	N(T _i +1)	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_1	30	0	16	0	3.9	8.667	<mark>13</mark>	17.33	19.5	23.4	<mark>26</mark>	34.67
T_2	36	4	18	0	3.25	7.222	10.83	14.44	16.25	19.5	21.67	28.89
T_3	39	1	25	15	3	6.667	10	13.33	15	18	20	26.67
T_4	45	2	15	0	2.6	5.778	8.667	11.56	13	15.6	17.33	23.11
T_5	48	0	8	0	2.438	5.417	8.125	10.83	12.19	14.63	16.25	21.67
T_6	52	2	23	0	2.25	5	7.5	10	11.25	13.5	<mark>15</mark>	20
T_7	54	0	22	2	2.167	4.815	7.222	9.63	10.83	13	14.44	19.26
T ₈	60	0	14	0	1.95	4.333	6.5	8.667	9.75	11.7	13	17.33
T ₉	65	2	19	2	1.8	4	6	5 222	9 127	10.8	12	16
T_{10}	72	0	14	0	1.625	3.611	5.417	7.222	8.125	9.75	10.83	14.44
T_{11}	78	1	25	0	1.5	3.333	5	6.667	7.5	9	10	13.33
T_{12}	90	2	15	5	1.3	2.889	4.333	5.778	6.5	7.8	8.667	11.56
T_{13}	104	0	18	3	1.125	2.5	3.75	5	5.625	6.75	7.5	10
T_{14}	108	0	17	0	1.083	2.407	3.611	4.815	5.417	6.5	7.222	9.63
T_{15}	117	0	24	0	1	2.222	3.333	4.444	5	6	6.667	8.889
T_{16}	120	1	13	0	1.026	2.167	3.25	4.333	4.875	5.85	6.5	8.667
T ₁₇	130	0	19	0	1.111	2	3	4	4.5	5.4	6	8
T_{18}	135	0	14	1	1.154	1.926	2.889	3.852	4.333	5.2	5.778	7.704
T_{19}	144	2	7	0	1.231	1.806	2.708	3.611	4.063	4.875	5.417	7.222
T_{20}	156	0	19	0	1.333	1.667	2.5	3.333	3.75	4.5	5	6.667
T_{21}	162	0	7	0	1.385	1.605	2.407	3.21	3.611	4.333	4.815	6.42
T_{22}	180	0	13	0	1.538	1.444	2.167	2.889	3.25	3.9	4.333	5.778
T ₂₃	182	0	5	0	1.556	1.429	2.143	2.857	3.214	3.857	4.286	5.714
T ₂₄	195	0	16	0	1.667	1.333	4.05.5	2.667	3	3.6	4	5.333
T ₂₅	208	0	10	0	1.778	1.25	1.875	2.5	2.813	3.375	3.75	4.017
T ₂₆	216	0	14	0	1.846	1.204	1.806	2.407	2.708	3.25	3.611	4.815
T ₂₇	234	0	24	0	2.051	1.111	1.667	2.222	2.5	2.025	3.333	4.444
T ₂₈	240	0	7	0	2.051	1.083	1.625	2.167	2.438	2.925	3.25	4.333
T ₂₉	260	0	17	0	2.222	1 020	1.5	1.026	2.25	2.7	3	4
T_{30}	270	0	14	0	2.308	1.038	1.444	1.926	2.167	2.6	2.889	3.852
T ₃₁	312	0	15	0	2.667	1.2	1.25	1.667	1.875	2.25	2.5	3.333
T_{32}	351	1	22	0	2.077	1.35	1.111	1.481	1.667	1.05	2.222	2.963
T ₃₃	360	0	12	0	3.077	1.385	1.083	1.444	1.625	1.95	2.167	2.889
T ₃₄	390	0	16	0	3.333	1.5	1 100	1.333	1.5	1.8	4.001	2.667
T ₃₅	432	0	7	0	3.692	1.662	1.108	1.204	1.354	1.625	1.806	2.407
T ₃₆	468	0	18	0	4	1.8	1.2	1.111	1.25	1.5	1.667	2.222
T ₃₇	520	0	15	0	4.444	2	1.333	1	1.125	1.35	1.5	2
T_{38}	540	0	13	0	4.615	2.077	1.385	1.038	1.083	1.3	1.444	1.926
T ₃₉	585	0	15	0	5	2.25	1.5	1.125	1	1.2	1.333	1.778
T_{40}	624	1	8	0	5.333	2.4	1.6	1.2	1.067	1.125	1.25	1.667
T_{41}	702	0	22	0	6	2.7	1.8	1.35	1.2	1	1.111	1.481
T_{42}	720	0	6	0	6.154	2.769	1.846	1.385	1.231	1.026	1.083	1.444
T_{43}	780	0	14	0	6.667	3	2	1.5	1.333	1.111	1	1.333

To	eiler	Anza	hl der	Teiler				Kand	idaten			
Bez.	Wert	N(T _i -1)	N(T _i)	$N(T_i+1)$	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_{44}	936	0	14	0	8	3.6	2.4	1.8	1.6	1.333	1.2	1.111
T_{45}	1040	0	8	0	8.889	<mark>4</mark>	2.667	2	1.778	1.481	1.333	1
T_{46}	1053	0	7	0	<mark>9</mark>	4.05	2.7	2.025	1.8	1.5	1.35	1.013
T_{47}	1080	0	12	0	9.231	4.154	2.769	2.077	1.846	1.538	1.385	1.038
T_{48}	1170	0	15	0	10	4.5	3	2.25	2	1.667	1.5	1.125
T_{49}	1404	0	17	0	12	5.4	3.6	2.7	2.4	2	1.8	1.35
T_{50}	1560	0	13	0	13.33	6	4	3	2.667	2.222	2	1.5
T ₅₁	1755	0	14	0	15	6.75	4.5	3.375	3	2.5	2.25	1.688
T_{52}	1872	0	7	0	<mark>16</mark>	7.2	4.8	3.6	3.2	2.667	2.4	1.8
T_{53}	2106	0	7	0	<mark>18</mark>	8.1	5.4	4.05	3.6	<mark>3</mark>	2.7	2.025
T ₅₄	2160	0	6	0	18.46	8.31	5.538	4.154	3.692	3.077	2.769	2.077
T_{55}	2340	0	13	0	20	9	6	4.5	4	3.333	3	2.25
T_{56}	2808	0	14	0	24	10.8	7.2	5.4	4.8	<mark>4</mark>	3.6	2.7
T_{57}	3120	0	7	0	26.67	<mark>12</mark>	8	<mark>6</mark>	5.333	4.444	<mark>4</mark>	<mark>3</mark>
T_{58}	3510	0	14	0	<mark>30</mark>	13.5	9	6.75	6	<u>5</u>	4.5	3.375
T_{58}	4212	0	5	0	<mark>36</mark>	16.2	10.8	8.1	7.2	<mark>6</mark>	5.4	4.05
T_{60}	4680	0	12	0	40	18	12	9	8	6.667	<mark>6</mark>	4.5
T_{61}	5616	0	7	0	<mark>48</mark>	21.6	14.4	10.8	9.6	8	7.2	5.4
T_{62}	7020	0	13	0	60	27	18	13.5	12	10	9	6.75
T_{63}	9360	0	6	0	<mark>80</mark>	<mark>36</mark>	<mark>24</mark>	<mark>18</mark>	<mark>16</mark>	13.33	<mark>12</mark>	<mark>9</mark>
T ₆₄	14040	0	12	0	120	54	<mark>36</mark>	27	24	<mark>20</mark>	18	13.5
T_{65}	28080	0	6	0	<mark>240</mark>	<mark>108</mark>	<mark>72</mark>	<mark>54</mark>	<mark>48</mark>	<mark>40</mark>	<mark>36</mark>	<mark>27</mark>

Bilanz (p.69-73, 9 Ix)	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	36
Anzahl ganzzahliger Teiler ≥ Periode	7	16	4	8	3	9	4	4	2	8	4	6	3	6	4	0
Anzahl ganzzahliger Teiler < Periode	0	1	0	3	0	6	0	5	0	5	0	6	0	11	0	7
Anzahl aller ganzzahligen Teiler	7	17	4	11	3	15	5	9	2	13	4	12	3	17	4	7

6.2.6 p.69-73: (Ausgangspunkt: 4 Eb) [Kz. 2 = 5]

Te	iler	Anz	ahl der T	eiler				
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	260	364	390	780
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
T_1	28	1	14	0	9.286	13	13.93	27.86
T_2	30	0	9	0	8.667	12.13	<mark>13</mark>	<mark>26</mark>
T_3	32	0	7	0	8.125	11.38	12.19	24.38
T_4	35	1	17	1	7.429	10.4	11.14	22.29
T_5	40	14	16	0	6.5	9.1	9.75	19.5
T_6	42	0	5	0	6.19	8.667	9.286	18.57
T ₇	50	1	5	0	5.2	7.28	7.8	15.6
T ₈	52	0	22	0	5	7	7.5	15
T ₉	56	2	12	0	4.643	6.5	6.964	13.93
T_{10}	60	0	7	0	4.333	6.067	6.5	13
T_{11}	65	3	42	0	4	5.6	6	12
T ₁₂	70	0	15	0	3.714	5.2	5.571	11.14
T ₁₃	78	0	9	0	3.333	4.667	5 4.075	10
T ₁₄	80	0	13	0	3.25	4.55	4.875	9.75
T ₁₅	91	2	17	1	2.857	4	4.286	8.571
T ₁₆	104	0	17	6	2.5	3.5	3.75	7.5
T ₁₇	112	0	11	0	2.321	3.25	3.482	6.964
T ₁₈	120	0	5	0	2.167	3.033	3.25	6.5
T ₁₉	130	0	28	0	1.057	2.8	3 706	6
T ₂₀	140	0	14	0	1.857	2.6	2.786	5.571
T ₂₁	156	0	7	0	1.667	2.333	2.5	5 4.077
T ₂₂	160	0	6	0	1.625	2.275	2.438	4.875
T_{23}	182	0	15	0	1.429	1.067	2.143	4.286
T ₂₄	195	0	14	1	1.333	1.867	1.075	2.75
T ₂₅	208	0	14 5	0	1.25	1.75	1.875	3.75
T ₂₆	210	0	5	0	1.238 1.161	1.733	1.857	
T ₂₇	224				_	1.625		3.482
T ₂₈	260	0	21	0	1.05	1.4	1.5	3
T ₂₉	273	1	6	0	1.05	1.333	1.429	2.857
T ₃₀	280	0	12 5	0	1.077	1.3	1.393	2.786
T ₃₁	312	0	8	0	1.2	1.167	1.25	2.5
T ₃₂	325	0		0	1.25	1.12	1.2	2.4
T ₃₃	364	0	14	0	1.4	1.071	1.071	2.143
T ₃₄	390	0	9	0	1.5	1.071	1 067	2
T ₃₅	416	0	6	0	1.6	1.143	1.067	1.875
T ₃₆	420	0	5	0	1.615	1.154	1.077	1.857
T ₃₇	455	0	17	0	1.75	1.25	1.167	1.714
T ₃₈	520	0	16	0	2 1	1.429	1.333	1.5
T ₃₉	546	0	5	0	2.1	1.5	1.4	1.429
T_{40}	560	0	11	0	2.154	1.538	1.436	1.393
T_{41}	650	0	5	0	2.5	1.786	1.667	1.2
T ₄₂	728		12		2.8		1.867	1.071
T ₄₃	780	0	7	0	3	2.143	2 222	1 1 67
T_{44}	910	0	15	0	3.5	2.5	2.333	1.167

Te	eiler	Anz	ahl der T	eiler		Kan	didaten	
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	364	390	780
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
T_{45}	1040	0	13	0	4	2.857	2.667	1.333
T_{46}	1092	0	5	0	4.2	3	2.8	1.4
T ₄₇	1120	0	5	0	4.308	3.077	2.872	1.436
T ₄₈	1365	0	6	0	5.25	3.75	3.5	1.75
T ₄₉	1456	0	11	0	5.6	4	3.733	1.867
T ₅₀	1560	0	5	0	<mark>6</mark>	4.286	<mark>4</mark>	2
T ₅₁	1820	0	14	0	<mark>7</mark>	5	4.667	2.333
T ₅₂	2080	0	6	0	8	5.714	5.334	2.667
T ₅₃	2730	0	5	0	10.5	7.5	<mark>7</mark>	3.5
T ₅₄	2912	0	5	0	11.2	8	7.467	3.733
T ₅₅	3640	0	12	0	14	10	9.333	4.667
T ₅₆	5460	0	5	0	21	<mark>15</mark>	<mark>14</mark>	<mark>7</mark>
T ₅₇	7280	0	11	0	28	<mark>20</mark>	18.67	9.333
T ₅₈	14560	0	5	0	<mark>56</mark>	<mark>40</mark>	37.33	18.67

Bilanz (p.69-73, 4 Eb)	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	5	6	4	6	5	0	3	0
Anzahl ganzzahliger Teiler < Periode	0	3	0	4	2	3	5	5
Anzahl aller ganzzahligen Teiler	5	9	4	10	7	3	8	5

6.2.7 p.31-32: (Ausgangspunkt: multipel) [Kz. 2 = 6]

Tei	iler	Anz	ahl der T	eiler	Kand	idaten
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	364
(1)	(2)	(3)	(4)	(5)	(6)	(7)
T_1	28	0	8	0	9.286	13
T_2	35	1	6	0	7.429	10.4
T_3	52	0	9	0	<mark>5</mark>	<mark>7</mark>
T_4	56	0	5	0	4.643	6.5
T_5	65	1	7	0	<mark>4</mark>	5.6
T_6	70	0	5	0	3.714	5.2
T_7	91	0	16	1	2.857	4
T_8	104	0	5	0	2.5	3.5
T ₉	130	0	6	0	2	2.8
T_{10}	182	0	11	0	1.429	2
T_{11}	260	0	5	0	1	1.4
T_{12}	364	0	8	0	1.4	<mark>1</mark>
T_{13}	455	0	6	0	1.75	1.25
T_{14}	728	0	5	0	2.8	2
T ₁₅	910	0	5	0	3.5	2.5

Bilanz (p.31-32)	<mark>2σ</mark>	<mark>3σ</mark>	2σ	3σ
Anzahl ganzzahliger Teiler ≥ Periode	1	0	2	0
Anzahl ganzzahliger Teiler < Periode	3	0	2	2
Anzahl aller ganzzahligen Teiler	3	0	4	2

6.2.8 p.62-64: (Ausgangspunkt: multipel) [Kz. 2 = 7]

Tei	iler	Anz	ahl der T	eiler	Kand	idaten
Bez.	Wert	N (T _i -1)	$N(T_i)$	$N(T_i+1)$	260	364
(1)	(2)	(3)	(4)	(5)	(6)	(7)
T_1	28	1	18	0	9.286	13
T_2	32	0	6	0	8.125	11.38
T_3	35	1	15	1	7.429	10.4
T_4	42	1	5	0	6.191	8.667
T_5	52	0	19	0	<u>5</u>	<mark>7</mark>
T_6	56	0	13	1	4.643	6.5
T_7	65	2	16	0	<mark>4</mark>	5.6
T_8	70	0	13	0	3.714	5.2
T_9	78	1	5	0	3.333	4.667
T_{10}	80	0	8	0	3.25	4.55
T_{11}	91	0	33	1	2.857	<mark>4</mark>
T_{12}	104	0	13	3	2.5	3.5
T_{13}	112	0	11	0	2.321	3.25
T_{14}	130	0	14	0	2	2.8
T_{15}	140	0	12	0	1.857	2.6
T ₁₆	182	0	23	1	1.429	2
T_{17}	208	0	11	0	1.25	1.75
T_{18}	224	0	6	0	1.161	1.625
T ₁₉	260	0	13	0	1	1.4
T_{20}	273	0	8	0	1.05	1.333
T_{21}	280	0	9	0	1.077	1.3
T ₂₂	364	0	18	0	1.4	1
T ₂₃	416	0	6	0	1.6	1.143
T ₂₄	455	0	15	1	1.75	1.25
T ₂₅	520	0	9	0	2	1.429
T ₂₆	546	0	5	0	2.1	1.5
T ₂₇	560	0	8	0	2.154	1.538
T ₂₈	728	0	13	0	2.8	2
T ₂₉	910	0	13	0	3.5	2.5
T ₃₀	1040	0	8	0	<mark>4</mark>	2.857
T ₃₁	1456	0	11	0	5.6	<mark>4</mark>
T ₃₂	1820	0	12	0	7	<mark>5</mark>
T ₃₃	2912	0	6	0	11.2	8
T ₃₄	3640	0	9	0	<mark>14</mark>	10
T ₃₅	7280	0	8	0	<mark>28</mark>	<mark>20</mark>

Bilanz (p.63-64)	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	4	2	3	4
Anzahl ganzzahliger Teiler < Periode	0	3	0	4
Anzahl aller ganzzahligen Teiler	4	5	3	8

Anhang 6.3: Ergebnisse gemäß der Lesung Thompson (1972)

6.3.1 p.24, 46-50: Venus-Tafel (Ausgangspunkt: 1 Ahau) [Kz. 2 = 1]

Te	eiler	Anz	ahl der T	eiler		Kandidatei	1
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	260	365	584
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
T_1	30	1	7	0	8.666	12.16	19.46
T_2	32	0	10	0	8.125	11.41	18.25
T_3	40	4	24	1	6.5	9.125	14.6
T_4	48	0	5	0	5.416	7.604	12.16
T_5	52	0	11	1	<mark>5</mark>	7.019	11.23
T_6	60	1	7	0	4.333	6.083	9.733
T_7	65	3	10	0	<mark>4</mark>	5.615	8.985
T_8	73	4	22	0	3.562	<mark>5</mark>	8
T ₉	80	0	12	0	3.25	4.563	7.3
T_{10}	104	0	9	0	2.5	3.510	5.615
T_{11}	120	0	7	1	2.166	3.042	4.866
T ₁₂	130	0	10	0	2	2.808	4.492
T_{13}	146	1	22	0	1.780	2.5	4
T ₁₄	160	0	7	0	1.625	2.281	3.65
T ₁₅	208	0	7	0	1.25	1.755	2.808
T ₁₆	219	1	7	2	1.187	1.666	2.666
T ₁₇	260	0	9	0	1	1.404	2.246
T_{18}	292	1	22	0	1.123	1.25	2
T ₁₉	365	1	18	0	1.404	1	1.6
T ₂₀	416	0	5	0	1.6	1.140	1.404
T_{21}	438	0	7	0	1.685	1.2	1.333
T ₂₂	520	0	8	0	2	1.425	1.123
T ₂₃	584	0	22	2	2.246	1.6	1
T ₂₄	730	0	18	0	2.808	2	1.25
T ₂₅	876	0	7	0	3.369	2.4	1.5
T ₂₆	949	0	5	0	3.65	2.6	1.625
T ₂₇	1040	1	6	0	<mark>4</mark>	2.849	1.781
T ₂₈	1095	0	6	0	4.211	3	1.875
T ₂₉	1168	0	11	0	4.492	3.2	2
T ₃₀	1460	0	18	0	5.615	4	2.5
T ₃₁	1752	0	7	0	6.738	4.8	3
T ₃₂	1898	0	5	0	7.3	5.2	3.25
T ₃₃	2190	0	6	0	8.423	<mark>6</mark>	3.75
T ₃₄	2336	0	6	0	8.985	6.4	<mark>4</mark>
T ₃₅	2920	0	18	0	11.23	8	<mark>5</mark>
T ₃₆	3796	0	5	0	14.6	10.4	6.5
T ₃₇	4380	0	6	0	16.85	<mark>12</mark>	7.5
T ₃₈	4745	0	5	0	18.25	<mark>13</mark>	8.125
T ₃₉	5840	0	9	0	22.46	<mark>16</mark>	<u>10</u>
T ₄₀	7592	0	5	0	29.2	20.8	13
T_{41}	8760	0	6	0	33.69	<mark>24</mark>	15

Te	eiler	Anz	ahl der T	eiler	Kandidaten			
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	365	584	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
T_{42}	9490	0	5	0	36.5	<mark>26</mark>	16.25	
T_{43}	11680	0	5	0	44.92	<mark>32</mark>	<mark>20</mark>	
T_{44}	18980	0	5	0	<mark>73</mark>	<mark>52</mark>	32.5	
T_{45}	37960	0	5	0	<mark>146</mark>	<mark>104</mark>	<mark>65</mark>	

Bilanz p.24, 46-50	2σ	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	5	0	10	4	7	3
Anzahl ganzzahliger Teiler < Periode	1	2	0	1	0	3
Anzahl aller ganzzahligen Teiler	6	2	10	5	7	6

6.3.2 p.51-58: Finsternis-Tafel (Ausgangspunkt: multipel) [Kz. 2 = 0]

Te	eiler	Anz	ahl der T	eiler		Kandidaten	1
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	115	260	299
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
T_1	40	5	15	1	2.875	6.5	7.475
T_2	46	2	15	0	2.5	5.652	6.5
T_3	52	1	15	0	2.212	<mark>5</mark>	5.75
T_4	65	1	15	1	1.769	4	4.6
T_5	80	1	6	1	1.438	3.25	3.738
T_6	92	0	14	1	1.25	2.827	3.25
T_7	104	1	15	1	1.106	2.5	2.875
T_8	115	0	14	0	1	2.261	2.6
T ₉	120	1	5	0	1.043	2.167	2.492
T_{10}	130	0	15	1	1.13	2	2.3
T_{11}	138	1	5	0	1.2	1.884	2.167
T_{12}	156	1	5	0	1.357	1.667	1.916
T_{13}	184	0	14	0	1.6	1.413	1.625
T_{14}	195	0	5	0	1.696	1.333	1.533
T ₁₅	208	1	6	1	1.809	1.25	1.438
T ₁₆	230	0	14	1	2	1.130	1.3
T_{17}	260	0	15	0	2.261	1	1.15
T_{18}	276	0	5	0	2.4	1.062	1.083
T ₁₉	299	1	14	0	2.6	1.15	1
T ₂₀	345	0	5	1	3	1.327	1.154
T ₂₁	347	1	5	0	3.017	1.335	1.161
T ₂₂	368	0	6	0	3.2	1.416	1.231
T ₂₃	460	0	14	0	<mark>4</mark>	1.769	1.538
T ₂₄	520	0	15	0	4.522	2	1.739
T_{25}	552	0	5	1	4.8	2.123	1.846
T_{26}	598	0	14	0	5.2	2.3	2
T_{27}	690	0	5	1	<mark>6</mark>	2.654	2.308
T_{28}	694	1	5	0	6.035	2.669	2.321
T_{29}	780	0	5	0	6.783	3	2.609
T_{30}	897	0	5	0	7.8	3.45	3
T_{31}	920	0	14	0	8	3.538	3.077
T_{32}	1040	0	6	1	9.044	<mark>4</mark>	3.478
T_{33}	1196	0	14	0	10.4	4.6	4
T ₃₄	1380	0	5	0	<mark>12</mark>	5.308	4.615
T_{35}	1388	0	5	0	12.07	5.338	4.642
T ₃₆	1495	0	14	0	13	5.75	<mark>5</mark>
T ₃₇	1560	0	5	0	13.57	<mark>6</mark>	5.217
T ₃₈	1794	0	5	0	15.6	6.9	<mark>6</mark>
T ₃₉	1840	0	6	0	<mark>16</mark>	7.077	6.154
T_{40}	2392	0	14	0	20.8	9.2	8
T_{41}	2760	0	5	0	<mark>24</mark>	10.61	9.231
T_{42}	2990	0	14	0	<mark>26</mark>	11.5	10
T_{43}	3588	0	5	0	31.2	13.8	<mark>12</mark>
T_{44}	4485	0	5	0	<mark>39</mark>	17.25	<mark>15</mark>

Te	eiler	Anz	ahl der T	eiler		Kandidater	1
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	115	260	299
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
T_{45}	4784	0	6	0	41.6	18.4	<mark>16</mark>
T ₄₆	5980	0	14	0	<mark>52</mark>	23	<mark>20</mark>
T ₄₇	7176	0	5	0	62.4	27.6	<mark>24</mark>
T_{48}	8970	0	5	0	<mark>78</mark>	34.5	<mark>30</mark>
T ₄₉	11960	0	14	0	104	46	40
T ₅₀	17940	0	5	0	<mark>156</mark>	<mark>69</mark>	<mark>60</mark>
T ₅₁	23920	0	6	0	<mark>208</mark>	<mark>92</mark>	<mark>80</mark>
T ₅₂	35880	0	5	0	<mark>312</mark>	138	120

Bilanz: p.51-58	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ
Anzahl ganzzahliger Teiler ≥ Periode	10	8	6	4	10	8
Anzahl ganzzahliger Teiler < Periode	0	0	0	3	0	0
Anzahl aller ganzzahligen Teiler	10	8	6	7	10	8

6.3.3 p.58-59: (Ausgangspunkt: 13 Muluc) [Kz. 2 = 2]

Te	iler	Anza	hl der '	Teiler				Kand	idaten			
Bez.	Wert	N(T _i -1)	N(T _i)	$N(T_i+1)$	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_1	30	0	31	0	3.9	8.667	13	17.33	19.5	23.4	<mark>26</mark>	34.67
T_2	36	3	11	1	3.25	7.222	10.83	14.44	16.25	19.5	21.66	28.89
T_3	39	8	39	16	3	6.667	10	13.33	15	18	<mark>20</mark>	26.67
T_4	45	1	10	0	2.6	5.778	8.667	11.55	13	15.6	17.33	23.11
T_5	48	0	8	0	2.438	5.417	8.125	10.83	12.19	14.63	16.25	21.67
T_6	50	0	6	1	2.34	5.2	7.8	10.4	11.7	14.04	15.6	20.8
T ₇	52	1	36	0	2.25	<mark>5</mark>	7.5	10	11.25	13.5	15	20
T ₈	54	0	5	1	2.166	4.815	7.222	9.630	10.83	<u>13</u>	14.44	19.26
T ₉	57	1	8	0	2.053	4.561	6.842	9.123	10.26	12.32	13.68	18.25
T_{10}	60	0	30	0	1.95	4.333	6.5	8.667	9.75	11.7	13	17.33
T ₁₁	65	1	33	1	1.8	4	6	8	9	10.8	12	<mark>16</mark>
T_{12}	72	0	5	1	1.625	3.611	5.416	7.222	8.125	9.75	10.83	14.44
T ₁₃	78	0	39	0	1.5	3.333	5	6.667	7.5	9	10	13.33
T ₁₄	80	0	7	0	1.463	3.25	4.875	6.5	7.313	8.775	9.75	13
T ₁₅	90	1	10	4	1.3	2.889	4.333	5.778	6.5	7.8	8.667	11.55
T ₁₆	95	0	8	3	1.232	2.737	4.105	5.474	6.158	7.389	8.211	10.95
T ₁₇	100	0	6	0	1.17	2.6	3.9	5.2	5.85	7.02	7.8	10.4
T ₁₈	104	0	18	3	1.125	2.5	3.75	4.5.61	5.625	6.75	7.5	0.122
T ₁₉	114	0	8	0	1.026	2.281	3.421	4.561	5.132	6.158	6.842	9.123
T_{20}	117	0	13	0	1	2.222	3.333	4.444	5	6	6.667	8.889
T_{21}	120	0	15	0	1.026	2.166	3.25	4.333	4.875	5.85	6.5	8.667
T_{22}	130	1	33	0	1.111	2	3	4	4.5	5.4	6	8
T ₂₃	150	0	6	0	1.282	1.733	2.6	3.467	3.9	4.68	5.2	6.933
T_{24}	156	0	34	0	1.333	1.667	2.5	3.333	3.75	4.5	5	6.667
T ₂₅	180	0	10	0	1.538	1.444	2.166	2.889	3.25	3.9	4.333	5.778
T ₂₆	190	0	8	0	1.624	1.368	2.053	2.737	3.079	3.695	4.105	5.474
T ₂₇	195	0	31	0	1.667	1.333	1.055	2.667	3 012	3.6	4	5.333
T ₂₈	208	0	8	0	1.778	1.25	1.875	2.5	2.813	3.375	3.75	5
T ₂₉	228	0	8	0	1.949	1.140	1.711	2.281	2.566	3.079	3.421	4.561
T ₃₀	234	0	13	0	2.051	1.111	1.667	2.222	2.5	2.025	3.333	4.444
T_{31}	240	0	7	0	2.051	1.083	1.625	2.167	2.438	2.925	3.25	4.333
T ₃₂	247	0	8	0	2.111	1.053	1.579	2.105	2.368	2.842	3.158	4.211
T ₃₃	260	0	32	0	2.222	1 006	1.5	2	2.25	2.7	3	2 6 4 0
T ₃₄	285	0	8	1	2.436	1.096	1.368	1.825	2.053	2.463	2.737	3.649
T ₃₅	300	0	6	0	2.564	1.154	1.3	1.733	1.95	2.34	2.6	3.466
T ₃₆	312	0	17	0	2.667	1.2	1.25	1.666	1.875	2.25	2.5	3.333
T ₃₇	325	0	6	0	2.778	1.25	1.2	1.6	1.8	2.16	2.4	3.2
T ₃₈	351	0	5	0	3 2 077	1.35	1.111	1.481	1.667	2	2.222	2.963
T ₃₉	360	0	5	0	3.077	1.385	1.083	1.444	1.625	1.95	2.166	2.889
T_{40}	380	0	8	0	3.248	1.462	1.026	1.368	1.539	1.847	2.053	2.737
T ₄₁	390	0	31	0	3.333	1.5	1 2	1.333	1.5	1.8	2	2.667
T ₄₂	468	0	11	0	4 225	1.8	1.2	1.111	1.25	1.5	1.666	2.222
T ₄₃	494	0	8	0	4.222	1.9	1.266	1.053	1.184	1.421	1.579	2.105
T_{44}	520	0	16	0	4.444	2	1.333	1	1.125	1.35	1.5	2

Te	eiler	Anza	hl der '	Teiler				Kand	idaten			
Bez.	Wert	N(T _i -1)	N(T _i)	$N(T_i+1)$	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_{45}	570	0	8	0	4.872	2.192	1.462	1.096	1.026	1.232	1.368	1.825
T_{46}	585	0	10	0	<u>5</u>	2.25	1.5	1.125	1	1.2	1.333	1.778
T_{47}	624	0	8	0	5.333	2.4	1.6	1.2	1.067	1.125	1.25	1.667
T_{48}	650	0	6	0	5.555	2.5	1.667	1.25	1.111	1.08	1.2	1.6
T_{49}	702	0	5	0	<mark>6</mark>	2.7	1.8	1.35	1.2	1	1.111	1.481
T ₅₀	741	1	8	0	6.333	2.85	1.9	1.425	1.267	1.055	1.053	1.404
T ₅₁	780	0	30	0	6.667	3	2	1.5	1.333	1.111	1	1.333
T ₅₂	936	0	5	0	8	3.6	2.4	1.8	1.6	1.333	1.2	1.111
T ₅₃	975	0	6	0	8.333	3.75	2.5	1.875	1.667	1.388	1.25	1.067
T ₅₄	988	0	8	0	8.444	3.8	2.533	1.9	1.688	1.407	1.267	1.053
T ₅₅	1040	0	7	0	8.889	<mark>4</mark>	2.667	<mark>2</mark>	1.777	1.481	1.333	1
T ₅₆	1140	0	8	0	9.743	4.385	2.923	2.192	1.949	1.624	1.462	1.096
T ₅₇	1170	0	10	0	10	4.5	3	2.25	2	1.667	1.5	1.125
T ₅₈	1235	0	8	0	10.55	4.75	3.166	2.375	2.111	1.759	1.583	1.188
T ₅₉	1300	0	6	0	11.11	<mark>5</mark>	3.333	2.5	2.222	1.852	1.667	1.25
T_{60}	1482	0	8	0	12.67	5.7	3.8	2.85	2.533	2.111	1.9	1.425
T_{61}	1560	0	15	0	13.33	6	4	<mark>3</mark>	2.667	2.222	2	1.5
T_{62}	1950	0	6	0	16.67	7.5	<mark>5</mark>	3.75	3.333	2.778	2.5	1.875
T_{63}	2340	0	10	0	<mark>20</mark>	9	<mark>6</mark>	4.5	<mark>4</mark>	3.333	3	2.25
T ₆₄	2470	0	8	0	21.11	9.5	6.333	4.75	4.222	3.519	3.167	2.375
T_{65}	2964	0	8	0	25.33	11.4	7.6	5.7	5.066	4.222	3.8	2.85
T_{66}	3120	0	7	0	26.66	<mark>12</mark>	8	<mark>6</mark>	5.333	4.444	<mark>4</mark>	<mark>3</mark>
T_{67}	3705	0	8	0	31.66	14.25	9.5	7.125	6.333	5.277	4.75	3.563
T_{68}	3900	0	6	0	33.33	<mark>15</mark>	<u>10</u>	7.5	6.667	5.555	<mark>5</mark>	3.75
T ₆₉	4680	0	5	0	<mark>40</mark>	<mark>18</mark>	<mark>12</mark>	<mark>9</mark>	8	6.667	<mark>6</mark>	4.5
T_{70}	4940	0	8	0	42.22	<mark>19</mark>	12.66	9.5	8.444	7.037	6.333	4.75
T_{71}	7410	0	8	0	63.33	28.5	<mark>19</mark>	14.25	12.67	10.55	9.5	7.125
T_{72}	14820	0	8	0	126.6	<mark>57</mark>	<mark>38</mark>	28.5	25.33	21.11	<mark>19</mark>	14.25

Bilanz p.58-59	<mark>2σ</mark>	30	<mark>2σ</mark>	30	<mark>2σ</mark>	30	<mark>2σ</mark>	<u>3σ</u>	<mark>2σ</mark>	<u>3σ</u>	<mark>2σ</mark>	<u>3σ</u>	<mark>2σ</mark>	<u>3σ</u>	<mark>2σ</mark>	30
Anzahl ganzzahliger Teiler ≥ Periode	4	6	7	5	6	5	3	2	1	3	1	0	4	3	2	0
Anzahl ganzzahliger Teiler < Periode	0	1	0	3	0	6	0	5	0	5	2	4	0	11	2	6
Anzahl aller ganzzahligen Teiler	4	7	7	8	6	11	3	7	1	8	3	4	4	14	4	6

6.3.4 p.43-44: (Ausgangspunkt: 3 Lamat) [Kz. 2 = 3]

Te	iler	Anz	ahl der T	eiler		Kandidaten 60 390 520 780			
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	390	520	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
T_1	28	1	6	0	9.286	13.93	18.57	27.86	37.14
T_2	30	0	13	0	8.667	13	17.33	<mark>26</mark>	34.67
T ₃	32	0	5	0	8.125	12.19	16.25	24.38	32.5
T_4	39	0	21	9	6.667	10	13.33	20	26.67
<u>T</u> ₅	42	0	5	0	6.19	9.286	12.38	18.57	24.76
T_6	48	0	8	2	5.417	8.125	10.83	16.25	21.67
T ₇	50	2	6	0	5.2	7.8	10.4	15.6	20.8
T ₈	52	0	18	0	5	7.5	10	15	20
T ₉	60	0	12	0	4.333	6.5	8.667	13	17.33
T_{10}	65	1	15	0	4	6	8 120	12	16
T ₁₁	70	0	6	0	3.714	5.571	7.429	11.14	14.86
T_{12}	75	0	5	0	3.467	5.2	6.933	10.4	13.87
T ₁₃	78	0	21	0	3.333	5	6.667	10	13.33
T ₁₄	80	0	8	0	3.25	4.875	6.5	9.75	13
T ₁₅	91	2	7	0	2.857	4.286	5.714	8.571	11.43
T ₁₆	100	0	6	0	2.6	3.9	5.2	7.8	10.4
T ₁₇	104	0	11	4	2.5	3.75	<mark>5</mark>	7.5	10
T ₁₈	117	0	5	0	2.222	3.333	4.444	6.667	8.889
T ₁₉	120	0	8	0	2.167	3.25	4.333	6.5	8.667
T ₂₀	130	0	15	0	1.057	2.706	2.714	5.571	7.420
T_{21}	140	0	6 5	0	1.857	2.786	3.714	5.571	7.429
T_{22}	150	0		0	1.733	2.6	3.467	5.2	6.934
T ₂₃	156 182	0	16 7	0	1.667 1.429	2.5	3.333 2.857	4.286	6.667 5.714
T ₂₄	195	0	13	2	1.429	2.143	2.667	4.280	5.334
T ₂₅	200	0	5	0	1.333	1.95	2.607	3.9	5.334
T_{26} T_{27}	208	0	9	0	1.25	1.875	2.5	3.75	5.2 5
T_{28}	234	0	5	0	1.111	1.667	2.222	3.333	4.444
T_{29}	240	0	7	0	1.083	1.625	2.167	3.25	4.333
T ₃₀	260	0	14	0	1.003	1.5	2.107	3.23	4.555
T_{31}	273	0	5	0	1.05	1.429	1.905	2.857	3.81
T_{32}	300	0	5	0	1.154	1.429	1.733	2.637	3.467
T_{33}	312	0	10	0	1.134	1.25	1.667	2.5	3.333
T_{34}	325	0	6	0	1.25	1.23	1.6	2.4	3.2
T_{35}	364	0	6	0	1.4	1.071	1.429	2.143	2.857
T ₃₆	390	0	13	0	1.5	1.071	1.333	7	2.667
T_{37}	400	0	5	0	1.538	1.026	1.3	1.95	2.6
T ₃₈	455	0	6	0	1.75	1.167	1.143	1.714	2.286
T ₃₉	520	0	9	0	2	1.333	1.113	1.7	2.200
T_{40}	546	0	5	0	2.1	1.4	1.05	1.429	1.905
T_{41}	624	0	8	0	2.4	1.6	1.03	1.425	1.667
T_{42}	650	0	6	0	2.5	1.667	1.25	1.23	1.6
	780	0	12	0	3	2	1.5	1.2	1.333
T_{43}	/00	U	14	U	<u> </u>	<u> </u>	1.5		1.555

Te	iler	Anz	ahl der T	eiler		I	Kandidate	n	
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	390	520	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
T_{44}	910	0	6	0	3.5	2.333	1.75	1.167	1.143
T_{45}	975	0	5	0	3.75	2.5	1.875	1.25	1.067
T_{46}	1040	0	8	0	<mark>4</mark>	2.667	<mark>2</mark>	1.333	1
T_{47}	1300	0	6	0	<mark>5</mark>	3.333	2.5	1.667	1.25
T_{48}	1560	0	8	0	<mark>6</mark>	<mark>4</mark>	<mark>3</mark>	2	1.5
T_{49}	1820	0	6	0	<mark>7</mark>	4.667	3.5	2.333	1.75
T_{50}	1950	0	5	0	7.5	<mark>5</mark>	3.75	2.5	1.875
T_{51}	2600	0	5	0	10	6.667	<mark>5</mark>	3.333	2.5
T_{52}	3120	0	7	0	<mark>12</mark>	<mark>8</mark>	<mark>6</mark>	<mark>4</mark>	<mark>3</mark>
T ₅₃	3900	0	5	0	<mark>15</mark>	<mark>10</mark>	7.5	<mark>5</mark>	3.75
T ₅₄	5200	0	5	0	<mark>20</mark>	13.33	<mark>10</mark>	6.667	<mark>5</mark>

Bilanz p.43-44	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	9	2	4	2	6	0	3	1	3	0
Anzahl ganzzahliger Teiler < Periode	0	3	0	6	1	4	0	11	4	4
Anzahl aller ganzzahligen Teiler	9	5	4	8	7	4	3	12	7	4

6.3.5 p.69-73 (Ausgangspunkt: 9 Ix) [Kz. 2 = 4]

To	eiler	Anzal	ıl der	Teiler				Kand	idaten			
Bez.	Wert	N(T _i -1)	N(T _i)	N(T _i +1)	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T_1	30	0	17	0	3.9	8.667	13	17.33	19.5	23.4	<mark>26</mark>	34.67
T_2	36	5	18	0	3.25	7.222	10.83	14.44	16.25	19.5	21.67	28.89
T_3	39	1	25	14	3	6.667	10	13.33	15	18	20	26.67
T_4	42	0	5	1	2.786	6.19	9.286	12.38	13.93	16.71	18.57	24.76
T_5	45	2	15	0	2.6	5.778	8.667	11.56	13	15.6	17.33	23.11
T_6	48	0	8	0	2.438	5.417	8.125	10.83	12.19	14.63	16.25	21.67
T_7	52	2	21	0	2.25	<mark>5</mark>	7.5	10	11.25	13.5	15	<mark>20</mark>
T_8	54	0	22	2	2.167	4.815	7.222	9.63	10.83	13	14.44	19.26
T ₉	60	0	14	0	1.95	4.333	6.5	8.667	9.75	11.7	13	17.33
T_{10}	65	1	18	2	1.8	<mark>4</mark>	6	8	9	10.8	12	<mark>16</mark>
T_{11}	70	0	5	0	1.671	3.714	5.571	7.429	8.357	10.03	11.14	14.86
T_{12}	72	0	14	0	1.625	3.611	5.417	7.222	8.125	9.75	10.83	14.44
T_{13}	78	1	25	0	1.5	3.333	5	6.667	7.5	9	10	13.33
T_{14}	90	2	15	5	1.3	2.889	4.333	5.778	6.5	7.8	8.667	11.56
T_{15}	104	0	16	4	1.125	2.5	3.75	5	5.625	6.75	7.5	10
T_{16}	108	0	17	0	1.083	2.407	3.611	4.815	5.417	6.5	7.222	9.63
T_{17}	117	0	24	0	1	2.222	3.333	4.444	<mark>5</mark>	6	6.667	8.889
T_{18}	120	1	13	0	1.026	2.167	3.25	4.333	4.875	5.85	6.5	8.667
T_{19}	130	0	18	0	1.111	2	3	4	4.5	5.4	6	8
T_{20}	135	0	14	0	1.154	1.926	2.889	3.852	4.333	5.2	5.778	7.704
T_{21}	144	2	7	0	1.231	1.806	2.708	3.611	4.063	4.875	5.417	7.222
T_{22}	156	0	19	0	1.333	1.667	2.5	3.333	3.75	4.5	5	6.667
T_{23}	162	0	7	0	1.385	1.605	2.407	3.21	3.611	4.333	4.815	6.42
T_{24}	180	0	13	0	1.538	1.444	2.167	2.889	3.25	3.9	4.333	5.778
T_{25}	182	0	5	0	1.556	1.429	2.143	2.857	3.214	3.857	4.286	5.714
T_{26}	195	1	16	0	1.667	1.333	2	2.667	3	3.6	4	5.333
T_{27}	208	0	8	0	1.778	1.25	1.875	2.5	2.813	3.375	3.75	<mark>5</mark>
T_{28}	216	0	14	0	1.846	1.204	1.806	2.407	2.708	3.25	3.611	4.815
T_{29}	234	0	24	0	2	1.111	1.667	2.222	2.5	3	3.333	4.444
T_{30}	240	0	7	0	2.051	1.083	1.625	2.167	2.438	2.925	3.25	4.333
T_{31}	260	0	16	0	2.222	1	1.5	2	2.25	2.7	3	4
T_{32}	270	0	14	0	2.308	1.038	1.444	1.926	2.167	2.6	2.889	3.852
T_{33}	312	0	15	0	2.667	1.2	1.25	1.667	1.875	2.25	2.5	3.333
T ₃₄	351	2	22	0	3	1.35	1.111	1.481	1.667	2	2.222	2.963
T ₃₅	360	0	12	0	3.077	1.385	1.083	1.444	1.625	1.95	2.167	2.889
T ₃₆	390	0	16	0	3.333	1.5	1	1.333	1.5	1.8	2	2.667
T ₃₇	432	0	7	0	3.692	1.662	1.108	1.204	1.354	1.625	1.806	2.407
T ₃₈	468	0	18	0	4	1.8	1.2	1.111	1.25	1.5	1.667	2.222
T ₃₉	520	0	14	0	4.444	2	1.333	1	1.125	1.35	1.5	2
T_{40}	540	0	13	0	4.615	2.077	1.385	1.038	1.083	1.3	1.444	1.926
T ₄₁	585	0	15	0	5	2.25	1.5	1.125	1	1.2	1.333	1.778
T_{42}	624	1	8	0	5.333	2.4	1.6	1.2	1.067	1.125	1.25	1.667
T ₄₃	702	0	22	0	6	2.7	1.8	1.35	1.2	1	1.111	1.481
± 43	104	J		U	_	۷.1	1.0	1.55	1.4	_	1.111	1.701

To	eiler	Anzal	ıl der	Teiler				Kand	idaten			
Bez.	Wert	N(T _i -1)	N(Ti)	N(T _i +1)	117	260	390	520	585	702	780	1040
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
T ₄₄	720	0	6	0	6.154	2.769	1.846	1.385	1.231	1.026	1.083	1.444
T_{45}	780	0	14	0	6.667	3	2	1.5	1.333	1.111	1	1.333
T_{46}	936	0	14	0	8	3.6	2.4	1.8	1.6	1.333	1.2	1.111
T ₄₇	1040	0	7	0	8.889	<mark>4</mark>	2.667	2	1.778	1.481	1.333	1
T_{48}	1053	0	7	0	<mark>9</mark>	4.05	2.7	2.025	1.8	1.5	1.35	1.013
T_{49}	1080	0	12	0	9.231	4.154	2.769	2.077	1.846	1.538	1.385	1.038
T_{50}	1170	0	15	0	10	4.5	<mark>3</mark>	2.25	2	1.667	1.5	1.125
T_{51}	1404	0	17	0	12	5.4	3.6	2.7	2.4	2	1.8	1.35
T_{52}	1560	0	13	0	13.33	6	4	3	2.667	2.222	2	1.5
T ₅₃	1755	0	14	0	<mark>15</mark>	6.75	4.5	3.375	3	2.5	2.25	1.688
T_{54}	1872	0	7	0	<mark>16</mark>	7.2	4.8	3.6	3.2	2.667	2.4	1.8
T_{55}	2106	0	7	0	<mark>18</mark>	8.1	5.4	4.05	3.6	<mark>3</mark>	2.7	2.025
T_{56}	2160	0	6	0	18.46	8.308	5.538	4.154	3.692	3.077	2.769	2.077
T_{57}	2340	0	13	0	<mark>20</mark>	9	6	4.5	<mark>4</mark>	3.333	<mark>3</mark>	2.25
T_{58}	2808	0	14	0	<mark>24</mark>	10.8	7.2	5.4	4.8	4	3.6	2.7
T ₅₉	3120	0	7	0	26.67	12	8	<mark>6</mark>	5.333	4.444	<mark>4</mark>	3
T_{60}	3510	0	14	0	<mark>30</mark>	13.5	9	6.75	6	<u>5</u>	4.5	3.375
T_{61}	4212	0	5	0	<mark>36</mark>	16.2	10.8	8.1	7.2	<mark>6</mark>	5.4	4.05
T_{62}	4680	0	12	0	4 0	18	12	9	8	6.667	6	4.5
T ₆₃	5616	0	7	0	<mark>48</mark>	21.6	14.4	10.8	9.6	8	7.2	5.4
T ₆₄	7020	0	13	0	60	27	18	13.5	12	10	9	6.75
T_{65}	9360	0	6	0	<mark>80</mark>	<mark>36</mark>	<mark>24</mark>	<mark>18</mark>	<mark>16</mark>	13.33	<mark>12</mark>	<mark>9</mark>
T ₆₆	14040	0	12	0	120	54	36	27	24	20	18	13.5
T_{67}	28080	0	6	0	<mark>240</mark>	<mark>108</mark>	<mark>72</mark>	<mark>54</mark>	<mark>48</mark>	<mark>40</mark>	<mark>36</mark>	<mark>27</mark>

Bilanz p.69-73 (9 Ix)	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3</mark> σ
Anzahl ganzzahliger Teiler ≥ Periode	7	16	4	8	3	9	4	4	2	8	4	6	3	6	4	0
Anzahl ganzzahliger Teiler < Periode	0	1	0	3	0	6	0	5	0	5	0	6	0	11	1	6
Anzahl aller ganzzahligen Teiler	7	17	4	11	3	15	4	9	2	13	4	12	3	17	5	6

6.3.6 p.69-73 (Ausgangspunkt: 4 Eb) [Kz. 2 = 5]

Te	iler	Anz	ahl der T	eiler		Kand	lidaten	
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	260	364	390	780
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
T_1	28	1	16	1	9.286	13	13.93	27.86
T_2	30	1	10	0	8.667	12.13	<mark>13</mark>	<mark>26</mark>
T_3	32	0	8	0	8.125	11.38	12.19	24.38
T_4	35	0	19	1	7.429	10.4	11.14	22.29
T ₅	40	15	17	0	6.5	9.1	9.75	19.5
T_6	42	0	6	0	6.19	8.667	9.286	18.57
T_7	48	0	5	1	5.417	7.583	8.125	16.25
T_8	50	1	6	0	5.2	7.28	7.8	15.6
T_9	52	0	24	0	<mark>5</mark>	7	7.5	15
T_{10}	56	2	14	0	4.643	6.5	6.964	13.93
T_{11}	60	0	8	0	4.333	6.067	6.5	<u>13</u>
T_{12}	65	4	44	0	4	5.6	6	12
T ₁₃	70	0	17	0	3.714	5.2	5.571	11.14
T ₁₄	78	0	10	0	3.333	4.667	<mark>5</mark>	10
T ₁₅	80	0	14	0	3.25	4.55	4.875	9.75
T_{16}	84	0	6	1	3.095	4.333	4.643	9.286
T_{17}	91	2	19	1	2.857	4	4.286	8.571
T_{18}	100	0	5	0	2.6	3.64	3.9	7.8
T_{19}	104	0	18	7	2.5	3.5	3.75	7.5
T_{20}	112	0	13	0	2.321	3.25	3.482	6.964
T_{21}	120	0	6	0	2.167	3.033	3.25	6.5
T_{22}	130	0	30	0	2	2.8	<mark>3</mark>	<mark>6</mark>
T_{23}	140	0	16	0	1.857	2.6	2.786	5.571
T_{24}	156	0	8	0	1.667	2.333	2.5	<mark>5</mark>
T ₂₅	160	0	7	0	1.625	2.275	2.438	4.875
T ₂₆	182	0	17	0	1.429	2	2.143	4.286
T_{27}	195	0	15	1	1.333	1.867	2	4
T_{28}	208	0	15	0	1.25	1.75	1.875	3.75
T_{29}	210	0	6	0	1.238	1.733	1.857	3.714
T ₃₀	224	0	7	0	1.161	1.625	1.741	3.482
T ₃₁	240	0	5	0	1.083	1.517	1.625	3.25
T_{32}	260	0	23	0	1	1.4	1.5	3
T ₃₃	273	0	7	0	1.05	1.333	1.429	2.857
T ₃₄	280	0	14	0	1.077	1.3	1.393	2.786
T ₃₅	312	0	6	0	1.2	1.167	1.25	2.5
T ₃₆	325	0	9	0	1.25	1.12	1.2	2.4
T ₃₇	336	0	5	0	1.292	1.083	1.161	2.321
T ₃₈	364	0	16	0	1.4	1	1.071	2.143
T ₃₉	390	0	10	0	1.5	1.071	1	2
T ₄₀	416	0	7	0	1.6	1.143	1.067	1.875
T_{41}	420	0	6	0	1.615	1.154	1.077	1.857
T_{42}	455	0	19	0	1.75	1.25	1.167	1.714
T ₄₃	520	0	17	0	2	1.429	1.333	1.5

Те	iler	Anz	ahl der T	eiler		Kand	lidaten	
Bez.	Wert	$N(T_i-1)$	N(T _i)	$N(T_i+1)$	260	364	390	780
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
T_{44}	546	0	6	0	2.1	1.5	1.4	1.429
T ₄₅	560	0	13	0	2.154	1.538	1.436	1.393
T_{46}	624	0	5	0	2.4	1.714	1.6	1.25
T_{47}	650	0	6	0	2.5	1.786	1.667	1.2
T_{48}	728	0	14	0	2.8	2	1.867	1.071
T ₄₉	780	0	8	0	<mark>3</mark>	2.143	<mark>2</mark>	1
T ₅₀	840	0	5	0	3.231	2.308	2.154	1.077
T ₅₁	910	0	17	0	3.5	2.5	2.333	1.167
T ₅₂	1040	0	14	0	4	2.857	2.667	1.333
T ₅₃	1092	0	6	0	4.2	<mark>3</mark>	2.8	1.4
T ₅₄	1120	0	7	0	4.308	3.077	2.872	1.436
T ₅₅	1300	0	5	0	<mark>5</mark>	3.571	3.333	1.667
T ₅₆	1365	0	7	0	5.25	3.75	3.5	1.75
T_{57}	1456	0	13	0	5.6	4	3.733	1.867
T ₅₈	1560	0	6	0	<mark>6</mark>	4.286	<mark>4</mark>	<mark>2</mark>
T ₅₉	1680	0	5	0	6.462	4.615	4.308	2.154
T_{60}	1820	0	16	0	<mark>7</mark>	<mark>5</mark>	4.667	2.333
T_{61}	2080	0	7	0	<mark>8</mark>	5.714	5.333	2.667
T_{62}	2184	0	5	0	8.4	<mark>6</mark>	5.6	2.8
T_{63}	2730	0	6	0	10.5	7.5	<mark>7</mark>	3.5
T ₆₄	2912	0	7	0	11.2	<mark>8</mark>	7.467	3.733
T ₆₅	3120	0	5	0	<mark>12</mark>	8.571	<mark>8</mark>	<mark>4</mark>
T ₆₆	3640	0	14	0	<mark>14</mark>	<mark>10</mark>	9.333	4.667
T ₆₇	4368	0	5	0	16.8	<mark>12</mark>	11.2	5.6
T_{68}	5460	0	6	0	<mark>21</mark>	<mark>15</mark>	<mark>14</mark>	<mark>7</mark>
T_{69}	7280	0	13	0	28	20	18.67	9.333
T_{70}	10920	0	5	0	<mark>42</mark>	<mark>30</mark>	<mark>28</mark>	<mark>14</mark>
T_{71}	14560	0	7	0	<mark>56</mark>	<mark>40</mark>	37.33	18.67
T_{72}	21840	0	5	0	<mark>84</mark>	<mark>60</mark>	<mark>56</mark>	<mark>28</mark>

Bilanz p.69-73 (4 Eb)	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	<mark>3σ</mark>	<mark>2σ</mark>	<u>3σ</u>
Anzahl ganzzahliger Teiler ≥ Periode	9	6	8	6	7	1	6	0
Anzahl ganzzahliger Teiler < Periode	0	3	0	4	0	5	2	8
Anzahl aller ganzzahligen Teiler	9	9	8	10	7	6	8	8

6.3.7 p.31-32: (Ausgangspunkt: multipel) [Kz. 2 = 6]

Te	iler	Anz	ahl der T	eiler	Kand	idaten
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	364
(1)	(2)	(3)	(4)	(5)	(6)	(7)
T_1	28	0	13	0	9.286	13
T_2	35	1	11	0	7.429	10.4
T_3	52	0	14	0	<mark>5</mark>	<mark>7</mark>
T_4	56	0	10	0	4.643	6.5
T_5	65	1	12	0	<mark>4</mark>	5.6
T_6	70	0	10	0	3.714	5.2
T_7	80	0	6	0	3.25	4.55
T_8	91	0	22	1	2.857	4
T_9	104	0	10	1	2.5	3.5
T_{10}	112	0	8	0	2.321	3.25
T_{11}	130	0	11	0	2	2.8
T_{12}	140	0	9	0	1.857	2.6
T_{13}	182	0	16	0	1.429	2
T_{14}	208	0	8	0	1.25	1.75
T ₁₅	260	0	10	0	1	1.4
T_{16}	280	0	7	0	1.077	1.3
T_{17}	364	0	13	0	1.4	1
T_{18}	455	0	11	0	1.75	1.25
T ₁₉	520	0	7	0	2	1.429
T_{20}	560	0	6	0	2.156	1.538
T ₂₁	728	0	10	0	2.8	2
T_{22}	910	0	10	0	3.5	2.5
T ₂₃	1040	0	6	0	<mark>4</mark>	2.857
T ₂₄	1456	0	8	0	5.6	<mark>4</mark>
T ₂₅	1820	0	9	0	<mark>7</mark>	<mark>5</mark>
T ₂₆	3640	0	7	0	<mark>14</mark>	10
T ₂₇	7280	0	6	0	<mark>28</mark>	<mark>20</mark>

Bilanz p.31-32	<mark>2σ</mark>	3σ	<mark>2σ</mark>	<mark>3σ</mark>
Anzahl ganzzahliger Teiler ≥ Periode	5	1	4	2
Anzahl ganzzahliger Teiler < Periode	0	3	0	4
Anzahl aller ganzzahligen Teiler	5	4	4	6

6.3.8 p.62-64: (Ausgangspunkt: multipel) [Kz. 2 = 7]

Te	eiler	Anz	ahl der T	eiler	Kand	lidaten
Bez.	Wert	$N(T_i-1)$	$N(T_i)$	$N(T_i+1)$	260	364
(1)	(2)	(3)	(4)	(5)	(6)	(7)
T_1	28	1	18	0	9.286	13
T_2	32	0	5	0	8.125	11.38
T_3	35	1	16	1	7.429	10.4
T_4	42	1	5	0	6.19	8.667
T_5	52	0	19	0	<u>5</u>	<mark>7</mark>
T_6	56	0	13	1	4.643	6.5
T_7	65	2	17	0	4	5.6
T_8	70	0	14	0	3.714	5.2
T ₉	78	1	5	0	3.333	4.667
T_{10}	80	0	9	0	3.25	4.55
T_{11}	91	0	33	1	2.857	<mark>4</mark>
T_{12}	104	0	13	3	2.5	3.5
T_{13}	112	0	11	0	2.321	3.25
T ₁₄	130	0	15	0	2	2.8
T ₁₅	140	0	13	0	1.857	2.6
T ₁₆	182	0	23	1	1.429	2
T_{17}	208	0	11	0	1.25	1.75
T_{18}	224	0	5	0	1.161	1.625
T_{19}	260	0	14	0	1	1.4
T_{20}	273	0	8	0	1.05	1.333
T_{21}	280	0	10	0	1.077	1.3
T_{22}	364	0	18	0	1.4	1
T_{23}	416	0	5	0	1.6	1.143
T ₂₄	455	0	16	1	1.75	1.25
T_{25}	520	0	10	0	2	1.429
T_{26}	546	0	5	0	2.1	1.5
T ₂₇	560	0	9	0	2.154	1.538
T ₂₈	728	0	13	0	2.8	2
T ₂₉	910	0	14	0	3.5	2.5
T ₃₀	1040	0	9	0	<mark>4</mark>	2.857
T ₃₁	1456	0	11	0	5.6	4
T ₃₂	1820	0	13	0	<mark>7</mark>	<mark>5</mark>
T ₃₃	2912	0	5	0	11.2	8
T ₃₄	3640	0	10	0	<mark>14</mark>	10
T ₃₅	7280	0	9	0	<mark>28</mark>	<mark>20</mark>

Bilanz p.63-64	2σ	3σ	<mark>2σ</mark>	3σ
Anzahl ganzzahliger Teiler ≥ Periode	2	4	2	5
Anzahl ganzzahliger Teiler < Periode	0	3	0	4
Anzahl ganzzahliger Teiler	2	7	2	9

Anhang 7:	Ermittelte Perioden in den Originaldaten

Anhang 7.1: Perioden der Seiten p. 24, 46-50

Codex	Dresden		Zah	l	ermit	telte Peri	oden
Seite	Element	vigesimal	=	dezimal	260,00	365,00	584,00
					Tzolkin	~ Jahr	~ Venus
(1)	(2)	(3)		(4)	(5)	(6)	(7)
24	B 18	9.9.16. <mark>0.0</mark>	=	1.366.560	5256,00	3744,00	2340,00
24	C 18	9.9.9.16. <mark>0</mark>	=	1.364.360	5247,54	3737,97	2336,23
24	D 07	1.5.14.4.0	=	185.120	712,00	507,18	316,99
24	D 01	1.1.1.14. <mark>0</mark>	=	151.840	584,00	416,00	260,00
24	E 01	15.16.6. <mark>0</mark>	=	113.880	438,00	312,00	195,00
24	F 01	10.10.16. <mark>0</mark>	=	75.920	292,00	208,00	130,00
24	E 07	9.11.7. <mark>0</mark>	=	68.900	265,00	188,77	117,98
24	G 01	5.5.8. <mark>0</mark>	=	37.960	146,00	104,00	65,00
24	D 13	4.17.6. <mark>0</mark>	=	35.040	134,77	96,00	60,00
24	F 07	4.12.8.0	=	33.280	128,00	91,18	56,99
24	E 13	4.9.4. <mark>0</mark>	=	32.120	123,54	88,00	55,00
24	F 13	4.1.2.0	=	29.200	112,31	80,00	50,00
24	G 13	3.13.0.0	=	26.280	101,08	72,00	45,00
24	D 18	3.4.16. <mark>0</mark>	=	23.360	89,85	64,00	40,00
24	E 18	2.16.14. <mark>0</mark>	=	20.440	78,62	56,00	35,00
24	F 18	2.8.12. <mark>0</mark>	=	17.520	67,38	48,00	30,00
24	G 18	2.0.10. <mark>0</mark>	=	14.600	56,15	40,00	25,00
24	D 23	1.12.5. <mark>0</mark>	=	11.620	44,69	31,84	19,90
24	G 07	1.5.5. <mark>0</mark>	=	9.100	35,00	24,93	15,58
24	E 23	1.4.6. <mark>0</mark>	=	8.760	33,69	24,00	15,00
24	F 23	6.4.0	=	5.840	22,46	16,00	10,00
24	G 23	8.2.0	=	2.920	11,23	8,00	5,00
50	D 19	8.2.0	=	2.920	11,23	8,00	5,00
50	C 19	8.1.12	=	2.912	11,20	7,98	4,99
50	B 19	7.7.2	=	2.662	10,24	7,29	4,56
50	A 19	7.2.12	=	2.572	9,89	7,05	4,40
49	D 19	6.8.18	=	2.336	8,98	6,40	4,00
49	C 19	6.8.8	=	2.328	8,95	6,38	3,99
24	A 21	6.2.0	=	2.200	8,46	6,03	3,77
49	B 19	5.13.18	=	2.078	7,99	5,69	3,56
49	A 19	5.9.8	=	1.988	7,65	5,45	3,40
48	D 19	4.15.12	=	1.752	6,74	4,80	3,00
48	C 19	4.15.4	=	1.744	6,71	4,78	2,99
48	B 19	4.2.14	=	1.494	5,75	4,09	2,56
48	A 19	3.16.4	=	1.403	5,40	3,84	2,40
47	D 19	3.4.8	=	1.168	4,49	3,20	2,00
47	C 19	3.4.0	=	1.160	4,46	3,18	1,99
47	B 19	2.9.10	=	910	3,50	2,49	1,56
47	A 19	2.5.0	=	820	3,15	2,25	1,40
46	D 19	1.11.4	=	584	2,25	1,60	1,00
46	C 19	1.10.16	=	576	2,22	1,58	0,99
46	B 19	16.6	=	326	1,25	0,89	0,56
46	A 19	11.16	=	236	0,91	0,65	0,40

Anhang 7.2: Perioden der Seiten p. 51-58

Codex	Dresden	7	Zahl		ermittelte	Perioden
Seite	Element	vigesimal	=	dezimal	115,00	260,00
					Merkur	Tzolkin
(1)	(2)	(3)		(4)	(5)	(6)
51	A 12	10.19.6.1.8	=	1.578.988	13730,33	6073,03
52	E 03	9.19.8.7.8	=	1.435.828	12485,46	5522,42
52	F 03	9.16.4.11.3	=	1.412.863	12285,77	5434,09
52	E 09	9.16.4.10.18	=	1.412.858	12285,72	5434,07
52	F 09	9.16.4.10.8	=	1.412.848	12285,63	5434,03
51	A 06	8.16.4.10.0	=	1.268.840	11033,39	4880,15
51	C 03	3.4.15.12.0	=	466.440	4056,00	1794,00
51	D 03	2.11.10.11.0	=	371.020	3226,26	1427,00
51	B 03	1.9.18.0.0	=	215.280	1872,00	828,00
51	C 07	18.4.14.0	=	203.320	1768,00	782,00
51	D 07	1.6.11.10.0	=	191.360	1664,00	736,00
51	E 06	9.19.12.0	=	71.880	625,04	276,46
52	A 06	8.6.2.0	=	59.800	520,00	230,00
52	C 06	6.12.16.0	=	47.840	416,00	184,00
51	E 03	6.12.16.0	=	47.840	416,00	184,00
52	B 07	4.19.12.0	=	35.880	312,00	138,00
52	A 03	4.19.11.0	=	35.860	311,83	137,92
52	B 03	3.6.8.0	=	23.920	208,00	92,00
52	C 03	1.18.5.0	=	13.780	119,83	53,00
58	B 13	1.13.3.18	=	11.958	103,98	45,99
58	A 13	1.12.13.1	=	11.781	102,44	45,31
57	G 13	1.12.4.4	=	11.604	100,90	44,63
57	F 13	1.11.13.7	=	11.427	99,37	43,95
57	C 13	1.11.4.10	=	11.250	97,83	43,27
57	B 13	1.10.15.2	=	11.102	96,54	42,70
57	A 13	1.10.6.5	=	10.925	95,00	42,02
56	F 14	1.9.15.8	=	10.748	93,46	41,34
56	E 14	1.9.6.11	=	10.571	91,92	40,66
56	D 14	1.8.15.14	=	10.394	90,38	39,98
56	C 14	1.8.6.16	=	10.216	88,83	39,29
55	H 14	1.7.15.19	=	10.039	87,30	38,61
55	G 14	1.7.8.11	=	9.891	86,01	38,04
55	F 14	1.6.17.14	=	9.714	84,47	37,36
55	E 14	1.6.8.17	=	9.537	82,93	36,68
55	D 14	1.6.0.0	=	9.360	81,39	36,00
55	C 14	1.5.9.3	=	9.183	79,85	35,32
55	B 14	1.5.0.6	=	9.006	78,31	34,64
55	A 14	1.4.9.8	=	8.828	76,77	33,95
54	G 13	1.4.0.11	=	8.651	75,23	33,27
54	D 13	1.3.9.14	=	8.474	73,69	32,59
54 54	C 13	1.3.2.6	=	8.326	72,40	32,02
	B 13	1.2.11.9	=	8.149	70,86	31,34
54	A 13	1.2.2.12	=	7.972	69,32	30,66
53	G 13	1.1.11.15		7.795	67,78	29,98
53	F 13	1.1.2.18	=	7.618	66,24	29,30
53	E 13	1.0.12.1	=	7.441	64,70	28,62
53	B 13	1.0.3.4	=	7.264	63,17	27,94

Codex	Dresden	Z	ahl		ermittelte	Perioden
Seite	Element	vigesimal	=	dezimal	115,00	260,00
					Tzolkin	~ Jahr
(1)	(2)	(3)		(4)	(5)	(6)
53	A 13	19.13.16	=	7.116	61,88	27,37
52	F 20	19.4.19	=	6.939	60,34	26,69
52	E 20	18.14.2	=	6.762	58,80	26,01
52	D 20	18.5.5	=	6.585	57,26	25,33
52	C 20	17.14.8	=	6.408	55,72	24,65
51	F 19	17.5.10	=	6.230	54,17	23,96
51	E 19	16.16.2	=	6.082	52,89	23,39
51	D 19	16.7.5	=	5.905	51,35	22,71
51	C 19	15.16.8	=	5.728	49,81	22,03
51	B 19	15.7.11	=	5.551	48,27	21,35
51	A 19	14.16.14	=	5.374	46,73	20,67
58	D 03	14.7.17	=	5.197	45,19	19,99
58	C 03	13.17. <mark>0</mark>	=	5.020	43,65	19,31
58	B 03	13.8.2	=	4.842	42,10	18,62
58	A 03	12.17.5	=	4.665	40,57	17,94
57	D 03	12.8.8	=	4.488	39,03	17,26
57	C 03	12.1.0	=	4.340	37,74	16,69
57	B 03	11.10.4	=	4.164	36,21	16,02
57	A 03	11.1.6	=	3.986	34,66	15,33
56	F 03	10.10.9	=	3.809	33,12	14,65
56	E 03	10.1.12	=	3.632	31,58	13,97
56	D 03	9.10.15	=	3.455	30,04	13,29
56	A 03	9.1.18	=	3.278	28,50	12,61
55	G 03	8.12.10	=	3.130	27,22	12,04
55	F 03	8.3.13	=	2.953	25,68	11,36
55	E 03	7.12.16	=	2.776	24,14	10,68
55	D 03	7.3.18	=	2.598	22,59	9,99
55	C 03	6.13.2	=	2.422	21,06	9,32
54	G 03	6.4.4	=	2.244	19,51	8,63
54	F 03	5.10.16	=	2.016	17,53	7,75
54	E 03	5.5.19	=	1.919	16,69	7,38
54	D 03	4.15.8	=	1.748	15,20	6,72
54	C 03	4.6.5	=	1.565	13,61	6,02
54	B 03	3.15.8	=	1.388	12,07	5,34
54	A 03	3.6.11	=	1.211	10,53	4,66
53	H 03	2.15.13	=	1.033	8,98	3,97
53 53	G 03	2.6.16	=	856	7,44	3,29
	F 03	1.15.14	=	674 502	5,86	2,59
53 53	C 03	1.7.2	=	502	4,37	1,93
	B 03	17.13	=	353	3,07	1,36
53	A 03	7.17	=	157	1,37	0,60

Anhang 7.3: Perioden der Seiten p. 58-59

Codex	Dresden	Z	ahl			ermit	telte Peri	oden	
Seite	Element	vigesimal	=	dezimal	117,00	260,00	390,00	585,00	780,00
					~Merkur	Tzolkin	?	~Venus	~Mars
(1)	(2)	(3)		(4)	(5)	(6)	(7)	(8)	(9)
58	F 09	9.18.2.2. <mark>0</mark>	=	1.426.360	12191,11	5486,00	3657,33	2438,22	1828,67
58	F 15	9.12.11.11.0	=	1.386.580	11851,11	5333,00	3555,33	2370,22	1777,67
59	A 01	1.0.0.15.0	=	144.300	1233,33	555,00	370,00	246,67	185,00
59	B 01	19.10. <mark>0.0</mark>	=	140.400	1200,00	540,00	360,00	240,00	180,00
59	C 01	19.5.12. <mark>0</mark>	=	138.840	1186,67	534,00	356,00	237,33	178,00
59	D 01	18.12.12. <mark>0</mark>	=	134.160	1146,67	516,00	344,00	229,33	172,00
59	E 01	18.10.9. <mark>0</mark>	=	133.380	1140,00	513,00	342,00	228,00	171,00
59	F 01	16.9.6. <mark>0</mark>	=	118.560	1013,33	456,00	304,00	202,67	152,00
59	H 01	15.12.0.0	=	112.320	960,00	432,00	288,00	192,00	144,00
59	G 01	14.8.3.0	=	103.740	886,67	399,00	266,00	177,33	133,00
59	I 01	10.5.15. <mark>0</mark>	=	74.100	633,33	285,00	190,00	126,67	95,00
59	A 07	6.3.9. <mark>0</mark>	=	44.460	380,00	171,00	114,00	76,00	57,00
59	B 07	4.2.6.0	=	29.640	253,33	114,00	76,00	50,67	38,00
59	C 07	2.1.3.0	=	14.820	126,67	57,00	38,00	25,33	19,00
59	D 07	1.19.0.0	=	14.040	120,00	54,00	36,00	24,00	18,00
59	E 07	1.16.15. <mark>0</mark>	=	13.260	113,33	51,00	34,00	22,67	17,00
59	F 07	1.14.12.0	=	12.480	106,67	48,00	32,00	21,33	16,00
59	G 07	1.12.9. <mark>0</mark>	=	11.700	100,00	45,00	30,00	20,00	15,00
59	H 07	1.10.6. <mark>0</mark>	=	10.920	93,33	42,00	28,00	18,67	14,00
59	I 07	1.8.3. <mark>0</mark>	=	10.140	86,67	39,00	26,00	17,33	13,00
59	A 13	1.6.0.0	=	9.360	80,00	36,00	24,00	16,00	12,00
59	A 17	1.3.15.0	=	8.580	73,33	33,00	22,00	14,67	11,00
59	B 17	1.1.12. <mark>0</mark>	=	7.800	66,67	30,00	20,00	13,33	10,00
59	C 17	19.9.0	=	7.020	60,00	27,00	18,00	12,00	9,00
59	D 17	17.6.0	=	6.240	53,33	24,00	16,00	10,67	8,00
59	E 17	15.3.0	=	5.460	46,67	21,00	14,00	9,33	7,00
59	F 17	13.13. <mark>0</mark>	=	4.940	42,22	19,00	12,67	8,44	6,33
59	G 17	10.15. <mark>0</mark>	=	3.900	33,33	15,00	10,00	6,67	5,00
59	H 17	8.13.0	=	3.140	26,84	12,08	8,05	5,37	4,03
59	I 17	6.9.0	=	2.340	20,00	9,00	6,00	4,00	3,00
59	H 13	6.9.0	=	2.340	20,00	9,00	6,00	4,00	3,00
59	I 13	2.3.0	=	780	6,67	3,00	2,00	1,33	1,00
59	A 21	1.17.2	=	702	6,00	2,70	1,80	1,20	0,90
59	B 21	1.13.4	=	624	5,33	2,40	1,60	1,07	0,80
59	C 21	1.9.6	=	546	4,67	2,10	1,40	0,93	0,70
58	E 14	1.7.11	=	511	4,37	1,97	1,31	0,87	0,66
59	D 21	1.5.8	=	468	4,00	1,80	1,20	0,80	0,60
59	E 21	1.1.10	=	390	3,33	1,50	1,00	0,67	0,50
59	F 21	15.12	=	312	2,67	1,20	0,80	0,53	0,40
59	G 21	11.14	=	234	2,00	0,90	0,60	0,40	0,30
59	H 21	7.16	=	156	1,33	0,60	0,40	0,27	0,20
59	I 21	3.18	=	78	0,67	0,30	0,20	0,13	0,10
58	E 16	12	=	12	0,10	0,05	0,03	0,02	0,02

Anhang 7.4: Perioden der Seiten p. 43-44

Codex	Dresden	7	Zahl		ermit	telte Peri	oden
Seite	Element	vigesimal	=	dezimal	260,00	390,00	780,00
					Tzolkin	?	~ Mars
(1)	(2)	(3)		(4)	(5)	(6)	(7)
43	C 08	9.19.8.15. <mark>0</mark>	=	1.435.980	5523,00	3682,00	1841,00
43	D 11	1.1. <mark>0</mark> .6. <mark>0</mark>	=	151.320	582,00	388,00	194,00
43	E 06	18.4. <mark>0.0</mark>	=	131.040	504,00	336,00	168,00
43	D 06	15.3.6. <mark>0</mark>	=	109.200	420,00	280,00	140,00
43	F 06	10.2.4.0	=	72.800	280,00	186,67	93,33
43	G 06	9.13.6. <mark>0</mark>	=	69.600	267,69	178,46	89,23
43	H 06	4.5.17. <mark>0</mark>	=	30.940	119,00	79,33	39,67
44	A 06	2.3.6.0	=	15.600	60,00	40,00	20,00
44	B 06	1.16.2.0	=	13.000	50,00	33,33	16,67
43	E 11	10.15.0	=	3.900	15,00	10,00	5,00
43	F 11	9.7. <mark>0</mark>	=	3.380	13,00	8,67	4,33
43	G 11	6.9. <mark>0</mark>	=	2.340	9,00	6,00	3,00
43	H 11	4.6. <mark>0</mark>	=	1.560	6,00	4,00	2,00
44	A 11	2.3.0	=	780	3,00	2,00	1,00
44	C 06	1.17.2	=	702	2,70	1,80	0,90
44	D 06	1.13.4	=	624	2,40	1,60	0,80
44	E 06	1.9.6	=	546	2,10	1,40	0,70
44	F 06	1.5.8	=	468	1,80	1,20	0,60
44	B 11	1.1.10	=	390	1,50	1,00	0,50
43	C 14	17.12	=	352	1,35	0,90	0,45
44	C 11	15.12	=	312	1,20	0,80	0,40
44	D 11	11.14	=	234	0,90	0,60	0,30
44	E 11	7.16	=	156	0,60	0,40	0,20
44	F 11	3.18	=	78	0,30	0,20	0,10

Anhang 7.5: Perioden der Seiten p. 69-73 (9 Ix)

Codex	Dresden	Zal	hl		ermit	telte Perio	oden	_
Seite	Element	vigesimal	= dezimal	117,00	260,00	390,00	585,00	780,00
				~Merkur	Tzolkin	?	~Venus	~Mars
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
69	F 11	4.6.1.0.13.10	= 12.391.470	105910,00	47659,50	31773,00	21182,00	15886,50
70	C 07	10.17.13.12.12	= 1.567.332	13396,00	6028,20	4018,80	2679,20	2009,40
70	D 07	10.11.3. 18 .14	= 1.520.654	12997,04	5848,67	3899,11	2599,41	1949,56
70	B 06	9.19.11.13. <mark>0</mark>	= 1.437.020	12282,22	5527,00	3684,67	2456,44	1842,33
70	A 06	9.13.12.10.0	= 1.394.120	11915,56	5362,00	3574,67	2383,11	1787,33
70	A 18	8.6.16.12. <mark>0</mark>	= 1.201.200	10266,67	4620,00	3080,00	2053,33	1540,00
70	E 01	1.19. <mark>0.0.0</mark>	= 280.800	2400,00	1080,00	720,00	480,00	360,00
70	F 01	1.9.5. <mark>0.0</mark>	= 210.600	1800,00	810,00	540,00	360,00	270,00
71	A 01	19.10. <mark>0.0</mark>	= 140.400	1200,00	540,00	360,00	240,00	180,00
71	B 01	17.11. <mark>0.0</mark>	= 126.360	1080,00	486,00	324,00	216,00	162,00
71	C 01	15.12.0.0	= 112.320	960,00	432,00	288,00	192,00	144,00
70	D 21	15.9.15.14	= 111.554	953,45	429,05	286,04	190,69	143,02
70	D 17	14.2.16.12	= 101.852	870,53	391,74	261,16	174,11	130,58
71	D 01	<i>15</i> .12.0.0	= 98.280	840,00	378,00	252,00	168,00	126,00
71	E 01	<i>13</i> .13.0.0	= 84.240	720,00	324,00	216,00	144,00	108,00
73	D 05	11.11.15.14	= 83.474	713,45	321,05	214,04	142,69	107,02
70	E 07	9.15.0.0	= 70.200	600,00	270,00	180,00	120,00	90,00
70	F 07	7.16. <mark>0.0</mark>	= 56.160	480,00	216,00	144,00	96,00	72,00
71	A 06	5.17.0.0	= 42.120	360,00	162,00	108,00	72,00	54,00
73	E 05	4.16.8.12	= 34.732	296,85	133,58	89,06	59,37	44,53
71	B 06	3.18.0.0	= 28.080	240,00	108,00	72,00	48,00	36,00
73	F 06	1.19.0.0	= 14.040	120,00	54,00	36,00	24,00	18,00
71	C 06	19.9. <mark>0</mark>	= 7.020	60,00	27,00	18,00	12,00	9,00
71	D 06	17.9.18	= 6.318	54,00	24,30	16,20	10,80	8,10
71	E 06	15.10.16	= 5.616	48,00	21,60	14,40	9,60	8,00
70	E 12	13.11.14	= 4.914	42,00	18,90	12,60	8,40	7,00
70	F 12	11.12.12	= 4.212	36,00	16,20	10,80	7,20	6,00
71	A 11	9.13.10	= 3.510	30,00	13,50	9,00	6,00	5,00
71	B 11	7.14.8	= 2.808	24,00	10,80	7,20	4,80	4,00
71	C 11	5.15.6	= 2.106	18,00	8,10	5,40	3,60	3,00
70	B 12	4.10.((6))	= 1.646	14,07	6,33	4,22	2,81	2,34
71	D 11	3.16.4	= 1.404	12,00	5,40	3,60	2,40	2,00
71	E 11	1.17.2	= 702	6,00	2,70	1,80	1,20	1,00
70	A 12	1.12.((6))	= 606	5,18	2,33	1,55	1,04	0,86
70	A 23	4.((6))	= 86	0,74	0,33	0,22	0,15	0,12

Anhang 7.6: Perioden der Seiten p. 69-73 (4 Eb)

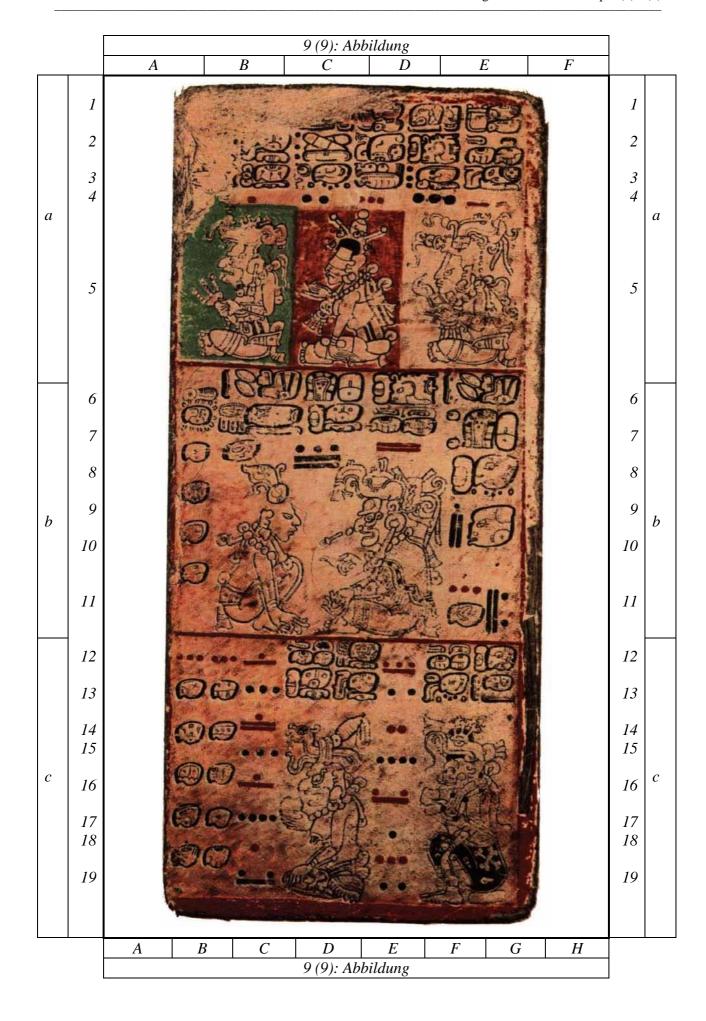
Codex	Dresden	Z	ahl			ermittelte	Perioden	
Seite	Element	vigesimal	=	dezimal	260,00	364,00	390,00	780,00
					Tzolkin	~Jahr	?	~Mars
(1)	(2)	(3)		(4)	(5)	(6)	(7)	(8)
69	E 11	4.5.19.13.12.8	=	12.381.728	47622,03	34015,74	31748,02	15874,01
70	B 18	8.16.19.10. <mark>0</mark>	=	1.274.240	4900,92	3500,66	3267,28	1633,64
70	E 16	1.0.12.3.0	=	148.380	570,69	407,64	380,46	190,23
71	A 15	15.3.6. <mark>0</mark>	=	109.200	420,00	300,00	280,00	140,00
71	B 15	13.2.16. <mark>0</mark>	=	94.640	364,00	260,00	242,67	121,33
71	D 15	9.2.0.0	=	65.520	252,00	180,00	168,00	84,00
70	F 16	8.1.10. <mark>0</mark>	=	58.160	223,69	159,78	149,13	74,56
71	E 15	7.1.10. <mark>0</mark>	=	50.960	196,00	140,00	130,67	65,33
70	E 22	6.1.6. <mark>0</mark>	=	43.680	168,00	120,00	112,00	56,00
70	F 22	5.1.2. <mark>0</mark>	=	36.400	140,00	100,00	93,33	46,67
71	A 22	4. <mark>0</mark> .16. <mark>0</mark>	=	29.120	112,00	80,00	74,67	37,33
71	B 22	3.0.12.0	=	21.840	84,00	60,00	56,00	28,00
71	C 22	2.0.8.0	=	14.560	56,00	40,00	37,33	18,67
71	D 22	15.3.0	=	5.460	21,00	15,00	14,00	7,00
71	C 18	12.2.12	=	4.372	16,82	12,01	11,21	5,61
71	C 15	10.2.4	=	3.644	14,02	10,01	9,34	4,67
71	E 22	10.2.0	=	3.640	14,00	10,00	9,33	4,67
71	F 22	5.1.0	=	1.820	7,00	5,00	4,67	2,33
71	G 22	4.15.15	=	1.755	6,75	4,82	4,50	2,25
72	A 19	4.12.10	=	1.690	6,50	4,64	4,33	2,17
72	B 19	4.9.5	=	1.625	6,25	4,46	4,17	2,08
72	C 19	4.6.0	=	1.560	6,00	4,29	4,00	2,00
72	D 19	4.2.15	=	1.495	5,75	4,11	3,83	1,92
72	E 19	3.17.10	=	1.430	5,50	3,93	3,67	1,83
72	F 19	3.14.5	=	1.365	5,25	3,75	3,50	1,75
72	G 19	3.11.0	=	1.300	5,00	3,57	3,33	1,67
73	A 19	3.7.15	=	1.235	4,75	3,39	3,17	1,58
73	B 19	3.4.10	=	1.170	4,50	3,21	3,00	1,50
73	C 19	3.1.5	=	1.105	4,25	3,04	2,83	1,42
73	D 19	2.16.0	=	1.040	4,00	2,86	2,67	1,33
73	E 19	2.12.15	=	975	3,75	2,68	2,50	1,25
71	F 14	2.9.10	=	910	3,50	2,50	2,33	1,17
71	G 14	2.6.5	=	845	3,25	2,32	2,17	1,08
72	A 12	2.3.0	=	780	3,00	2,14	2,00	1,00
72	B 12	1.17.15	=	715	2,75	1,96	1,83	0,92
72	C 12	1.14.10	=	650	2,50	1,79	1,67	0,83
72	D 12	1.11.5	=	585	2,25	1,61	1,50	0,75
72	E 12	1.8.0	=	520	2,00	1,43	1,33	0,67
72	F 12	1.4.15	=	455	1,75	1,25	1,17	0,58
72	G 12	19.10	=	390	1,50	1,07	1,00	0,50
73	A 13	16.5	=	325	1,25	0,89	0,83	0,42
73	B 13	13.0	=	260	1,00	0,71	0,67	0,33
70	B 23	10.((8))	=	208	0,80	0,57	0,53	0,27
73	C 13	9.15	=	195	0,75	0,54	0,50	0,25
73	D 13	6.10	=	130	0,50	0,36	0,33	0,17
73	E 13	3.5	=	65	0,25	0,18	0,17	0,08

Anhang 7.7: Perioden der Seiten p. 31-32

Codex	Dresden	Zah	1	Per	iode
Seite	Element	vigesimal =	dezimal	260	364,00
				Tzolkin	~ Jahr
(1)	(2)	(3)	(4)	(5)	(6)
31	G 07	19.9.9.3. <mark>0</mark> =	2.804.100	10785,00	7703,57
31	F 03	10.13.3.13.2 =	1.534.942	5903,62	4216,87
31	D 03	8.16.14.15.4 =	1.272.544	4894,40	3496,00
31	E 03	8.16.3.13. 0 =	1.268.540	4879,00	3485,00
31	F 08	7.2.14.5 =	51.405	197,71	141,22
32	C 08	4.0.16 =	1.456	5,60	4,00
32	C 12	2.14.1 =	1.001	3,85	2,75
32	A 12	2.0.8 =	728	2,80	2,00
32	F 01	1.13.17 =	637	2,45	1,75
32	G 01	1.9.6 =	546	2,10	1,50
32	D 07	1.4.15 =	455	1,75	1,25
32	E 07	13.13 =	273	1,05	0,75
32	A 08	10.2 =	202	0,78	0,55
32	F 07	9.2 =	182	0,70	0,50
31	D 09	((6.1)) =	121	0,47	0,33
32	B 08	5.1 =	101	0,39	0,28
32	G 07	4.11 =	91	0,35	0,25
32	B 12	1.0 =	20	0,08	0,05
31	E 09	((17)) =	17	0,07	0,05

Anhang 7.8: Perioden der Seiten p. 62-64

Codex	Dresden	Z	ahl		ermittelte	Perioden
Seite	Element	vigesimal	=	dezimal	260,00	364,00
					Tzolkin	~ Jahr
(1)	(2)	(3)		(4)	(5)	(6)
63	C 13	10.13.13.3.2	=	1.538.342	5916,70	4226,21
63	C 16	10.8.3.16.4	=	1.499.004	5765,40	4118,14
62	E 08	8.16.15.16.1	=	1.272.921	4895,85	3497,04
62	F 08	8.16.14.15.4	=	1.272.544	4894,40	3496,00
63	B 18	8.16.3.13.0	=	1.268.540	4879,00	3485,00
63	A 18	8.11.8.7.0	=	1.234.220	4747,00	3390,71
63	D 01	1.0.4.8.0	=	145.600	560,00	400,00
63	D 13	19.0.4.4	=	136.884	526,48	376,05
63	E 01	15.3.6. <mark>0</mark>	=	109.200	420,00	300,00
63	F 01	10.2.4.0	=	72.800	280,00	200,00
63	C 25	7.2.14.((19))	=	51.419	197,77	141,26
64	A 01	5.1.2. <mark>0</mark>	=	36.400	140,00	100,00
64	B 01	4. <mark>0</mark> .16. <mark>0</mark>	=	29.120	112,00	80,00
64	C 01	3.0.12.0	=	21.840	84,00	60,00
64	D 01	2.0.8.0	=	14.560	56,00	40,00
64	E 01	1.0.4.0	=	7.280	28,00	20,00
64	F 01	10.3. <mark>0</mark>	=	3.660	14,08	10,05
63	D 11	5.1.0	=	1.820	7,00	5,00
64	G 01	5.1.0	=	1.820	7,00	5,00
63	E 11	4.14.9	=	1.729	6,65	4,75
63	F 11	4.9.18	=	1.638	6,30	4,50
64	A 10	4.5.7	=	1.547	5,95	4,25
64	B 10	4.0.16	=	1.456	5,60	4,00
64	C 10	3.14.5	=	1.365	5,25	3,75
64	D 10	3.9.14	=	1.274	4,90	3,50
64	E 10	3.5.3	=	1.183	4,55	3,25
64	F 10	3.0.12	=	1.092	4,20	3,00
64	G 10	2.14.1	=	1.001	3,85	2,75
63	D 23	2.9.10	=	910	3,50	2,50
63	E 23	2.4.19	=	819	3,15	2,25
63	F 23	2.0.8	=	728	2,80	2,00
64	A 18	1.13.17	=	637	2,45	1,75
64	B 18	1.9.6	=	546	2,10	1,50
62	E 15	1.4.16	=	456	1,75	1,25
64	C 18	1.4.15	=	455	1,75	1,25
64	D 18	1.0?.4	=	364	1,40	1,00
64	E 18	13.13	=	273	1,05	0,75
63	A 27	11.((15))	=	235	0,90	0,65
64	F 18	9.2	=	182	0,70	0,50
62	F 15	6.1	=	121	0,47	0,33
64	G 18	4.11	=	91	0,35	0,25
63	B 27	0.((17))	=	17	0,07	0,05


Anhang 8: Darstellung des Codex Dresden p. 8(8)-9(9)

Für die folgenden Darstellungen gelten die Vorbemerkungen des Anhangs 2: (1) bis (9).

				8 (8).	Abbildung				
		A	В	C	D	E	F		
а	1 2 3 4							1 2 3 4	а
	6		8E	TO TO				6	
	7		Out	30	3C	図に		7	
	8		00	63	9	·	1	8	
b	9		0 %	Par S				9	b
	10			数		-	-)	10	
	11 12		が				5	11 12	
	13		-	816		1819	D	13	
	14		0==	SE				14	
	15		<i>P</i>	多。元		一。野	3	15	
c	16	41.	0	The second second	1			16	c
	17		—			Nº C	31	17	
	18							18	
L	1	A	В С	D 0 (0)	E F	G	H I		
				8 (8).	Abbildung			_	

5					8 (8	8): Transkr	ription/	Trans	sliterai	tion					
The pecah The			A		В	C			D	E					
2		1	_			_				-				1	
10		2											i	2	
a 4 2 6 3 9 2 ≥10 4 5 5 6 - nu chu much much hol much hol much hol much hol much hol much hol much hol much hol much hol much hol much hol much hol hol 4 2 6 - nu chu much hol much hol much hol much hol much hol much hol hol 7 8 ITZ AM na ah NIC il inah nol inah - hol hol hol 7 8 AH CIZIN 8 ah cizin la vi l		3		ı									i	3	
6	a	4				3				2			≥ 10	4	а
6															
Nuch Nuch		5												5	
Nuch Nuch								I 4.7	7 4 3 3 7					_	
Barrian Section Sect			-		nuch	ho	l	M ahaw	EN ta v men ta	-			nuch	6	
B 9 Cauac 13 CUY 13 cuy 10 Chuen 8 10 6 11 12 Men 20 12 13 13 14 Cib 9 ITZ AM na ah NiC il yo ON KiN 9 11 P'EN u mu ca MEN mu muc mu ca mu		7	8							-		Ī		7	
10 Chuen		8	Mani	k	20	6			8	-				8	
11	b	9	Caua	С				•						9	b
12 Men 20 12		10	Chue	n									8	10	
13 3 12 u te ka ha NAH il AHAW el 8 u te ka ha u tekah nah lob a lob 14 Cib 9 ITZ AM na ah NIC il yo ON KIN ni ni yon kinil 11 p'en u muc nuc men 15 Lamat 4 13 15 16 Ahau 9 17 Eb 9 3 17		11	Akba	ıl									6	11	
13		12	Men	<u> </u>									20	12	
15 Lamat 4 13 15 16 17 16 17 17 18 19 16 17 17 18 19 17 18 19 19 10 11 11 12 13 15 15 16 17 18 19 19 10 10 10 10 10 10		13	3	12					8					13	
C 15 Lamat 4 13 15 16 17 Eb 9 3 17		14	Cib	9	ITZ AM na	ah NIC il			9	11 P'EN	u mu	ı ca		14	
16 Ahau 9 9 16 17 Eb 9 17		15	Lamat	4	itzam na	ah nicil	yon k	kinil	13	11 p'en	u m	ис	nuc men	15	
17 Eb 9	c	16	Ahau	9					9					16	c
18 Kan 9 7 18		17	Eb	9					3					17	
		18	Kan	9					7					18	
A B C D E F G H I		I.	A	R	C	D	F	7	F	G	I	Į.	I		
8 (8): Transkription/Transliteration			11	ש							4.4	•	1 *		

				8	(8): Tran	nslatio	on/Ir	ıterpret	ation					
		A		$\boldsymbol{\mathit{B}}$	C			D		E		F		
	1	wurd gesproc		von/über sein Orakel	gesproo			/über sein Orakel		vurde prochen	voi	n/über sein Orakel	1	
	2	Zwerge (Gott A		der Tod	der Jag	guar		ist gut		Geier opilote)		ં	2	
	3	das Un	heil	seine Vorbedeutung	viele To			nderung, Wechsel		de der nwerker		ં	3	
a	4	+ 2		6	+ 3	=		9	+	- 2 =		11	4	a
	5	Gotthei Todes (sitzer	(A1)	Cib Lamat Ahau Eb Kan	anthro morpi Jagu sitze	her ar		Cauac Chuen Akbal Men Manik	mo (Za zeig	hropo- orpher Geier ppilote) t sitzend or sich	(Imix Ben Chicchan Caban Muluc	5	
	6	-		sie weben	Kopf Kop			Herr der ndwerker		-	si	e weben	6	
	7	8		Itzamna	Blun Blü		Ma	der iskörme	r	-	F	Kopf an Kopf	7	
	8	Man	ik	+	26 =			8	(→F1	(2)		Todes- ttheit (A)	8	
b	9	Caua	ac		opfergotthe Gott D), ha		C	Ben Thicchan		-	1	3 Eulen	9	b
	10	Chue	en	kniend, im einer Gotth	Gespräch neit (N), eir	mit nem		Caban Muluc	(Саиас		← 8	10	
	11	Akb	al	sitzenden I (<i>Bacab</i> , (Davoust 19	Pauahtun))		Imix	A	Eb Akbal	+	- 26 = ↑	11	
	12	Mei	n	1986:8	7-89, 263)			_		Men Ianik		1	12	
	12	3	10	Chicchan, Ca	ihan Muluc I	Imix Rev	,	0		Etz'nab, (8→)	12	
	13	(→B14)	12 ₁	er, sie es	das Haus	(→I	rscht	82	er, sie e			(→B16) Unheil	13	
	14	Cib	↑ +9 ₁ =	Itzamna (Gott D)	Blume, Blüte	der So naho stehe	onne e-	↑ +9 ₂ =	Gott Q	ist s Vo	or-	großer Hand- werker	14	
	15	Lamat	(A13→)	Akbal, Men, I	Manik, Cauac,	, Chuen	F16)	134	Eb, Kan,	Cib, Lame			15	
С	16	Ahau	↑ +9 ₃ =		öpfergott auf e			↑ +9 ₄ =			nger :	chreitet, zeigend,	16	С
	17	Eb	95	Imix, Ben, Ch	icchan, Caba		c F18)	36	Lamat, A	auf hau, Eb, K		b	17	
	18	Kan	† +9 ₅ =		el zu, in d ergengesta			↑ +7 ₆ =			_	u, in dem chtbar ist.	18	
		A	В	С	D	E	,	F	G	I	I	Ι		i
				_ l	(8): Tran									
	ļ	<u> </u>			1 - /			r						

9 (9): Transkription/Transliteration A B C D E F													
		A	В		\overline{C}	\overline{D}		E			\overline{F}		
	1	ં	i	((pe ca ha) (pecah)	tu chi chi tu chich		pe ca peca			chi chi u chich	1	
	2	i	ah NIC il ah nicil		CH'OC an 3 ch'ocan	□ob a <i>lob</i>		ah Na ah n			HA' WAH ha' wah	2	
	3	ં	yu tzi li y utzil		ah CIM al ah cimal	XUL MEN xul men	,	3 WI' 3 wi			ON KIN ni on kin	3	
a	4	i	1		2	3		3			5?	4	a
	5											5	
	6	-	nu chu nuch		ho lo hol	ah NAL ah nal		-			nu chu nuch	6	
	7	o xo ox	ITZ AM na itzam na		ah NIC il ah nicil	KA' HA' WAH ka' ha' wah		-			ho lo	7	
	8	Muluc	20		13	10		-			CIZIN al cizin al	8	
b	9	Ix									l P'EN 1 p'en	9	b
	10	Cauac									3	10	
	11	Kan								20	12	11	
	12	3	3	6	KA' HA' WAH ka' ha' wal	ITZ AM na		8	KA' WA ka' ha	AΗ	ah CIZIN	12	
	13	Cauac	Ben	3	ah NIC il ah nicil	yo ON KIN n yon kinil	i	2	ah Cl	M al	ah cizin u mu ca u muc	13	
	14	Chuen	Chicchan	11		ofergott <i>Itzamna</i>		2	Der		sgott (A)	14	
c	15	Akbal	Caban	3	Aspel	nem femininen kt (Davoust 32) trägt den		4			n Aspekt	15	С
	16 - 6 1997:132) trägt den Kopfschmuck der Göttin (O) der Webkunst, die							16					
	17	Men	Muluc	4	Wassers	ergießerin des genannt wird;		1				17	
	18 19	- Manik	Imix	7		lt ein Gefäß in er Hand		2				18 19	
	1)	TTAUIII N	miix	,								17	
	Ţ	\boldsymbol{A}	В	\boldsymbol{C}	D	E		F	(<u> </u>	Н		_
			9	(9)): Transkrij	otion/Translit	era	ition					

				9 (9): Transla		etat				
		\boldsymbol{A}	B	C	D		E	F		
	1	ં	i	wurde gesprochen	von/über sein Orakel		wurde gesprochen	von/über sein Orakel	1	
	2	ં	Blume, Blüte	die 3 Jugendlichen	Unheil	d	er Maisgott (E)	viele Tortillas und Wasser	2	
	3	i	ist gut	der Tod	das Ende der Handwerker	Ī	Überfluß an Nahrung	der Sonne nahestehend	3	
a	4	+ 3 =	1	+ 2 =	3	l	+ 3 =	6	4	a
	5	Schöpfergott Itzamná (D) sitzend	Kan Cib Lamat	Gottheit A4 sitzend mit verbunde- nen Augen	Cimi Etz'nab Oc	(Iaisgottheit E) sitzend mit erhobener	Muluc Imix Ben	5	
		hält ein unbekann- tes Objekt in der Hand	Ahau Eb	und erhobenner Hand	Ik Ix		Hand	Chicchan Caban		
	6	-	sie weben	Kopf an Kopf	der Mais- gott (E)		-	sie weben	6	
	7	3	Itzamna	Blume, Blüte	viele Tortillas und viel Wasser		-	Kopf an Kopf	7	
	8	Muluc	+	33 =	10	(-	→F11)	der Todes- gott (A)	8	
b	9	Ix		aisgott (E)	Ik Manik		-	Gottheit Q	9	b
	10	Cauac	sitzender	d vor dem n Schöpfer- tzamná (D).	Eb Caban		Ix Cauac	← 3	10	
	11	Kan	gottnett I	izamna (D).	-		Kan Muluc	+ 32 = ↑ (E08→)	11	
	12	3 (→ <i>C13</i>)	3 61	A12→: Cib, Ik, Lamat B12→: Cimi, Eb, Etz'		8 ₂	A12→: Etz'nab	. Kan, Oc, Cib, Ik Ix, Ahau, Cimi, Eb (→ C15)	12	
	13	Cauac	$ \begin{array}{ccc} $	viele Tortillas und viel Wasser Blume, Blüte	Itzamna (Gott D) der Sonne nahe-	↑ +2 ₂ =	viele Tortill und viel Was der Tod	as Todesgott sser (A) ist seine Vorbe-	13	
	14	Chuen	hicchan 11 ₃	A12→: Imix, Manik, Ben, Cau	stehend uac, Chicchan	24	A12→: Chicchan, Chue	n, Caban, Akbal, Muluc	14	
c	15	Akbal	Caban $+3_3=$	B12→: Chuen, Caban, Akbal,	$\begin{array}{c} & \\ \textit{Muluc, Men} \\ & \rightarrow \end{array}$	↑ +4 ₄ =	B12→: Men, Imix, Man	ik, Ben, Cauac (→C17)	15	c
	16	-	- 65	A12→: Muluc, Men, Imix, Ma	nik, Ben	7 ₆	A12→: Oc, Cib, Ik, Lan	, ,	16	
	17	Men I	$ \uparrow \\ \text{Muluc} +4_5 = $	B12→: Cauac, Chicchan, Chu Akbal	uen, Caban, →	↑ +1 ₆ =	B12→: Ahau, Cimi, Eb,	Etz'nab, Kan (→C19)	17	
	18	-	- 17	A12→: Caban, Akbal, Muluc,	Men, Imix	3 ₈	A12→: Cauac, Chiccha Akbal	n, Chuen, Caban,	18	
	19	Manik	Imix ↑ +7 ₇ =	B12→: Manik, Ben, Cauac, C	hicchan, Chuen →	† +2 ₈ =	B12→: Muluc, Men, Im	ix, Manik, Ben	19	
_		A	ВС	D	E	F	G	Н		
		•	•	9 (9): Transla	ation/Interpr	etat	ion			
	!								1	

Anhang 9: Agensrichtung anthropomorpher und zoomorpher Figuren in den Codices Madrid, Paris und Grolier

(1) Quellen:

(1.1) für den Codex Grolier (\rightarrow Anhang 9.3):

http://www.famsi.org/mayawriting/codices/grolier.html

http://www.famsi.org/mayawriting/codices/pdf/grolier_kerr.pdf

(1.2) für den Codex Madrid (\rightarrow Anhang 9.1):

http://www.famsi.org/mayawriting/codices/madrid.html

http://www.famsi.org/mayawriting/codices/pdf/madrid_rosny_bb.pdf

(1.3) für den Codex Paris (\rightarrow Anhang 9.2):

http://www.famsi.org/mayawriting/codices/paris.html

http://www.famsi.org/mayawriting/codices/pdf/paris_love.pdf

Die Reihenfolge der Abbildungen dieser Quellen und die sich aus ihnen ergebenden Zählungen der Seiten der Codices bilden die Grundlage der Bezeichnung und der Reihenfolge der nachfolgenden Tabellen der Agensrichtung der anthropomorphen und zoomorphen Figuren, um dadurch ihre einfache Überprüfung zu gewährleisten.

(2) Zur weiteren Erläuterung der nachfolgenden Tabellen gilt die Legende der Tabellen 12, 13, 14 sinngemäß (→ Kapitel 7).

9.1 Agensrichtung der Figuren im Codex Madrid

		Age	ens-R	ichtur	ng de	r Figu	ren		Bes	onderhe	eiten
		L –				L←			Z	zgl. (2) - (9))
Codex Madrid	а	b	С	d	а	b	С	d	sonstige Richtungen	Himmels- band	Finsternis- glyphen
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1	ن	-	-	-	ڹ	-	-	-	-	-	-
2	0	0	•	-	0	1	•	•	9	-	-
3	0	0	-	-	3	2	-	-	-	-	-
4	0	0	-	-	3	1	-	-	1	-	-
5	0	0	-	-	2	0	-	-	2	1	1
6	0	0	-	-	3	1	-	-	-	-	-
7	1	0	-	-	2	1	-	-	2	-	-
8	0	-	-	-	2	-	-	-	5	-	-
9	0	-	-	-	0	-	-	-	2	1	-
10	0	-	-	-	2	4	4	-	-	-	-
11	0	-	-	-	3	5	5	-	-	1	-
12	0	1	-	-	3	2	-	-	-	1	2
13	0	0	-	-	1	4	-	-	1	-	1
14	0	0	-	-	3	3	-	-	-	-	-
15	0	1	-	-	2	1	-	-	-	-	-
16	0	1	-	-	2	1	-	-	-	-	-
17	0	0	-	-	1	3	-	-	3	1	2
18	0	1	-	-	2	0	-	-	-	-	-
19	0	2	-	-	2	3	-	-	-	-	-
20	0	0	0	0	3	3	3	3	1	-	-
21	0	0	0	0	3	3	2	2	-	-	-
22	0	0	0	0	3	2	1	2	-	-	-
23	0	0	0	0	2	1	2	2	-	-	-
24	0	0	0	2	3	0	4	4	-	-	-
25	0	0	0	1	3	0	4	4	1	-	-
26	0	0	0	1	3	3	3	3	-	-	-
27	0	0	1	4	3	3	3	3	-	-	-
28	0	0	2	0	0	5	4	4	4	-	-
29	1	2	0	1	1	2	4	1	2	-	-
30	0	2	-	-	3	3	-	-	1	-	-
31	2	0	-	-	2	2	-	-	1	-	-
32	1	0	-	-	1	1	-	-	2	1	2
33	0	0	-	-	3	1	-	-	-	1	1
34	1	1	-	-	4	2	-	-	1	1	-
35	0	1	-	-	1	4	-	-	2	1	-
36	0	2	-	-	3	6	-	-	-	1	-
37	2	2	-	-	2	5	-	-	-	1	-
38	0	0	0	-	2	2	2	-	1	-	-
39	0	0	0	-	3	2	1	-	-	-	-
40	1	1	0	-	5	3	2	-	3	-	-
41	0	1	0	-	2	3	4	-	4	-	-
42	1	0	0	-	2	0	2	-	2	-	-
43	0	0	0	-	2	2	1	-	-	-	-
∑ p. 1 - 43	10	18	3	9	95	90	51	28	50	11	9

	Agens-Richtung					r Figu	ren		Besonderheiten		
		L –	→ R			L←	- R		zzgl. (2) - (9)		
Codex Madrid	а	b	С	d	а	b	С	d	sonstige Richtungen	Himmels- band	Finsternis- glyphen
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
44	0	0	0	-	1	2	2	-	-	-	-
45	0	0	0	-	1	1	1	-	-	-	-
46	0	0	0	-	0	1	1	-	1	-	-
47	0	0	0	-	1	1	1	-	1	1	-
48	0	0	1	-	1	1	0	-	1	-	-
49	0	0	0	-	1	1	0	-	1	-	-
50	1	0	0	-	2	1	4	-	-	-	-
51	1	1	0	-	1	1	1	-	-	-	-
52	0	0	1	-	2	2	2	-	-	-	-
53	0	0	0	-	2	3	1	-	-	-	-
54	0	0	1	-	2	3	1	-	-	-	-
55	0	0	0	-	2	3	0	-	1	-	-
56	0	خ	خ	-	2	خ	خ	-	-	-	-
57	0	0	-	-	2	2	-	-	-	-	-
58	0	0	j	-	4	0	j	-	5	-	-
59	0	0	0	-	2	0	3	-	6	-	-
60	0	0	0	-	4	3	3	-	-	-	-
61	0	0	0	-	0	3	1	-	2	-	-
62	0	0	0	-	2	2	3	-	-	-	-
63	0	0	0	-	4	4	3	-	-	-	-
64	0	0	0	-	2	2	3	-	-	-	-
65	0	0	-	-	2	2	-	-	-	-	-
66	0	1	-	-	2	2	-	-	-	-	-
67	0	0	-	-	2	1	-	-	2	1	1
68	0	0	-	-	2	2	-	-	-	-	-
69	0	0	-	-	2	2	-	-	-	-	-
70	0	0	-	-	2	2	-	-	-	-	-
71	0	0	-	-	2	2	-	-	-	1	2
72	0	0	-	-	2	1	-	-	1	-	-
73	0	0	-	-	0	2	-	-	2	-	-
74	0	0	-	-	0	4	-	-	3	-	-
75	2	-	-	-	4	-	-	-	-	-	-
76	3	-	-	-	2	-	-	-	1	-	-
77	0	-	-	-	0	-	-	-	-	-	-
78	0	-	-	-	0	-	-	-	- 2	-	-
79	1	0	-	-	1	2	-	-	2	-	-
80	1	0	0	-	1	1	2	-	1	-	-
81	0	0	0	-	1	4	1	-		-	-
82	0	0	0	-	2	2	2	-	-	-	-
83	0	0	0	-	4	3	2	-	-	-	-
84	1	0	0	-	1	3	1	-	-	-	-
85	1	0	0	-	1	2	1	-	-	-	-
86	11	0	0	-	5	3	1	-	1	-	-
87	1	0	0	-	4	3	1	-	1	-	-
88	0	0	0	-	6	2	4	-	-	-	-
89 90	0	0	0	0	5 3	2 5	1	3	-	-	-
∑ p. 44 - 90							4 50	7		- 2	- 2
<u>ν</u> μ. 44 - 90	13	2	3	0	94	88	50	1	35	3	3

	Agens-Richtung der Figuren								Besonderheiten		
	$L \rightarrow R$ $L \leftarrow R$						zzgl. (2) - (9)				
Codex Madrid	а	b	С	d	а	b	С	d	sonstige Richtungen	Himmels- band	Finsternis- glyphen
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
91	0	0	0	2	4	1	3	2	1	-	-
92	0	0	0	2	3	2	2	2	1	-	-
93	1	0	0	0	3	2	8	4	-	-	-
94	3	4	0	2	5	4	8	4	-	-	-
95	0	1	0	0	4	1	8	3	-	-	-
96	2	0	0	0	2	3	0	2	-	-	-
97	0	0	0	0	3	3	3	2	-	-	-
98	0	0	0	0	2	2	3	2	-	-	-
99	0	0	0	0	3	2	3	2	-	-	-
100	0	0	0	0	3	3	2	2	-	-	-
101	0	0	0	0	2	2	2	2	2	-	-
102	0	0	0	0	2	2	2	2	-	-	-
103	0	0	0	-	2	3	0	-	7	-	-
104	0	0	0	-	2	2	2	-	5	-	-
105	0	0	0	-	3	0	0	-	6	-	-
106	0	0	0	-	1	1	0	-	5	-	-
107	0	0	0	-	1	3	3	-	-	-	-
108	0	0	0	-	0	3	2	-	5	-	-
109	0	0	0	-	0	1	2	-	5	-	-
110	0	0	0	-	0	3	3	-	4	-	-
111	0	0	0	-	2	1	3	-	1	-	-
112	0	0	3	-	0	3	0	-	4	-	-
∑ p. 91-112	6	5	3	6	47	47	59	29	46	0	0

ZUSAMMENFASSUNG:

Σ	∑ Codex Madrid	1	7			230		35	 	131		26
		29	25	9	15	236	225	160	64	131	14	12
Σр	. 91-112	6	5	3	6	47	47	59	29	46	0	0
Σр	. 44- 90	13	2	3	0	94	88	50	7	35	3	3
Σр	. 1- 43	10	18	3	9	95	90	51	28	50	11	9

9.2 Agensrichtung der Figuren im Codex Paris

	Age	ens-R	onderheiten						
	L	_ → F	\	Į	_ ← F	₹	Z	zgl. (2) - (7))
Codex Paris	а	b	С	а	b	С	sonstige Richtungen	Himmels- band	Finsternis- glyphen
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	ن	•	•	ن	•	•	j	-	-
2	0	1	-	2	0	-	-	-	-
3	1	1	-	2	1	-	-	1	-
4	1	1	-	2	1	-	-	-	-
5	0	1	0	2	1	1	-	1	-
6	0	1	-	2	2	-	-	-	-
7	0	1	0	2	1	1	-	-	-
8	0	1	-	0	1	-	1	-	-
9	0	1	-	1	0	-	-	-	-
10	0	1	-	1	1	-	-	-	-
11	0	1	-	1	2	-	-	-	-
12	j	-	-	j	-	-	-	-	-
15	1	•	ı	0	•	•	-	•	-
16	1	0	0	1	2	1	-	•	-
17	0	0	0	1	0	1	3	•	-
18	0	0	0	1	2	1	-	-	-
19	2	•	•	4	•	•	-	1	-
20	0	•	•	6	•	•	1	•	-
21	2	-	-	1	-	-	-	1	-
22	3	-	-	4	-	-	2	1	1
23	0	0	0	0	0	0	5	1	5
24	0	0	0	0	0	0	5	1	6
∑ Codex	11	10	0	33	14	5	17	7	12
Paris		21			52			1	9
Palis									

9.3 Agensrichtung der Figuren im Codex Grolier

	Agens-F der Fi		Besonderheiten				
	$L \rightarrow R$	L ← R	zzgl. (2) - (3)				
Codex Grolier	a a		sonstige Richtungen	Himmels- band	Finsternis- glyphen		
(1)	(2)	(3)	(4)	(5)	(6)		
1	0	2	-	1	-		
2	0	1	-	-	-		
3	0	1	-	-	-		
4	0	2	-	-	-		
5	0	2	-	-	-		
6	0	1	-	-	-		
7	0	1	-	-	-		
8	0	1	-	-	-		
9	0	2	-	-	-		
10	j	j	-	-	-		
11	0	1	-	-	-		
∑ Codex Grolier	0	14	0	0	0		